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Abstract: - Counts of database unique values are crucial information in query optimization. Estimating the 
number of the distinct values occurs frequently in database queries, due to its importance in selecting query 
plans. We present a nonparametric method for estimating the database distincts, and, then, the number of distinct 
values. The method computes few parameters which describe the distribution of distances of distinct values in 
the attribute value ranges. Tests have been carried out that also show the useful applicability of the method to 
estimate equi-join selectivity factors. 
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1   Introduction 
Efficient processing of complex queries over large 
volumes of data has an increased importance with the 
growing interest in datawarehousing and decision 
support systems.  
The quantitative properties which summarize 
characteristics of database instances are used by query 
optimizers in order to determine the optimal strategy of 
query execution. It includes parameters such as tuple 
cardinality, number of distinct values of attributes, 
maximum, minimum and attribute distribution values. 
In particular, accuracy of distinct  values estimation 
strongly impacts the query optimiser’s ability to 
generate good plans for SQL queries.  
Exact computation of the number of the distinct values 
is an expensive operation which requires at least one 
scan with sorting of the relation. Probabilistic counting 
methods  provide the estimation of the number of 
distinct values  and they require only to scan the 
relation avoiding sort or hash-based computation [1-3]. 
Sampling-based methods also estimate the number of 
the distinct values. They process only a fraction of the 
tuples in a relation [4-6].  
In this paper, we present a nonparametric method for 
estimating the database distincts, and, consequently, 
their counts. The method computes parameters which 
describe the distribution of distances of distinct values 
in the attribute value ranges. Moreover, the method 
does not require a priori assumptions on uniformity 
and independence of attribute values.  
In [7], we presented an analytical method for 
approximating the actual multivariate distribution of 
the attributes by means of a series of orthogonal 

polynomials. The method is based on the computation 
of a set of values, the so-called Canonical Coefficients, 
from which the main parameters of database statistics 
can be easily derived and efficiently computed. Paper 
[7] also contains an in-depth discussion of other 
nonparametric (both analytic and non-analytic, 
histograms, etc) methods in comparison with our 
method. Here, we extend the method to approximate 
attribute distinct values. Then, an application to the 
problem of estimating the join relational selectivity is 
considered. In fact, accurate estimation of join 
selectivity is more difficult than selection selectivity, 
because further information is required on matching 
join values and, therefore, on attribute distinct values. 
Different approaches have been put forward to 
estimate the join selectivity [8-16] but none determines 
matching values of join attributes using statistical 
profile, without accessing database instances.  
The most widely investigated join operators are natural 
join and equijoin and we will refer to these operations 
using only the term "join". Our approach estimates the 
resulting size of the relational join by evaluating 
distinct values and using the estimation of the actual 
distribution of attributes. 
 
 
2   The analytic method to approximate 

the data distribution 
Let R be a relation of cardinality N and let X be an 
attribute of R. Suppose dom(X) = [a,b] and let x1, x2, 
..., xN   be the occurrences of X in R. 



 

We approximate the probability density function g(x) 
of the attribute X with 
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for all x∈X and for opportune n, for each i = 0,1 ,.., n,  
Pi(x) is the Legendre orthogonal polynomial of degree 
i, and coefficient ci is the mean value of Pi(x) on the 
instances of X. That is, 
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c0, c1, …, cn are computed with simple recursive 
formulae and they are called the Canonical 
Coefficients of X. 
Legendre polynomials are defined, hence they are 
suitably computable, by the recurrence formula:  
 

Pi+1(x) = αi x Pi(x) + (1−αi) Pi−1(x),    for i ≥1,  (3) 
 

where α i
i

i
 =  

+
2 1

1
+

 for all i, and P0(x) = 1 and P1(x) = x. 

 
The approximation of the cumulative distribution 
function G(x) of g(x) is 
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Let I = [x1,x2] ⊆ [a,b] be a generic query-range of X. 
We denote with count(x;I) or N × percent(x;I) the 
number of tuples of R whose x values belong to 
interval I. count(x;I) can be approximated by N ×⋅ 
(G(x2)-G(x1)). 
We have called coefficients c0, c1 ,.., cn the Canonical 
Coefficients (CC) of the attribute X because they 
contain the information needed to represent the 
distribution of the attribute X. Based on formulas (2) 
and (3), the calculation of the canonical coefficients of 
X only requires a (sequential) scanning of the attribute 
X.  
 
 
3   Distinct value estimation  
The method for estimating the distinct values of 
attribute X does not make any hypotheses on the 
spacing distribution of distinct values or their join 
equivalence. Distinct values are approximated using 
canonical coefficients themselves and, on the basis of 
the additive property, they can be easily updated [7].  
Supposing that the distinct values for X are X={x1, x2, 
..., xd}, the canonical coefficients (di)0≤i≤n up to 

degree n which contain information on how distinct 
values are spaced are computed in the following way: 
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where yjk are dns random values in the interval            Ij 
= ]xj-δ/2, xj+δ/2[, with δ = (b-a)/N. 
We assume that x j is an approximation of a distinct 
value, say, xj, if it verifies, in the interval                   
I j = [ x j -δ/2, x j+δ/2], the condition count(x; I j) ≅ dns 
or, equivalently, if it veriefies for ε > 0 that 
 

count x I dnsj( ; ) - ≤ ε .                                          (6) 

 
The set of approximated distinct values is 

X ={ x j = a+(i-1)δ | count x I dnsj( ; ) - ≤ ε     and       

i = 2,..., N}                                                  (7) 
X  contains distinct values estimated using an 

approximation degree n a density dns and an 
approximation error  
 

ε = k × dns         (0<k<1)                                    (8) 
 

Condition (6), which allows us to consider x j as an 
approximation of a distinct value, is called distinct 
condition and ε is the approximation error of the 
cumulative density function. 
The canonical coefficients (di)0<i≤n are used for 
calculating the count function in (6) and are different 
from those which approximate the distribution of 
attribute X. 
 
 
4 Join selectivity estimation 
In this section, we provide an approach to estimate the 
cardinality of the join of two relations, using the 
analytical model described in the previous section. 
Let T be the result of the join of relations R and S over 
the respective attributes X and Y. The canonical 
formula giving cardinality of T is  
 

card(T) = jρ × card(R) × card(S),                       (9) 
where jρ is the join selectivity factor and represents the 
fraction of tuples of the Cartesian product of R and S, 
for which attribute values of X and Y are equivalent. 
We want to estimate card(T) or equivalently we want 
to provide an estimation for jρ. 



 

Let X={x1, x2, ..., xdX
}and Y={y1, y2, ..., ydY

} ordered 
sets of the distinct values of attributes X and Y, we 
have that 
 

card T count x count x
x X Y
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where count(x;R) and count(x;S) are respectively the 
number of tuples r of R and s of S such that r[X] = x 
=s[Y]. It can be easily shown that 
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The notation introduced in (11) indicates that factors 
count x count yi j( ; ) ( ; )R S×  are considered for summary 
only when the condition xi= yj  is verified. Supposing 
that X and Y are known, the cardinality of the join can 
be estimated using the following estimations for 
count(xi;R) and count(yj;S): 
 

count(xi;R) ≅ count(x; Ixi
)      and 

count(yj;S) ≅ count(y; I y j
),                                (12) 

 
where intervals Ixi

 and I y j
 are defined as follows: 
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So the estimation for the selectivity factor can be 
obtained  
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It can be observed that the estimation for jρ can be 
obtained only if distinct values for X and Y are known. 
However, these are often unknown and many 
researchers suppose that the differences between two 
adjacent domain values are approximately equal [13]. 
This assumption defines the semantics to be assigned 
to a join operation and holds when attribute values are 
integer or decimal, with a maximum of r decimal 

digits. In these cases the number of possible distinct 
values are respectively d = b-a+1 and d ≤ ((b-a)/10-r)+1. 
In [11] the number of distinct values d for join range 
[a,b], where a=max(ax,ay) and b=min(bx,by), is 
estimated as follows: 
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Moreover, we outline an estimation for join range 
distinct values can be obtained using dX and dY, and 
these can be obtained only by accessing attributes X 
and Y. The join range is then divided into a number of 
intervals with amplitude ∆=(b-a)/d, then the estimated 
join selectivity factor is 
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in the hypotheses that X and Y are uniformly 
distributed in each of the d intervals of amplitude ∆. In 
(15) F and G are cumulative distribution functions 
respectively of attribute X and Y, which are evaluated 
using equal-width histograms of X and Y.  
We propose an approach for estimating distinct values 
and for applying formula (11), which is not applicable 
when sets of estimated distinct values X  and Y , are 
available instead of sets of actual distinct values X and 
Y. In these cases couples ( , )x y X Yi j ∈ ×  rarely exists 
such that x yi j= , therefore we consider the following 
approximation: 
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Notation x yi j≅  establishes that percent values are 

considered for summary only if x i and y j satisfy both 
the following conditions 

{ }x y min x y x yi j i j i j− ≤ − −− +1 1,                    (17) 

and 

 x i − y j≤ min (
s
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s
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Y ),                             (18) 
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are the mean distance between approximated distinct 
values of X and Y respectively and intervals Ixi

 and 
I y j

 are defined according to (13). Conditions (17) and 
(18) specify whether two estimated distinct values are 
to be or are not to be considered joining values and we 
refer to these conditions as join equivalence 
conditions. 
 
 
5   Experimental results 
We present experimental results of the analytic method 
to estimate the attribute distinct values, and its 
performance when applied to the estimation problem 
of the join selectivity factor. 
We have performed experiments on a real database 
considering two relations R(A1,A2,A3) and S(B1, B2, 
B3, B4). The values of attributes for these relations are 
respectively integer (with equally-spaced distinct 
values) and real. Their features are reported in the table 
1. 
 
Attribute 

Name 
Attribute 

Type 
Card(X) Distincts a b 

A1 integer 20000 26 1 52 
A2 integer 20000 16 0 31 
A3 integer 20000 16 0 31 
B1 real 26568 80 0.1 18.0 
B2 real 28730 287 2.0 600.0 
B3 real 28730 323 1.4 881.0 
B4 real 28363 175 0.17 2.33 

Table 1. - Features of attributes in relations R and S 
 
We have considered only real databases because our 
method maintains any distribution form of data and of 
distinct values separatly. Null values of the attributes 
have not been considered. 
 
 
5.1   Distinct Value Estimation 
The aim of the experiment is to observe the accuracy 
of the estimations for the actual distinct values and for 
the number of distinct values. In fact, the number of 
distinct values is estimated not always equal to the 
number of effective distinct values. 
The results obtained have been analyzed taking into 
consideration the percentage error ε and the number of 
random values dns distributed around each distinct 

value. For measuring errors in estimating the distinct 
value number d, we have adopted the metric: 

100×
−

=
d

dd
M .                                              (19) 

In the first series of experiments we have considered 

{ }( )d card x X x X= ∈ | ∈ , that is the number of distinct 

values which have been correctly estimated. In these 
experiments we denote the metric M with Me. 
In the second series of experiments ( )Xcardd =  is the 
number of values which satisfy the distinct condition; 
in other words an estimation for d, M in these 
experiments has been denoted with Md. 
We have computed the average of Md and Me for 
approximation degree n=5,6,...33 and for the following 
values of k in (8) k=0.05, 0.1, 0.15, ..., 0.3.  
We have observed that when k and, consequently, ε 
grow we obtain good estimations for actual distinct 
values. Pessimistic estimations for the number of 
distinct values have been obtained because the number 
of distinct values is always overestimated.  
The average of Md and Me , independently of density 
dns, is generally constant and decreases with growing 
values of approximation degree n. So, we have used 
the low percentage error ε, density dns, and an 
approximation degree n = 27. Generally better 
estimations have been obtained for integer attributes 
than real ones; however for all the attribute, we have 
observed that when k grows, (see, formula (8)), Me 
converges and Md diverges.  

 

 
      Fig. 1 – Mean percentage error for attribute B1 
 
Figure 1 shows the averages of Md and Me for 
approximation degrees n=5, 6, …, 33. It points out that 
a value 0,05 is adequate for the k factor in (8). 
 



 

 
5.2   Join Selectivity Estimation  
In this section we illustrate and discuss the 
experimental results obtained for the join selectivity 
estimation. The purpose of the experiments is to 
compare analytic method performances by varying the 
approach used in estimating attribute distinct values 
and their cardinalities. 
In estimating the join selectivity we have used three 
approaches. In the first approach (the DD method), no 
hypotheses have been made on the number of distinct 
values and their spacing in the join range [a,b]. In this 
case distinct values for the joining attributes X and Y 
have been estimated using the method discussed in 
Section 3. According to the experimental results, we 
have considered dns=50 and ε =0.05×dns while the 
join selectivity factor has been estimated using (16). 
In the other approaches the number of distinct values 
for each attribute has been estimated using the method 
presented in [11] and the join range has been divided 
into equal-width intervals. In other words, attributes 
have been considered equally-spaced or values in each 
interval have been considered join equivalent. 
In the second approach (the EW method), formula (15) 
has been used in estimating the join selectivity factor, 
where the functions F and G have been estimated using 
(4). 
The last approach (the CC method) determines jρ '=∆* 
jρ, where ∆ is that defined in Section 2 and jρ is 
obtained as shown in (15). 
The entries in Table 2 indicate the join attributes, the 
actual number of distinct values d of join range [a,b], 
the number of distinct values dew estimated using the 
method proposed in [11], the number of distinct values 
dcc estimated using the method illustrated in Section 2, 
the mean percentage error is been measured using the 

metric M
j j

j
=

−ρ ρ

ρ
; where jρ  and jρ  are 

respectively the join selectivity factor and its 
estimation relative to methods DD, EW and CC. 
In estimating distinct values with method DD, the 
approximation degree n = 27 has been used. For each 
method, in estimating the cumulative distribution 
function by canonical coefficients, we have used 
approximation degrees 5 to 33. However, for the sake 
of readability, here we only report the mean percentage 
error measured for ncc =8,13,27 using metric M. 
 
 

X join Y d dew dcc ncc Mean Percentage Error 
of M 

  (n=27)   DD EW CC 
A1 A1 26 29 25 8 8.03 3.89 3.89 

    13 8.02 3.85 3.85 
    27 7.89 3.74 3.74 

A2 A2 16 18 15 8 1.04 3.12 3.12 
    13 0.81 2.80 2.8 
    27 0.93 2.95 2.95 

A2 A3 16 18 15 8 1.98 0.42 0.42 
    13 1.70 0.04 0.04 
    27 1.58 0.08 0.08 

B1 B1 80 85 179 8 22.09 695.94 80.35 
    13 10.15 821.94 108.90 
    27 3.09 888.55 123.99 

B2 B2 286 298 285 8 0.90 13.85 80.76 
    13 8.23 4.62 100.14 
    27 5.26 1.36 106.96 

B2 B3 253 285 219 8 13.87 34.85 77.98 
    13 8.97 14.82 132.69 
    27 5.01 2.11 167.41 

B4 B4 175 184 174 8 12.34 5586.7 12.50 
    13 5.84 5586.7 21.91 
    27 4.49 5586.7 23.59 

Table 2. - Mean percentage errors for join selectivity 
estimation. 

 
Methods EW and CC give better results than DD only 
for the integer attributes for which the distinct values 
are equally-spaced; however, for this type of attribute, 
method DD shows very slight errors which are in any 
case acceptable. On the other hand, the results of EW 
and CC are pessimistic when we consider the attributes 
whose distinct values are not equally-spaced. For these 
attributes, the mean percentage error is lower for 
method DD than the others, which improves reliability 
when the approximation degree of canonical 
coefficients grows.  
Table 3 reports the average of M of the join estimation 
on relations R and S based on EW, CC and DD 
methods. 
 
 

 EW CC DD 
 

M 
 

 
4028,55 

 
1377,42 

 
36,99 

       Table 3. - The average of the metric M. 

6 Conclusion 
The possibility to include parameters in the database 
profile, suitable to provide estimates of attribute 
distinct values, can improve greatly the performance of 
the profile database in estimating the selectivity factor 



 

of relational operations. Since the traditional 
assumption of equal-spaced distinct values, in the 
absence of other information, is not realistic for many 
of the actual databases, experimental results encourage 
further research in this field (on relational projection 
and inclusion of null values, for example). The 
performance of the statistical profile is highly 
unsatisfactory when this assumption does not hold 
true, as our experiments of join estimates have shown. 
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