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ABSTRACT
The design of the control law (dynamical feedback control
or only feedback control) is a natural method of cybernet-
ics. However, some results are disputatious, mainly from
point of view viability, causality etc. A rather dissimilar
approach to design of the control law is presented in this pa-
per. This method is grounded in system theory, where the
system definition is based on observations nature. There-
after the close loop system must be a system as whole and
must fulfill the causality law. In this paper is presented
method to design of the feedback control law for inverted
pendulum which is connected with car.
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1 Introduction

The synthesis of the control design for linear systems fall
into often solved problem, but for non-linear systems are
shortly discussed. One of them consists in approximative
linearizing of the non-linear system to be stabilized about
an operating point, and then linear feedback control meth-
ods are used to design a controller. This approach is suc-
cessful in case of a system trajectory is restricted to a small
neighborhood about the chosen operating point. The other
methods are based on a transformation of a non-linear sys-
tem into a suitable form. This way is presented in for ex-
ample (see [6]), which method made by using of a transfor-
mation into ”controllable like” canonical form.

The paper deals with the stabilization method which
has a similar idea as the method mentioned in (see [4]). The
main idea is in that the close loop system must be a system
as whole and must fulfill the causality law. This we can eas-
ily guarantee on discrete-time. Than the continuous-time
system is taken as limits of discrete-time (see [1]) and (see
[2]).

2 Problem formulation

Consider a subsystem��
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where� � ���� � ��, � � �� � � (�� � � 	�), �
we call as a state of the subsystem��, � as output of the
subsystem�� and� as input of the subsystem��. Further
we assume that� and� are measurable.

Our aim is to design a subsystem��
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where� � ���� � ��, � � ���� � � (��� � 	�),

 is a state of the subsystem�� and� is output of the sub-
system�� and� is input of the subsystem��.

So that a system�, which is created from subsystem
�� and��, fulfill the next conditions:

� � is a system, i.e. causal system,

� � is asymptotically stable.

3 Problem solution

The main idea, that the close loop system must be a sys-
tem as whole and that must fulfill the causality law, is eas-
ily guarantee on discrete-time. Because this problem is as
the first solved for the discrete-time system (see [1]) and
consequently continuous-time system is taken as limits of
discrete-time (see [2]).

And because we use with the non-linear systems,
where working are more complicated we need a original
continuous-time subsystem�� in special form (concretely
in canonical form ”controlable-like canonical form”):
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In case where the original subsystem isn’t in this form, we
can use a state space transformation (see [6]).

In following sections we limit on situation, regarding
query, when order of the subsystem�� is equal zero (� �

), i.e. the equation (2) is�� � ���� � � ������.

Now we must compute a discrete-time system. This
we obtain after application proces. For example, the deriva-
tion is made account of
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where� is a sample time. For this discrete-time system:
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we compute a subsystem��:
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using by method based on metrical equivalence (see [4]).
Hence we assume that the system� (the close loop system
�� with unknown control law��)
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is state equivalent with a system��, which we choose as
asymptotically stable andcausal system. This system can
be non-linear and is in the other special form:
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with the Lyapunov function� ������ �
��
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��. The non-
linear function����� are smooth and non-zero. For this
system is important that the Lyapunov function is always
in this special form. The proof and note for using this form
we can see in [1].

Further from the state space equivalence (������ �
������� for � � 
�    � � �) of the systems (7) and (8)
we compute a state transformation���� � � �����. Then
we obtain, from a relationship������ �������� , a non-
linear function����� as:
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The proof you can see in [1] or [2].
Now the continuous-time system is regarded as lim-

its of suitable set of the time. This limit proces is called
the continualisation (see [5]) and (see [2]). Therefore the
continuous-time control law we obtain from:
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The proof of this is in [2].

4 Inverted pendulum

In this section which is a mainly part of this paper is pre-
sented results on the well-know example Inverted pendu-
lum with the car. Employ a physical principle and we write
this equations:
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where significance of the variables are visible from pic-
ture 1.

Fig. 1: Model inverted pendulum on the cart

From consequential modification we obtain the fol-
lowing equations:
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(14)

Now we must compute the further equations which
describe a behavior of the car with engine. It is a more com-
plicated, for this we would need a non-linear differential
equation, order five. Hence we use a identification method
for determination of this model, factually a AR model.
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where���� and���� are a relevant polynomials.
The result is in [3] and it can be write in form:
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with the sample time� � 

��. This is typical for the
identification that the result is in discrete-time.

Thank to here presented method we cannot compute
the continuous-time equations but contrariwise we apply a
relationship (4) to the equation (14) and after manipulation



we obtain a state space subsystem��:
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where����� � ���� and ����� � �
��� � ����, � �
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������ ��. We can see that this is a multi-output sys-
tem, but for a design of a control law we use only a output
�����.

Complication is a relative degree of the subsystem��.
Because for the design a control law we use the subsystem
����� , order� in form:
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where the state space transformation�� � �� ��� is equal:
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Therefore the discrete-time system of this subsystem

(18), after application a (19), is in form:
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And now we can use this method, i.e. we apply a
unknown control law������. Then this close loop system:
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we use for design a control law. So that we choose the sys-
tem��, which described a requested behaviour of a close
loop system, for example:
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The state space transformation we obtain from rela-
tionship������� � ������� for � � 
� �� � and after ma-
nipulation we can write state space transformation equa-
tions as:
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Now we substitute from (21) and (22) (with using
(23)) to the relationship (9) and after manipulation we ob-
tain a control law in discrete-time in form:
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And as the last we substitute the previous relationship
(24) into (10) with applying (19) and compute a control law
for continuous-time system in original coordinates. Then
this control law is equal:
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This control law (25) we use for the simulation of this
problem now. But for the simulation we need the whole
system continuous-time or discrete-time. This simulation
results are presented for the continuous-time system, where
the equation (16) is use in macro (Matlab)d2c. Now we
can use this macro because we know that the whole system
(close loop) is a causal system!

In the figure 2 we can showed simulation of the po-
sition of the car����. In the next figure 3 we can showed
simulation the amplitude of the phase����.

5 Conclusion

The design of the control law (dynamical feedback control
or feedback control) is a natural method of cybernetics. A
rather dissimilar approach to design of the control law is
presented in this paper. This method is grounded in new



system theory, where the system definition is based on ob-
servations nature. Thereafter the close loop system must be
a system as whole and must fulfill the causality law.

In this paper is presented method to design of the
feedback control law for problem of the inverted pendu-
lum with the car. This way adventitious control is part of
whole system, with respect a causal law.
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Fig 2.: Course of the position of the car���� � �����

Fig 3.: Course of the amplitude of the phase���� � �����
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