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Abstract: - This paper presents a novel approach to robust performancecontroller design achieving a pre-specified
ℓ∞-norm-bounded performance objective. The class of systemsconsidered is subject to structured,repeated, linear
time-varying, inducedℓ∞-norm-bounded perturbations. The efficiency of the approach is assessed in application to a
heat exchanger system.
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1 Introduction
Robustℓp-stability problems are usually re-stated as satis-
ficing problems involving the computation of a structured
norm (SN ) (see§2 for definition). However, the compu-
tation ofSN is generally difficult. It is hence customary
to substituteSN by its upper bound approximation as de-
rived from the scaled small gain theorem, see [12].

In the particular case when the perturbations are struc-
tured, independent (i.e., not repeated), linear time-varying,
and inducedℓ∞-norm-bounded, it was shown by Kham-
mash, [5], that the abovementioned upper bound is indeed
equal to theSN value itself. A few years later, similar
results were proved by Shamma, [10], for the inducedℓ2-
norm-bounded problem and by Young&Dahleh, [11], for
the general inducedℓp-norm-bounded problem.

It is well known that theSN upper bound can be cast
in the form of a scaledℓ1-norm minimization problem. In
the case of repeated perturbations, the scaling matrices are
block diagonal. In [1], it is shown how the optimization
domain (i.e., the set of admissible scaling matrices) of the
ℓ1 problem involved can be significantly reduced while
preserving global optimality. In [2], the work of Kham-
mash (see [5] and [6]) is further generalize by the devel-
opment of a novel lower bound for the associatedSN .
This lower bound allows to estimate the conservativeness
of the scaled small gain theorem in applications to prob-

lem with repeated perturbations. A necessary robustℓ∞-
stability condition follows directly from this lower bound.

In this paper, it is shown how the results first presented
in [1] and [2] can be applied to solve anℓ∞ robust per-
formance problem for the linearized model of a heat ex-
changer system. The simulation results demonstrate the
usefulness of the theory presented in [1] and [2].

2 Notation, Problem Statement, and
Methodology

2.1 Notation
LetZ+ andZ

∗ denotes the set of positive and non-negative
integers, respectively.

Let ℓp
n denotes the space of all sequences of vectors of

lenghtn {s(k)}∞k=0, s(k) ∈ R
n, equipped with the norm

‖s‖p
△
=

∞
∑

k=0

|s(k)|p < ∞ (note that‖s‖∞
△
= sup

k≥0
|s(k)|).

Given a bounded operatorS : ℓp
n 7→ ℓp

m, let ‖S‖p−ind
△
=

‖S(s)‖p

‖s‖p
be the induced-p norm ofS. Furthermore, ifS is

linear and causal, thenS(s) is characterized by the convo-

lution (S ∗ s)(k)
△
=

k
∑

l=0

S(k, l)s(l), whereS(k, l) denotes

the kernel ofS.
Let S1 andS2 be two systems, thenFl(S1, S2) and

Fu(S1, S2) denotes a lower and a upper linear fractional
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Figure 1:S∆-loop

transformation between these two systems, respectively.
Suppose that a discrete-time linear time-invariant (LTI)

systemS with p inputs andq outputs is characterized by
the impulse response{S(k)}∞k=0, wherek ∈ Z

∗ is a dis-
crete time instant. IfS is stable, then{S(k)}∞k=0 ∈ ℓq×p

1

and theℓ1 norm ofS is given by

‖S‖1
△
= max

i∈{1,...,q}

p
∑

j=1

∞
∑

k=0

|Sij(k)|.

Let the set∆ denote a given arbitrary class of admis-
sible perturbations. This set is assumed to carry all the
important information relevant to the nature and structure
of the perturbations. Assume that∆ ∈ ∆ and thatS is
an LTI system of dimension compatible with∆, as illus-
trated by Fig.1. Thestructured norm of S is then defined
as:

SN∆,p(S)
△
=

1

inf
∆∈∆

{‖∆‖p−ind : (I − S∆)−1not ℓp-stable}
.

If for every ∆ ∈ ∆, (I − S∆)−1 remainsℓp-stable, then
SN∆,p(S) = 0. Recall that, the structured norm is not
a norm, see [3]. Also, assuming that‖∆‖p−ind < 1, it
is straightforward to show that robustℓp-stability of the
S∆-loop is equivalent to the condition:SN∆,p(S) ≤ 1.

More specifically, given an ∈ Z
+, a {rl}

n
l=1, rl ∈

Z
+, and anP ∈ Z

+, define the following classes of linear
time-varying (LTV) perturbations:

∆
p×q
LTV

△
={∆ : ∆ is causal, LTV, hasp outputs andq inputs},

∆S
△
={diag(δr1I1, ..., δrnIn) : δl ∈ ∆

1×1
LTV ,

l ∈ {1, ..., n}}, (1)

∆C
△
={diag(∆S ,∆P ) : ∆S ∈ ∆S ,∆P ∈ ∆

nP×nP

LTV }.

2.2 General Design Problem Statement
Consider Fig.2a, whereG is an augmented plant,K is a
controller,∆S is a perturbation,d is a disturbance input,

Figure 2: Stability and Performance

z is a performance output,u is a command input,y is a
measured output,u∆ is a perturbation input, andy∆ is a
perturbation output such that





y∆

z
y



 = G





u∆

d
u



 , (2)

with u = Ky andu∆ = ∆S y∆. For simplicity,G, K,
and∆S are assumed square of dimensions(n∆ + nP +
nK) × (n∆ + nP + nK), nK × nK , andn∆ × n∆ re-
spectively, wheren∆, nP , nK ∈ Z

+. Such assumptions
are not very limiting as it is always possible to introduce
redundant inputs and outputs to augment the plantG and
obtain the desired dimensions. Moreover, define

M
△
=M(K)

△
= Fl(G,K) (3)

T
△
=T (K,∆S)

△
= Fu(M,∆S).

Assume thatG, K (and thusM ) are discrete-time
LTI systems,∆S ∈ ∆S , and that‖∆S‖∞−ind < 1 and
‖d‖∞ ≤ 1. The objective of the controller is then to
achieve‖z‖∞ ≤ ν for a desired treshold valueν ∈ R

+.
Then, the associated robust disturbance rejection problem
consists in finding a stabilizing controllerK satisfying

min
K

sup
∆S

‖T (K,∆S)‖∞−ind ≤ ν. (4)

Without loss of generality,ν is set to1. Note that, by

virtue of (1),n∆ =
n
∑

l=1

rl.

Consider Fig.2b, where a fictitious performance per-
turbation block∆P is added to the original system frame-
work presented in Fig.2a. By slightly extending the result
presented in [5], it follows that

sup
∆S

‖T (K,∆S)‖∞−ind = SN∆C ,∞(M(K)). (5)
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However, in general, it is not possible to compute (5)
exactly due to the complexity of such a task. Practical
approaches hence rely on the introduction of upper and
lower bounds forSN∆C ,∞(M) that can be computed with
relative ease, but at the cost of some conservativess.

2.3 An Upper Bound for the Structured Norm, [1]
Given the samen ∈ Z

+, {rl}
n
l=1, rl ∈ Z

+, andnP ∈ Z
+,

as in (1), define

D
△
={D = diag(D1, ...,Dn, InP

) : Dl ∈ R
rl×rl ,

Dl
11 ≥ Dl

12 ≥ ... ≥ Dl
1rl

≥ 0, l ∈ {1, ..., n}}.

It was shown in [1] that an upper bound forSN∆C ,∞(M)
follows from the scaled small gain theorem, see [12], in
the form of

SND,∞(M)
△
= inf

D∈D

‖D−1MD‖1, (6)

whereSND,∞(M) ≥ SN∆C ,∞(M). The optimization
problem (6) is nonconvex and nondifferentiable with re-
spect toD.

2.4 A Lower Bound for the Structured Norm, [2]
Suppose that{M(k)}∞k=0 is the impulse response ofM
(for a given controllerK). Again, given the samen ∈ Z

+,
{rl}

n
l=1, rl ∈ Z

+, andnP ∈ Z
+ as in (1),{M(k)}∞k=0 is

partitioned as follows

M(k)
△
=
[

M IJ(k)
]

I∈{1,...,n+1}
J∈{1,...,n+1}

∈ R
(n∆+nP )×(n∆+nP ),

whereM IJ(k)
△
=
[

M IJ
ij (k)

]

i∈{1,...,rI}

j∈{1,...,rJ}

∈ R
rI×rJ and

rn+1 = nP .
For a givenτ ∈ Z

+, define the following class of
admissible collections of subsets

Υ
△
=

{

Υ : Υ = {Γ(κ)}υ−1
κ=0,Γ(κ) ⊆ {0, ..., τ − 1},

Γ(κ) 6= ∅,
υ−1
⋂

κ=0

Γ(κ) = ∅, υ ∈ Z
∗

}

.

Note thatυ ≤ τ , as eachΥ ∈ Υ is a collection of distinct
subsets of{0, ..., τ − 1}.

Define

Y
△
= {ΥIJ} I∈{1,...,n+1}

J∈{1,...,n+1}

andN
△
= {NI}I∈{1,...,n+1},

whereΥIJ = {ΓIJ(κ)}υIJ−1
κ=0 ∈ Υ, NI ∈ Z

+ andn ∈
Z

+ is implicitely defined by (1).
For the above fixed values ofn ∈ Z

+, υIJ ∈ Z
+, and

NI ∈ Z
+, whereI, J ∈ {1, ..., n + 1}, define the set of

indices x
△
=

{(κ, I, J, ı, ) : κ ∈ {0, ..., υIJ − 1}, I ∈ {1, ..., n + 1},

J ∈ {1, ..., n + 1}, ı ∈ {1, ...,NI},  ∈ {1, ...,NJ}}

and the class of admissible sets of real numbers

d
△
= {d : d = {dIJ

ı (κ)}(κ,I,J,ı,)∈x, dIJ
ı (κ) ∈ R}.

It was shown in [2] that, given anyY and anyN, a
lower bound forSN∆C ,∞(M) is given by

SNY,N,∞(M)
△
= max

d∈d

max
d∈d

NJ
∑

=1
|dIJ

ı (κ)|<1

ρ (Ξ(d)) , (7)

whereSNY,N,∞(M) ≤ SN∆C ,∞(M) and

Ξ(d)
△
=
[

ξIJ
]

I∈{1,...,n+1}
J∈{1,...,n+1}

, ξIJ △
=
[

ξIJ
ı

]

ı∈{1,...,NI}

∈{1,...,NJ}

,

ξIJ
ı

△
=

υIJ−1
∑

κ=0

(

dIJ
ı (κ)

∑

k∈ΓIJ (κ)

M IJ(k)

)

. The optimiza-

tion problem in (7) is nonconvex ind. Guidelines for the
selection ofY andN are provided in [2].

2.5 Solution of the General Design Problem
From (6) and (5), if one finds a stabilizing controllerK
satisfying

min
K

inf
D∈D

‖D−1M(K)D‖1 ≤ 1, (8)

then such a controllerK will also satisfy (4). However,
if the left hand side (LHS) of (8) is greater than one, it
does not necessarily imply thatK does not fulfill the per-
formance objective. Still, by virtue of (7), it is sometimes
possible to demonstrate that such aK indeed does not
satisfy (4).

While it is obvious from (6) that (8) is not convex
in D, it is, however, possible to simplify the optimiza-
tion process (8) (with respect toK) as demonstrated be-
low. By incorporating the Youla parameterization of all
stabilizing controllers, see [12], it is possible to redefine
M(K) in the form of

M(K)
△
= M(Q)

△
= H + U ∗ Q ∗ V, (9)
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Figure 3: Experimental Setup

whereQ is a stable discrete-time LTI system of dimension
nK × nK andH, U , andV are also stable discrete-time
LTI systems of dimensions compatible withQ and M .
Moreover, if the transfer function ofQ is of the form

Q
△
= (q0 + q1z

−1 + ... + qnQ
z−nQ)/z−nQ ,

whereq0, ..., qnQ
∈ R

nK×nK , nQ ∈ Z
+, then

min
Q

inf
D∈D

‖D−1HD + D−1U ∗ Q ∗ V D‖1, (10)

is convex in theQ parameters{q0, ..., qnQ
}. Observe that

(10) equals the LHS of (8). The problem in (10) is usually
solved by theDQ-algorithm, see [3] and [12]. As shown
in [4], [9], and [7], for a fixedD, the optimization prob-
lem in Q can be rewritten as a linear programming prob-
lem. On the other hand, for a fixedQ, the optimization
problem inD can be solved by non-smooth optimization
techniques. For improved efficiency, theDQ-algorithm
may be employed within a global optimization framework
that performs a systematic gridding of theD parameter
space.

3 A case Study: the Heat Exchanger System

3.1 Presentation of the Experimental Setup
Let δ(v) denote a small variation of a variablev away

from its operating point.
Fig.3 illustrates the block diagram of the linearized

experimental setup. This setup involves a heat exchanger
(H), two valves(V ) with uncertain dynamics, a con-
troller (K) with a zero-order hold(Zoh) and a sampler
(Spl), and several filters. Models for each subsystems are
described below.

A heat exchanger comprises two pipelines circulating
fluids. Inside the heat exchanger, the pipeline contain-
ing the warmer fluid transfers some heat to the pipeline

containing the colder fluid. Here those pipelines are la-
beledA and B. Let FA and FB denote the flow rates
inside pipelineA andB, respectively. LetT i

A, Tm
A , and

T o
A denote the temperatures of the fluid in pipelineA at

the entry, in the middle, and at the exit of the heat ex-
changer, respectively. The temperaturesT i

B , Tm
B andT o

B

are defined similarly for pipelineB. The heat exchanger
model is linearized around the following operating point:
FA = 50cm3/s, FB = 7.8cm3/s, Tm

A = 22.60oC,
T o

A = 26.59oC, Tm
B = 26.87oC, andT o

B = 22.64oC.
Note thatT i

A andT i
B are always set to22oC and55oC,

respectively. The linearized model of the heat exchanger
H, see [8], is then given by

δ(T o
A) = C(sI − A)−1B

[

δ(FA)

δ(FB)

]

△
= [H11H12]

[

δ(FA)

δ(FB)

]

whereA =









−30.54 0 0 28.55
1.99 −30.54 28.55 0
0 16.16 −16.32 0

16.16 0 0.160 −16.32









,

B =









−0.024 0
−0.159 0

0 0.570
0 0.086









, C =
[

0 1 0 0
]

.

The states are defined as follows:x(1) = δ(T m
A ), x(2) =

δ(T o
A), x(3) = δ(Tm

B ), andx(4) = δ(T o
B).

A simplified linear model of a valve was proposed in
the form of

δ(F ) = (V + Wv∆) δ(Fd)

whereV = 2
s+2 , Wv = 0.12s+0.012

s+0.2 , Fd is the desired flow

rate,F is the flow rate, and∆ ∈ ∆
1×1
LTV , ‖∆‖∞−ind < 1,

is a perturbation. The filterWv together with the pertur-
bation∆ embody all possible neglected high frequency
dynamics inherent to the saturation in the valve opening
(and closing) rate. The two valves in the above setup are
identical and are assumed to operate under similar condi-
tions, thus they share the same model.

The signalFdA is the desired flow rate in pipeline
A. It is assumed thatFdA is determined by another pro-
cess, hence it is seen as a disturbance to the system con-
sidered. Morever,δ(FdA) is bounded in magnitude by
±10cm3/s, henceδ(FdA) ∈ ℓ∞. Without loss of gen-
erality, letd Wd = δ(FdA), whereWd = 10 0.6

s+0.6 and
‖d‖∞ ≤ 1. The nominal low pass filter0.6

s+0.6 in Wd cap-
tures the fact thatδ(FdA) has a limited rate of variation.
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The performance objective is to maintainδ(T o
A) within

±0.2oC and hence attenuate the influence ofδ(FdA) on
T o

A. This requirement is equivalent to the satisfaction of
the condition‖z‖∞ ≤ 1, wherez = Wzδ(T

o
A), Wz = 5.

The subsystems in Fig.3 are rearranged to agree with
(2), namely









y∆A

y∆B

z
y









= Gexp









u∆A

u∆B

d
u









with (11)

Gexp =









0 0 WdWv 0
0 0 0 WvZoh

WzH11 WzH12 WdWzV H11 WzV H12Zoh
−H11 −H12 −WdV H11 −V H12Zoh









.

Note thatn = 1, r1 = 2, n∆ = 2, nP = 1, andnK = 1.

3.2 Simulation Results
In an attempt to fulfill the above performance objective,
two controllers are synthesized below according to the
design strategy presented in§2. The core of this method-
ology consists of the following equations: (2), (3), (9),
(10), and (11). It is important to note that the discrete-
time form of (11) is required for the controller synthesis.
Here a sampled time of1s is employed.

Note that the dimension ofQ is set tonQ = 9. Fur-
thermore, to achieve a finite computational scheme, the
original domain∆ is restricted to the following compact
setD

⋂

[−1.4, 1.4]3×3. A global optimization approach
which combines a gridding of the reduced scaling do-
main with the application of theDQ-algorithm is then
employed to solve (10). For eachQ found, the corre-
sponding controllerK is recovered as in [3], henceQ will
itself be refered to as the controller.

The first synthesis attempt yields a finite impulse re-
sponse transfer functionQ1 and a scaling matrixD1 (their
numerical values are given in the Appendix). The corre-
sponding structured norm upper bound is

SND1,∞(M(Q1)) = 1.38. (12)

SinceSND1,∞(M(Q1)) > 1, it does not ensure the sat-
isfaction of the performence objective. The methodology
proposed in (7) now allows to compute a structured norm
lower bound. UsingY andN, as given in the Appendix,

SNY,N,∞(M(Q1)) = 1.25 > 1. (13)

Figure 4: Simulation Results

Clearly, this indicates that it is impossible to achieve the
desired robust performance level.

Therefore, the performance objective is next relaxed
by settingWz = 2.5 which implies that the condition
δ(T o

A) ∈ [−0.4oC, 0.4oC] must hold. UsingQ1 andD1

as initial values, theDQ-algorithm is applied and returns
Q2 andD2 (see Appendix) such that

SND2,∞(M(Q2)) = 0.97 < 1. (14)

Thus, in this case, it is guaranteed thatQ2 achieves the
new performance objective.

The controllersK1 andK2 (see Appendix) are fur-
ther tested in the context of both the linearized model
and the original nonlinear model. The efficiency of each
controller is assessed in terms of its ability to attenuate
the influence of the disturbance signald on the tempera-
ture expressed in terms ofδ(T o

A). In all the simulations
presented here, the disturbance is the signald shown in
Fig.4a. Moreover, all the simulations involving the lin-
earized system use the memoryless perturbation∆A(=
∆B) shown in Fig.4b.

The simulation results are presented in Fig.4 whose
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sub-plots represent the following. Fig.4c and Fig.4d show
the signalδ(T o

A) whenK1 is applied on the linearized and
nonlinear system models, respectively. It is seen thatK1

is indeed unable to achieve the desired performance level,
i.e., |δ(T o

A)| ≤ 0.2oC. The deficiency ofK1 is particu-
larly pronounced in its application to the nonlinear model.
Similarly, Fig.4e and Fig.4f show the signalδ(T o

A) when
K2 is applied to the linearized and nonlinear system mod-
els, respectively. Note thatK2 achieves the relaxed per-
formance objective in both cases, i.e.,|δ(T o

A)| ≤ 0.4oC.

4 Conclusion
An ℓ∞ robust controller was designed for the linearized
model of a heat exchanger system. This model involves
a pair of structured,repeated, linear time-varying, and in-
ducedℓ∞-norm-bounded perturbations. The efficiency of
the controller was further tested on the original nonlinear
model of the heat exchanger system. The simulation re-
sults confirmed the efficiency of the adopted design strat-
egy. The controller developed in this paper will next be
applied and tested on an existing laboratory prototype of
a real heat exchanger system.

5 Appendix

5.1 Numerical value of Q1, D1, K1, Q2, D2, and K2

Q1 = numQ1

z−9 , numQ1 = 6.7152−8.8361z−1+4.8873z−2

− 1.7857z−3 + 0.5544z−4 − 0.2306z−5 + 0.1495z−6 −
0.0933z−7 + 0.0403z−8 − 0.0087z−9,
Q2 = numQ2

z−9 , numQ1 = 3.7733−3.3959z−1+0.8952z−2

− 0.2199z−3 + 0.2316z−4 − 0.2082z−5 + 0.0869z−6 −
0.0171z−7 + 0.0033z−8 − 0.0008z−9,
K1 = numK1

denK1
, numK1 = 6.715−15.960z−1+16.442z−2

−10.021z−3+4.275z−4−1.531z−5+0.622z−6−0.342z−7

+ 0.194z−8 − 0.086z−9 + 0.025z−10 − 0.004z−11,
denK1 = 1.000 − 2.089z−1 + 1.628z−2 − 0.525z−3 −
0.006z−4+0.063z−5−0.018z−6−0.006z−7+0.009z−8−
0.001z−9 − 0.001z−10 + 0.001z−11,
K2 = numK2

denK2
, numK2 = 3.773−7.399z−1+5.723z−2−

2.374z−3+0.847z−4−0.549z−5+0.389z−6−0.183z−7+
0.055z−8 − 0.012z−9 + 0.002z−10, denK2 = 1.000 −
1.639z−1+0.817z−2−0.035z−3−0.066z−4−0.009z−5+
0.024z−6 − 0.005z−7 − 0.004z−8 + 0.002z−9,

D1 =





1.17 0.33 0
0.21 −0.17 0
0 0 1



, andD2 =





1.39 0.38 0
0.21 −0.12 0
0 0 1



.

5.2 Numerical value of Y and N

N = {2, 1} andY = {Υ11,Υ12,Υ21,Υ22},
whereΥ11 = {{7, 9, 11, ..., 47}, {0, 3, 5}, {1, 2, 4},
{6, 8, 10, ..., 46}}, Υ12 = {{0, 1}, {2, 19, 21, 23, ..., 47},
{3, 4, 5, ..., 18, 20, 22, ..., 46}}, Υ21 = {{7, 9, 11, ..., 47},
{1, 2, 4}, {0, 3, 5}, {6, 8, 10, ..., 46}}, andΥ22 =
{{4, 7, 10, 13, 14, 15, 28, 30, 32, ..., 46}, {0, 1, 2, 3, 5, 6,
8, 9, 11, 12, 16, 17, 18, ..., 27, 29, 31, ..., 47}}. Note that,
by applying the guidelines proposed in [2], it is possible
to construct aY, as efficient as the one above, that leads
to a much simpler problem of the form (7) .
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