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Abstract: - This paper presents a novel approach to robust perform@orteoller design achieving a pre-specified
lso-norm-bounded performance objective. The class of systemsidered is subject to structuredpeated, linear
time-varying, induced.-norm-bounded perturbations. The efficiency of the apgréaaassessed in application to a
heat exchanger system.
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1 Introduction lem with repeated perturbations. A necessary robyst
Robust/,,-stability problems are usually re-stated as sat&tability condition follows directly from this lower bound
ficing problems involving the computation of a structured In this paper, it is shown how the results first presented
norm (SN) (see§2 for definition). However, the compu-in [1] and [2] can be applied to solve &g, robust per-
tation of SV is generally difficult. It is hence customaryformance problem for the linearized model of a heat ex-
to substituteS N by its upper bound approximation as deshanger system. The simulation results demonstrate the
rived from the scaled small gain theorem, see [12].  usefulness of the theory presented in [1] and [2].

In t_he particular case when the pertu_rbatior_ls are stryc- Notation, Problem Statement, and
tureq, independent (i.e., not repgated), linear timeiagry M ethodology
and induced’,-norm-bounded, it was shown by Kham-
mash, [5], that the abovementioned upper bound is indeeli  Notation
equal to theSN value itself. A few years later, similarLetZ" andZ* denotes the set of positive and non-negative
results were proved by Shamma, [10], for the induéed integers, respectively.
norm-bounded problem and by YouaBahleh, [11], for Let /5, denotes the space of all sequences of vectors of
the general induceé,-norm-bounded problem. lenghtn {s(k)}72,, s(k) € R", equipped with the norm
_ It is well known that theS N upper bqund can be casHSHp 2 f Is(k)[? < oo (note that]s||s ) sup |s(k)|).
in the form of a scaled;-norm minimization problem. In k=0 k>0
the case of repeated pe_rtl_erations, the scaling _mgtrie_es(g(,en a bounded operatét : ¢ — (5., let || S|/, _ina =
block _dla_gonal. In [1], it is _sh(_)wn hOW. the Opt!m|zat|on|3(s)||p be the inducegr-norm of S. Furthermore, ifS is
domain (i.e., the set of admissible scaling matrices) of tﬁ#;'gr and causal, theis) is characterized by the convo-
£1 problem involved can be significantly reduced while T y
preserving global optimality. In [2], the work of Kham{ution (S * s)(k) 2 > S(k,1)s(l), whereS(k,1) denotes
mash (see [5] and [6]) is further generalize by the devel- 1=0
opment of a novel lower bound for the associated. ﬁqe kernel ofS.

. . ) Let and S, be two systems, thea; and
This lower bound allows to estimate the conservativeness 51 52 y l(.Sl’ 52) .

: . . egu(sl, Sy) denotes a lower and a upper linear fractional
of the scaled small gain theorem in applications to prob-
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transformation between these two systems, respectively.

Suppose that a discrete-time linear time-invariant (LTI)
system$S with p inputs andy outputs is characterized by
the impulse responsgS(k)}72 ., wherek € Z* is a dis-
crete time instant. If5 is stable, thed S(k)}%2, € (17
and the/; norm of S is given by

Figure 2: Stability and Performance

z is a performance output; is a command inputy is a
measured output;a is a perturbation input, angl is a
perturbation output such that

N oo
15111 Z.eglﬁ%fq}z_;;’ s (k)] | =G| d |, (2)
7=1 k=0
Yy u

. Let the seté denote.a given arbitrary class of adm'SYT{ith w = Ky andua = Ag ya. For simplicity, G, K,
sible perturbations. This set is assumed to carry all the . .
) . . and Ag are assumed square of dimensidng + np +
important information relevant to the nature and structque) X (na + np + 1K) nE X 1, andna x na re-
of the perturbations. Assume that € A and thatSis /o o Awhefel o Ke 74 Such assurmbtions
an LTI system of dimension compatible witk, as illus- P Y. Ar Py DK i P

trated by Fig.1. Thetructured norm of S is then defined are not very limiting as it is always possible to introduce
as: redundant inputs and outputs to augment the plaand

obtain the desired dimensions. Moreover, define
1

A N
AinA{HAHp—ind : (I — SA)~Inot¢,-stablg M =M(K) = F(G, K) )
€

1>

SNap(5)

If for every A € A, (I — SA)~! remains(,-stable, then . .
SNa p(S) = 0. Recall that, the structured norm is not Assume thatts, K (and thusir) are discrete-time

a norm, see [3]. Also, assuming that ||, .q < 1, it LTI systems,As € As, and that] Asloc—ina < 1 and

is straightforward to show that robuéj-stability of the | @l = 1. The objective of the controller is then to

SA-loop is equivalent to the conditiolf Na ,(S) < 1. _?_Eh'evﬁyznoo = _ytfocrl a ges;rgqttrek)shold valluet.e R bl
More specifically, given & € Z+, a{r}, r € en, the associated robust disturbance rejection problem

7+, and anp € Z+, define the following classes of IineaFonS'StS in finding a stabilizing controllé¢ satisfying

time-varying (LTV) perturbations: m[%n sup ||T(K, As)|lco—ing < V. 4
Ag

A , , , N
ALY ={A: Ais causal, LTV, hag outputs and; inputs, Without loss of generalityy is set tol. Note that, by
n

Ag 2{diag(d,, I1, .., 0r, I) : 6 € ALXL virtue of (1).na = 3.
le{l,..,n}}, (1) Consider Fig.2b, where a fictitious performance per-
A . npxnp,  turbation blockAp is added to the original system frame-
Ac ={diag(As, Ap) 1 As € As, Ap € Ay} o presented in Fig.2a. By slightly extending the result

22 General Design Problem Statement presented in [5], it follows that

Consider Fig.2a, wheré is an augmented planfy is a sup [|T(K, Ag)|loo—ind = SNagoo(M(K)).  (5)
controller, Ag is a perturbationg is a disturbance input, Ag



vrg—1

However, in general, it is not possible to compute (®hereY!” = {T1/(k)}'/;"" € Y, Ny € Z* andn €
exactly due to the complexity of such a task. Practical" is implicitely defined by (1).

approaches hence rely on the introduction of upper and For the above fixed values efc Z*, v;; € Z™, and
lower bounds folS Na . o (M) that can be computed withV; € Z*, wherel,J € {1,...,n + 1}, define the set of
relative ease, but at the cost of some conservativess. indices x 2

2.3 An Upper Bound for the Structured Norm, [1]

Given the same ¢ Z*, {r}1,r € Z*,andnp € Z*, {5 1, T, 9) ok €40,y vpy = LT E{L o+ 1,

as in (1), define Je{l,..,n+1},0e{l,..,Nr},y€{1,..,Ns}}
D é{D — diag(D", D" ) Dl e R<T, and the class of admissible sets of real numbers
A
DLy > D> . > Dl > 0,0 €{l,....,n}}. d={d:d={d](5)}(n1.000ex 4] (r) € R},
It was shown in [1] that an upper bound BN A . o (M) It was shown in [2] that, given anY and anyN, a

follows from the scaled small gain theorem, see [12], ipwer bound forSNa (M) is given by
the form of A
S_NY,N,OO(M) = max p(E(d), ()

AN ded

_ N
SNpw(M) £ inf [DZMDI1,  (6)

Ny I
max d;+ (k)]<1
1 1]2 ‘ ] (%)

whereSNDp_o(M) > SNag,0o(M). _The optimizat_ion whereSNy n o (M) < SNa, oo (M) and
problem (6) is nonconvex and nondifferentiable with re- N2 el - i
spect toD. 2(d) = [¢ ]ﬁﬁ ----- Zﬁ}}vf = v ] ZEH ----- Npbo
2.4 A Lower Bound for the Structured Norm, [2] 1A vrg—1 17 1 h o
Suppose thaf M (k)}22, is the impulse response aff > — ,{Z::o %y () kelzf;f(n)M (1) ) The optimize:
(for a given controlletr). Again, given the same € Z, tjon problem in (7) is nonconvex id. Guidelines for the
{ridig, Tlde Z+1I|a”d”P € Z*asin (1){M(k)}32is selection ofy andN are provided in [2].

artitioned as follows . .
P 2.5 Solution of the General Design Problem

k:)] ettty € R(natnp)x(na+np) From (6) and (5), if one finds a stabilizing controll&r

A rarld
M(k)=|M
(k) [ JE{1,..on+1} satisfying

—~

where M (k) 2 [M{j"(k)} . e R"*"7 and min inf D7 M(K)D|p <1, 8)

n+1 = Np.
For a givent € Z™, define the following class of
admissible collections of subsets

then such a controllek’ will also satisfy (4). However,
if the left hand side (LHS) of (8) is greater than one, it
does not necessarily imply that does not fulfill the per-

A . formance objective. Still, by virtue of (7), it is sometimes
Y =9T:7T ={T(x)} =0, T(x) €{0,...7 =1}, possible to demonstrate that suchiKaindeed does not

satisfy (4).

While it is obvious from (6) that (8) is not convex
in D, it is, however, possible to simplify the optimiza-
tion process (8) (with respect ) as demonstrated be-
Note thatv < 7, as eachl € Y is a collection of distinct jow. By incorporating the Youla parameterization of all

v—1
T'(k) # 0, ﬂ ['(k)=0,ve z*}.
k=0

SUbSﬁ‘tS_ of0,...,7 — 1}. stabilizing controllers, see [12], it is possible to redefin
Define M (K) in the form of
A A
Y = {7/ .+1y andN = {N A A
{ }Lfé{{iﬁ}} { I}Ie{l,...,n+1}7 MEK)=MQ)=H+U*Qx*V, 9)



w2 s, [ containing the colder fluid. Here those pipelines are la-
) beled A and B. Let F4 and Fg denote the flow rates

L I e v v P, ], inside pipelined and B, respectively. Lef’, 7%, and
y ! T% denote the temperatures of the fluid in pipelideat
WY et bg 1g a(FE') A H H H
’ Spl the entry, in the middle, and at the exit of the heat ex-
v : P changer, respectively. The temperatufés 7" and 7’3
\— b [ LY are defined similarly for pipeling. The heat exchanger
model is linearized around the following operating point:

_ _ Fa = 50cm3/s, Fg = 7.8cm3/s, T = 22.60°C,
Figure 3: Experimental Setup T4 = 26.59°C, T = 26.87°C, andT§ = 22.64°C.
Note that7Ty andTj are always set t@2°C' and 55°C,
where() is a stable discrete-time LTI system of dimensiomespectively. The linearized model of the heat exchanger
nkg x ng andH, U, andV are also stable discrete-time, see [8], is then given by

LTI systems of dimensions compatible with and M. L [8(FD] A 5(Fa)
i i i o(Tq)=C(sI —A)"B = |HuH
Moreover, if the transfer function @ is of the form (T3) (s ) [5(FB):| [Hy1Hiol [5(FB)]

Q2 (go+aqz"+.. + Ingz "9) /27", —-30.54 0 0 28.55
n — 2+ th where A — | 199 —30.54 28.55 0
WNETeqo, ---» tng € M@ € Z7, then - 0 1616 -1632 0 |’
min inf |[D"'HD + D 'U%Q+VD|, (10) 16.16 0 0.160  —16.32
Q Deb —0.024 0
is convex in the)) parametergqo, .., ¢n,, }- Observe that p — _0'0159 0 5070 ,C=[0 10 0].
(10) equals the LHS of (8). The problem in (10) is usually :
solved by theD@-algorithm, see [3] and [12]. As shown 0 0.086

in [4], [9], and [7], for a fixedD, the optimization prob- | € States are defined as followst1) = 6(T71"), x(2) =
lem in @ can be rewritten as a linear programming proé(TA)’ ?3(3)__: 5(TB ) andz(4) = 6(Tg). _
lem. On the other hand, for a fixed, the optimization A simplified linear model of a valve was proposed in
problem inD can be solved by non-smooth optimizatioH1e form of

techniques. For improved efficiency, tii&Q-algorithm S(F) = (V + W,A) §(Fd)

may be employed within a global optimization framework

— 2 — 0.125+40.012 i i
that performs a systematic gridding of e parameter whereV = 553 Wo = =555, Fdisthe desired flow
space. rate, F' is the flow rate, and\ € A%, [[Allco—ing < 1,
is a perturbation. The filtel,, together with the pertur-

3 A caseSiudy: the Heat Exchanger System bation A embody all possible neglected high frequency

3.1 Presentation of the Experimental Setup dynamics inherent to the saturation in the valve opening
Let§(v) denote a small variation of a variahleaway (and closing) rate. The two valves in the above setup are
from its operating point. identical and are assumed to operate under similar condi-

Fig.3 illustrates the block diagram of the linearizeons, thus they share the same model.
experimental setup. This setup involves a heat exchangerThe signalF'd is the desired flow rate in pipeline
(H), two valves (V) with uncertain dynamics, a con-A. Itis assumed that'd, is determined by another pro-
troller (i) with a zero-order holdZoh) and a sampler cess, hence it is seen as a disturbance to the system con-
(Spl), and several filters. Models for each subsystems &idered. Moreverj(F'd,) is bounded in magnitude by
described below. +10cm? /s, henced(Fds) € f. Without loss of gen-

A heat exchanger comprises two pipelines circulatiggality, letd Wy = d(Fd,), whereW,; = 1028 and
fluids. Inside the heat exchanger, the pipeline contajft|., < 1. The nominal low pass filteJorﬁO(’:6 in Wy cap-
ing the warmer fluid transfers some heat to the pipelinges the fact thai(F'd4) has a limited rate of variation.

4



The performance objective is to maintaifil’y) within feme d fa=4p
+0.2°C and hence attenuate the influenceyaf'd4) on
T3. This requirement is equivalent to the satisfaction of
the condition||z||c < 1, wherez = W,6(T%), W, = 5.

The subsystems in Fig.3 are rearranged to agree with
(2), namely

YA 4 UA 4
Yap | _ UApB :
= Geap d with (12)
y u
0 0 W W, 0
0 0 0 W, Zoh

Geap = Wty WoHiy WaW.V Hiy W,V HizZoh

—H11 —H12 —WdVH11 —VngzOh

Note thatn = 1,71 =2, na =2, np = 1, andng = 1.

3.2 Simulation Results
In an attempt to fulfill the above performance objective,

a 50 TR g 50 E

two controllers are synthesized below according to the 8l )
design strategy presented§. The core of this method-
ology consists of the following equations: (2), (3), (9), Figure 4: Simulation Results

(10), and (11). It is important to note that the discrete-
Hzreefgr;;f %)ﬁ'rsn ;eg;'ir:‘;;]‘”lghigomm"er SYNthesiss| . arly, this indicates that it is impossible to achieve the
Note thaF'z the dimension c@pisyset.to = 9. Fur- desired robust performance level.
: . nQ = o Therefore, the performance objective is next relaxed
thermore, to achieve a finite computational scheme, @e

original domainA is restricted to the following compact y setting V. = 2.5 which implies that the condition
setD([-1.4,1.4]>*3. A global optimization approachd(TA) € [-0.4°C,0.4°C] must hold. Using); and D,

which combines a gridding of the reduced scaling da§ initial values, thé(-algorithm is applied and returns

main with the application of thQ-algorithm is then 3, and D (see Appendix) such that

employed to solve (_10). For each found, the corre- SN pyoo(M(Q2)) = 0.97 < 1. (14)

sponding controllef is recovered as in [3], hencg will

itself be refered to as the controller. Thus, in this case, it is guaranteed tliat achieves the
The first synthesis attempt yields a finite impulse reew performance objective.

sponse transfer functiaf; and a scaling matri®; (their The controllersk; and K> (see Appendix) are fur-

numerical values are given in the Appendix). The corréher tested in the context of both the linearized model
sponding structured norm upper bound is and the original nonlinear model. The efficiency of each

_ controller is assessed in terms of its ability to attenuate
SNDy,00(M(Q1)) = 1.38. (12) " the influence of the disturbance signkbn the tempera-

SinceSN p, oo(M(Q1)) > 1, it does not ensure the satture expressed in terms ofT3). Ir_l all the_ simulatio_ns
isfaction of the performence objective. The methodologyesented here, the disturbance is the signsiown in
proposed in (7) now allows to Compute a structured nom'g.4a. Moreover, all the simulations InVO|V|ng the lin-

lower bound. Usindy’ andN, as given in the Appendix, €arized system use the memoryless perturbafioi=
Ap) shown in Fig.4b.

SNy Neo(M(Qr)) = 125> 1. (13) The simulation results are presented in Fig.4 whose



sub-plots represent the following. Fig.4c and Fig.4d shé&2 Numerical valueof Y and N

the signab(T'3) whenK is applied on the linearized andN = {2,1} andY = {T!! 112, 121 122},

nonlinear system models, respectively. It is seen fat whereY!! = {{7,9,11,...,47},{0,3,5},{1, 2,4},

is indeed unable to achieve the desired performance leyel.s, 10, ...,46}}, Y12 = {{0,1}, {2,19,21,23, ..., 47},

i.e., [0(T%)| < 0.2°C. The deficiency of{; is particu- {3,4,5,...,18,20,22,...,46}}, Y?! = {{7,9,11,...,47},
larly pronounced in its application to the nonlinear modd1, 2,4}, {0, 3,5}, {6, 8, 10, ...,46}}, andY?? =

Similarly, Fig.4e and Fig.4f show the sign#ll'3) when {{4,7,10,13,14,15,28,30, 32, ...,46},{0,1,2,3,5,6,

K, is applied to the linearized and nonlinear system magl9, 11,12,16,17, 18, ..., 27,29, 31, ...,47}}. Note that,
els, respectively. Note that, achieves the relaxed perby applying the guidelines proposed in [2], it is possible
formance objective in both cases, i/6(19)| < 0.4°C.  to construct &, as efficient as the one above, that leads
to a much simpler problem of the form (7) .

4 Conclusion

An /., robust controller was designed for the linearizédeferences:

model of a heat exchanger system. This model involM@$ Cadotte, Michalska, Boulet, “Computational Aspects

a pair of structuredsepeated, linear time-varying, and in- of a Criterion for Robust/-Stability of Systems

duced/.-norm-bounded perturbations. The efficiency of with Repeated Perturbations”, submitted to CDC.

the controller was further tested on the original nonlineg@] Cadotte, Michalska, Boulet, “A Necessary Condition

model of the heat exchanger system. The simulation re- for Robust/.,-Stability of Systems with Repeated

sults confirmed the efficiency of the adopted design strat- Perturbations”, submitted to CDC.

egy. The controller developed in this paper will next 48] Dahleh, Diaz-Bobillo, Control of Uncertain Sys-

applied and tested on an existing laboratory prototype of tems. a Linear Programming Approach, Prentice

a real heat exchanger system. Hall, 1995.
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