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Abstract: - Network Processing Units (NPUs) target to achieve software programmability like generic CPUs
and at the same time achieve the performance of ASICs in order to support wire-speed operation for
demanding networking applications. A significant part of the functionality of a NPU is data storage and the
implementation of per-flow queuing in order to support the store-and-forward functionality of common
network switches and routers. Memory management at high-speeds is not trivial. In this paper we analyze the
performance bottlenecks by simulating the actual implementation of a data memory manager integrated in a
typical NPU architecture. We expose the performance limitations of software implementations utilizing
RISC processing cores typically found in most NPU architectures and identify the requirements for hardware
assisted memory management in order to achieve wire-speed operation at gigabit/second rates.
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1 Introduction

To meet the demand for higher performance,
flexibility, and economy in emerging multi-service,
broadband networking systems, an alternative to
Application Specific Integrated Systems (ASICs),
which have been traditionally used to implement
packet-processing functions in hardware, the so
called Network Processors or Network Processing
Units (NPUs), has emerged. NPUs can be broadly
defined as System-on-Chip (SoC) architectures that
exploit the state-of-the-art in VLSI technology
integrating multiple highly optimized processing
cores (usually exploiting parallelism and/or
pipelining in order to increase throughput). These
cores in turn can be characterized either as Reduced
Instruction Set Computing (RISC) engines, or
dedicated hardware engines for specific complex
packet processing functions that require wire-speed
performance like classification, per-flow queuing,
buffer and traffic management.

Most modern networking technologies (like IP,
ATM, MPLS etc.) share the notion of connections or
flows (we adopt the term “flow” hereafter) that
represent data transactions in specific time spans and
between specific end-points in the network for the
implementation  of  networking  applications.
Depending on the applications and algorithms used,
the network processor typically has to manage
thousands of flows, implemented as packet queues in
the processor packet buffer [1]. Therefore, effective

queue management is key to high-performance
network processing as well as to reducing
development complexity. In this paper we focus on
the review of potential implementations within a
NPU architecture and performance evaluation of
queue management, which is performed extensively
in network processing applications.

Our performance evaluation methodology is based on
three steps. First we analyze the memory architecture
alternatives that can be used for implementing packet
buffers and queues of packets in accordance with the
overall NPU architecture. Therefore in section 2 we
make a brief overview of NPU architectures focusing
on the memory management optimizations in each
case. In section 3 we analyze the performance
bottlenecks examining the accesses to external
memories for the implementation of packet buffers in
isolation. In section 4 we present an analysis
regarding the performance of a queue management
implementation on a widely used Network Processor
and in section 5 we proceed in a more detailed
analysis extending our results for a generic NPU
architecture. We perform our measurements on a
prototype NPU architecture for a typical
implementation of queues of packets with single
linked-list data structures and using SRAM and
Double Data Rate (DDR) DRAM off-chip memories
with the aid of an FPGA development and
prototyping platform. The conclusions of our paper
are finally summarized in section 6.



2 Memory Management in Network

Processors

The requirements with regard to memory
management  implementations in  networking
applications stem from the fact that data packets need
to be stored in an appropriate queue structure either
before or after processing and be selectively
forwarded. These queues of packets need to at least
serve the First-In-First-Out (FIFO) service discipline,
while in many applications flexible access to their
data is required (in order to modify, move, delete
packets or part of a packet, which resides in a specific
position in the queue e.g. head or tail of the queue
etc.). In order to efficiently cope with these
requirements several solutions based on dedicated
hardware have been proposed initially targeting high-
speed ATM switching where the fixed ATM cell size
favored very efficient queue management ([2], [3],
[4]) and later-on extended to management of queues
of variable- size packets [5]. The basic advantage of
these implementations in hardware is of course the
higher throughput with modest implementation cost.
On the other hand the functions they can provide (e.g.
single vs. double linked lists, operations in the
head/tail of the queue, copy operations etc.) needs to
be selected carefully at the beginning of the design.
Several trade-offs between dedicated hardware and
implementations in software have been exposed in
[6], in which specific implementations of such queue
management schemes in ATM switching applications
are examined.

Several commercial NPUs follow a hybrid approach
targeting the acceleration of memory management
implementations by utilizing specialized hardware
units that assist specific memory access operations,
without providing a complete queue management
implementation. The first generation of the Intel NPU
family, the IXP1200, initially provides an enhanced
SDRAM unit, which supports single byte, word, and
long-word write capabilities using a read-modify-
write technique and may reorder SDRAM accesses
for best performance (the benefits of this will also be
exposed in the following section). The SRAM Unit of
the IXP1200 also includes an 8-entry Push/Pop
register list for fast queue operations. Although these
hardware enhancements improve the performance of
typical queue management implementations they
cannot keep in pace with the requirements of high-
speed networks. Therefore the next generation IXP-
2400 provides high-performance queue management
hardware that automates adding data to and removing
data from queues [7]. Following the same approach

the PowerNP ™ NP4GS3 incorporates dedicated
hardware acceleration for cell enqueue/dequeue
operations in order to manage packet queues [8]. The
C-Port/Motorola C-5 NPU also provided memory
management acceleration hardware [9], still not
adequate though to cope with demanding applications
that require frequent access to packet queues,
therefore  the  next-generation Q-5  Traffic
Management  Coprocessor provided dedicated
hardware designed to support traffic management for
up to 128K queues at a rate of 2,5 Gbps [10].

3 External DRAM Memory
Bottlenecks

A crucial design decision at such high rates is the
choice of the buffer memory technology. SRAM
provides high throughput but limited capacity, while
DRAM  offers comparable throughput and
significantly higher capacity per unit cost; thus, we
chose DRAM. Among DRAM technologies, we
focus our analysis on DDR-SDRAM because it
performs high performance and it is commonly used,
since it is provided at an affordable price.

DDR technology provides 12.8 Gbps peak
throughput by using a 64-bit data bus at 100 MHz
with double clocking (i.e. 200 Mbps/pin). A DIMM
module provides up to 2 GB total capacity and it is
organized into 4 or 8 banks in order to provide
interleaving (i.e. to allow multiple parallel accesses).
However, due to bank-precharging period’,
successive accesses” to the same bank may be
performed every 160 ns. When a memory transaction
tries to access a currently busy bank we say that a
bank conflict has occurred. This conflict causes the
new transaction to be delayed until the bank becomes
available, thus reducing memory utilization. In
addition, interleaved read and write accesses also
cause loss to memory utilization because they have
different access delays®. Simulating a behavioral
model of a DDR-SDRAM memory and accessing it
in a random way, we have estimated the impact of
bank conflicts and read-write interleaving to memory
utilization. The results of this simulation for a range
of banks (1 to 16) are presented in the two left
columns of Table 1.

We considered aggregate accesses from 2 write and 2

! In this period, a bank is characterized as busy.

2 A new read/write access to 64-byte data blocks can be inserted
to DDR-DRAM every 4-clock-cycles (access cycle = 40 ns).

* Write access delay = 40 ns, Read access delay = 60 ns. When
write accesses occur after read accesses, the write access must be
delayed 1 access cycle.



read ports*. By serializing the accesses from the 4
ports in a simple/round-robin order we achieve the
throughput loss, presented in Table 1. However, by
scheduling the accesses of the 4 ports in a more
efficient manner, we can achieve a lower throughput
loss by reducing bank conflicts. A simple way to do
this is to effectively reorder the accesses of the 4
ports to minimize bank conflicts. It can be performed
by organizing pending accesses into 4 FIFOs (1 FIFO
per port). Every access cycle the scheduler checks the
4 accesses at the head of FIFOs for conflict and
selects an access that addresses a non-busy bank. The
information for bank availability is achieved by
keeping the memory access history (it remembers the
last 3 accesses). In case that more than one accesses
are eligible (belong to a non-busy bank), the
scheduler selects one of the eligible accesses in
round-robin order. In case that no pending access is
eligible, then the scheduler sends a no-operation to
the memory, losing an access cycle. The results of
this optimization are presented in Table 1. Assuming
organization of 8 banks, the optimized scheme
reduces throughput loss by 50% of the not-optimized
scheme.

Table 1: DDR-DRAM throughput loss using 1 to 16
banks

No Optimization Optimization
Throughput Loss Throughput Loss
banks Bank Bank
Bank conflicts + Bank conflicts +
conflicts | write-read | conflicts | write-read
interleaving interleaving

1 0.750 0.75 0.750 0.750
2 0.647 0.66 0.552 0.660
3 0.577 0.598 0.390 0.432
4 0.522 0.5 0.260 0.331
5 0.478 0.48 0.170 0.290
6 0.442 0.46 0.100 0.243
7 0.410 0.42 0.080 0.220
8 0.384 0.39 0.046 0.199
9 0.360 0.376 0.032 0.185
10 0.338 0.367 0.022 0.172
11 0.321 0.353 0.018 0.165
12 0.305 0.347 0.012 0.159
13 0.289 0.335 0.010 0.153
14 0.275 0.33 0.007 0.148
15 0.264 0.32 0.004 0.143
16 0.253 0.317 0.003 0.139

From the above we conclude that only a percentage
of the nominal 12.8 Gbps peak throughput of a 64-

* A write and a read port from/to the network, a write and a read
port from/to the internal processor.

bit/100 MHz DDR-DRAM can be utilized and the
design of the memory controller must be an integral
part of the memory management solution.

4 Evaluation of a Queue Management
on the IXP1200 Network Processor

As it was described in Section 2, the most
straightforward  implementation  of  memory
management in NPUs is based on software executed
by one or more on-chip microprocessors. Apart from
the memory bandwidth that we examined in isolation
in the previous section, a significant factor that
affects the overall performance of a queue
management implementation is the combination of
the processing and communication latency’ of the
queue handling engine (either generic processor or
fixed/configurable hardware) and the memory
response latency. Therefore the overall actual
performance can only be evaluated at system level.
Since Intel’s IXP1200 is one of the most widely used
NPUs today and represents a typical NPU
architecture in this section we provide results
regarding the maximum throughput that can be
achieved when implementing memory management
in IXP1200 software.

The IXP1200 consists of 6 simple RISC processing
microengines [7] running at 200MHz. When porting
the queue management software to those RISC-
engines, special care should be given so as to take
advantage of the local cache memory (called “Scratch
memory”) as much as possible. This is because any
accesses to the external memories take a very large
number of clock cycles. One can argue that using the
multithreading capability of the IXP can hide this
memory latency. However, as it was proved in [11],
the overhead for the context switch, in the case of
multithreading , exceeds the memory latency and
thus this IXP feature cannot increase the performance
of the memory management system, when external
memories should be accessed.

Even by using a very small number of queues (i.e.
less than 16), so as to be able to keep every piece of
information in the local cache and in the IXP’s
registers, each Microengine cannot service more than
1 Million Packets per Second (Mpps). Or, in other
words, the whole of the IXP cannot process more
than 6Mpps. Moreover, if 128 queues are needed, and
thus some external memory accesses are necessary,
each microengine can process at most 400Kpps.
Finally, for 1K queues the peak bandwidth that can

® Communication with the peripheral memories and memory
controllers



be serviced by all 6 IXP microengines is about
300Kpps [12]. We summarize the above throughput
results in the following table.

Table 2: Maximum Rate Serviced when queue
management runs on IXP 1200

Num of Queues 1 Microengine 6 Microngines

16 956 Kpps 5.6 Mpps
128 390 Kpps 2.3 Mpps
1024 60 Kpps 0.3 Mpps

From the above it can easily be derived that this
software approach, cannot cope with today’s state-of-
the-art network links, if the network application
involves the handling of more than a hundred
separate queues.

5 Evaluation of a Custom Software
Implementation of Queue

Management
In order to experiment with different design
alternatives and perform detailed measurements of a
typical queue management implementation with the
aid of the embedded processing cores of an NPU we
implemented the basic hardware set-up of a typical
NPU. With the aid of state-of-the-art FPGAs that
provide hard macros of embedded RISC cores as well
as synthesizable RISC modules and the respective
development tools we implemented the core design
of an NPU. The architecture of the system, targeting
the Xilinx Virtex-II Pro Platform, is depicted in
Figure 1. As it is shown, the 64-bit Processor local
bus (PLB) is used as the system bus at a clock
frequency of 100MHz. The PowerPC 405 is a 32-bit
implementation of the IBM PowerPC ™ embedded
environment architecture and is used as the central
processor. The OCM Controller is used to connect
the PowerPC with the Instruction and the Data
Memory (16KBytes each). The size of the code used
for memory management is small enough to fit in the
instruction memory. The packet buffer is
implemented in an external DDR DRAM -as justified
above- using a standard PLB DDR controller, while
the queue information (mainly pointers) is stored in
an external ZBT SRAM, using the PLM External
Memory Controller (EMC). To simulate real network
traffic an Ethernet MAC port has been used. The
MAC Core (provided by OpenCores) core uses two
WishBone ports. The first port is attached to the PLB
Bus, through the PLB to WishBone Bridge, and is
used for control. The second port is attached to a
Dual Port internal Block RAM (4 Kbytes), and is

used to store temporarily the in-coming and out-
going Ethernet packets. With the aid of this on-chip
dual-port RAM (DP-BRAM) data transfers between
the network interface and the queue manager (i.e.
processor and buffer memory) can be achieved very
efficiently.

:
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Figure 1: NPU core architecture set-up on the Xilinx
Virtex-II Pro PLD platform with off-the-self
components (IP cores)

5.1. Configuration

The PowerPC has been configured to use the
instruction and data cache, both in write back mode.
The PowerPC and PLB Bus clock frequency has been
set to 100MHz and the PLB DDR controller is
configured in burst mode. Finally, the code has been
compiled using GCC optimization level 2. The
frequency selection was dictated by the FPGA timing
requirements so we chose to operate the CPU at the
speed of the PLB bus and the memory controller,
which in turn could not reach the maximum CPU
frequency. A state of the art embedded RISC core
though (like the PowerPC core provided in the Xilinx
Virtex Il Pro family) can reach operation frequencies
in the range 200-300 MHz, so we also compare the
performance in the projected range of frequencies
(that could be achieved if the design of Figure 1 is
implemented in custom VLSI technology). Note that
the design of Figure 1 represents a typical
organization of an NPU core design, where the
PowerPC is used as a typical on-chip micro-engine®
(and even more powerful when compared to an
IXP1200 micro-engine).

® One of the potentially many on-chip micro-engines, since it is
typical to assign one micro-engine to implement queue
management operations [7]



5.2. Queue structure

We implemented a typical Data Memory Manager
(DMM) handling queues of packets implemented as
single linked-lists. The incoming data items are
partitioned into fixed size segments of 64 bytes each.
Then, the segmented packets are stored in the data
memory, which is segment aligned. Our DMM
implementation organizes the incoming packets into
queues and handles and updates the data structures
kept in the pointer memory. Each segment has a
pointer that targets the next segment. A free list is
used to allocate new segments and a table of queues
is used for storing the segments.

The following functions have been used to control
the Queue Manager:

- Enqueue Segment

- Dequeue Segment

- Enqueue Free List

- Dequeue Free List

The packet operations are analyzed into segment and
free list operations. For example, the enqueue packet
operation is analyzed into the following steps: First a
new pointer is allocated from the free list, then this
pointer is stored to the queue list and then the data are
transferred to the memory.

5.3. Performance evaluation.
The Table below shows the number of cycles for the
execution of each operation.

Table 3: Cycles per packet operation (DRAM
controller support for burst transactions disabled)

Enqueue Packet

Function Cycles
Dequeue Free List 34
Enqueue Segment 46/68"
Copy a segment 136
Total 216/238

"46 cycles for the first segment of the packet, 68 for the
following segments

Dequeue Packet

Function Cycles
Dequeue Segment 42
Enqueue Free List 52
Copy a segment 136
Total 230

For a 100-Mbit/s network and a minimum packet
length of 64 bytes the available time to serve this
packet is 5.12 psec. The PowerPC’s clock frequency
is set to 100 MHz, thus the available headroom is 512
clock cycles to serve each packet for a half-duplex
network, or 256 cycles for a full duplex network.

This means that all the available processing capacity
of the PowerPC core has been used for the queue
management, and it cannot afford to further process
the packet, thus another processor must be used for
further processing. The majority of the cycles are
wasted in memory latency and transactions over the
PLB bus. Even if the processor operation frequency
is set to 400MHz the improvement of performance
would be negligible, since the maximum frequency
of the PLB bus in reconfigurable logic is 100MHz.
As shown in Table 3, half of the cycles are used to
copy the data of the segment. A major improvement
is to exploit the line transactions of the PLB. The
PowerPC can execute line transactions over the bus
using the data cache wunit [13]. Using this
configuration a segment can be retrieved from the
BRAM and stored into the data cache in only 12
cycles (9 cycles for 9 double words and 3 cycle
latency). Thus, the total number of cycles to copy a
segment becomes:

Te=(Ty + T) + (Tw+ T) = 2%(9+3)=24 cycles

,where T, denotes the number of cycles to read a
segment from the on-chip buffer (Xilinx BRAM
block), Ty denotes the number of cycles to write a
segment to the DDR DRAM and 7; denotes the 3-
cycles bus latency. Thus, the total number of cycles
to enqueue and dequeue a packet becomes 128 and
118 respectively, which dictates that the PowerPC
would sustain up to about 200 Mbits/sec throughput.
Another improvement would be the use of a DMA
controller [14]. In this case, four 32-bit registers have
to be set before each transaction [15];

e the DMA control register,

e the source address register,

e the destination address register and

o the length register.
Each single PLB write transactions needs 4 cycles to
execute, thus we need at least 16 cycles to initiate the
DMA transfer and at least 34 cycles to copy the data
from BRAM to DRAM or vice versa. Note that the
total time per operation is approximately the same as
before. Hence, the overall throughput does not
increase significantly but in this configuration the
processor has more headroom for other processes
(due to the offloading of data copying tasks to the
DMA engine).

6 Conclusions

Due to the store and forward architecture of packet
forwarding systems and the complexity of protocol
processing and traffic management functions in high-



speed networking applications memory management
and the handling of packet queues is a major
bottleneck and has been an application field of state-
of-the-art NPUs. We have analyzed the memory
access overheads and the processing requirements of
queue manipulation functions. Our performance
evaluation of queue management implementations
both on the commercial IXP1200 NPU platform as
well as on our custom prototype architecture exposes
the significant processing resources required when
general-purpose RISC engines are used to implement
queue manipulation functions. Even with state-of-
the-art VLSI technology and processor frequencies in
the order of several hundreds MHz a single processor
can only achieve a throughput in the order of
hundreds of Mbps for a moderate number of queues.
Hence, processing power by itself does not suffice to
support queuing in Gbit/sec links but careful
selection and control of the external DRAM as well
as specialized hardware to accelerate queue
management operations is an integral part of the NPU
design exploration space that needs to be optimized
in order to maximize the overall system performance
at an acceptable cost.
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