

Web Services Computing: Beyond Component-Based Architectures

Dr. Dionisis X. Adamopoulos Dr. Constantine A. Papandreou
Dept. of Technology Education & Digital Systems Hellenic Telecom. Organisation (OTE) and

University of Piraeus, Greece University of Piraeus, Greece

Abstract

Web services are emerging technologies that can be
considered as the result of the continuous improvement of
Internet services due to the tremendous increase in
demand that is being placed on them. They are rapidly
evolving and are expected to change the paradigms of
both software development and use, by promoting
software reusability over the Internet, by facilitating the
wrapping of underlying computing models with XML, and
by providing diverse and sophisticated functionality fast
and flexibly in the form of composite service offerings. In
this paper, the different facets of Web services are
identified and a flexible approach to engineering complex
Web services is adopted in the form of a proposed
framework for the development of Web services. After the
examination of its main constituent parts, it is argued that
its full potential and that of Web service engineering in
general, is realized through the gradual formation of a
rich service grid offering value-added supporting
functionality and therefore the main desirable properties
of such a service grid are highlighted. Finally, the paper
outlines a validation approach for the proposed
framework and assembles important pointers for future
work and concluding remarks.

1. Introduction

Web-enabled service-oriented computing is becoming
the prominent paradigm for distributed computing and e-
commerce, creating significant opportunities for a variety
of providers to develop value-added services by specify-
ing new Web services or by combining already existing
ones. These services are self-contained, Web influenced
programming entities capable not only of performing
business activities on their own, but also possessing the
ability to engage other Web services in order to complete
higher-order business transactions. Therefore, Web ser-
vices can be considered as a special category of telematic
services (new telecommunications services), that although
they have several unique characteristics, they remain geo-
graphically distributed entities (actually an encapsulation
of a number of cooperating entities distributed over a
geographical environment) providing a number of people

(users, subscribers) a predefined, carefully selected, set of
capabilities / facilities regarding the integrated coverage
of a (possibly) wide range of information and communi-
cation needs, utilising the resources of (existing and fu-
ture) telecommunication networks [1].

This paper attempts to determine the boundaries of
Web service engineering and, considering the needs of
companies that deploy Web services to support
increasingly sophisticated business processes, proposes a
framework for the development of Web services and
examines its main constituent parts, addressing important
issues for the creation and provision of a new generation
of functionally rich, adaptable, web-centric, composite
applications. Furthermore, it introduces the concept of
service grids as the necessary infrastructure that will
enable Web services to transform the Web from a
collection of information into a distributed computational
entity, and identifies open matters and current technical
challenges for the Web services community in association
with the proposed framework.

2. Web service engineering

A Web service is programmable application logic ac-
cessible using standard Internet protocols, fulfilling a spe-
cific task or a set of tasks and representing a discrete unit
of business or system functionality, that can be combined
with other Web services to maintain business transactions
or workflows [3][7]. By exploiting Web services an
organization is able to provide ("expose") any business
function to any other entity, such as another business
function, an organization, a particular community, as well
as end users. A Web service can be provided by the
organization directly, through trading networks or specific
publishing hubs and other intermediaries on the Web.

Web services are self-contained, self-describing,
modular software entities that can be published, located
and invoked across the Web. Each discrete Web service
can be deployed on and accessed from any node on the
Internet, because once a Web service is deployed, other
applications (and other Web services) can discover and
invoke the deployed service. Therefore, multiple Web
services can be combined or assembled to form new
service configurations and deliver more valuable and
sophisticated functionality supporting diversified business

objectives. In this way, Web services offer a degree of
flexibility and granularity not previously possible or
economically viable, as they facilitate on-the-fly software
creation through the quick assembly of loosely coupled,
reusable software components [4]. Furthermore, they can
interact with each other ("be orchestrated") in an infinite
variety of manners and through multiple iterations in
order to deliver a particular task within any context [2].

As a new domain or scientific discipline at the bounda-
ries of software engineering and telecommunications,
Web service engineering addresses the technologies and
engineering processes required to define, design, imple-
ment, test, verify, validate, deploy, combine, maintain,
and manage Web services that meet user needs in the
current or future networks. Its main objective is to ensure
the introduction of new and enhanced Web services and
their management, in a fast and efficient manner. It relies
heavily on open distributed object-oriented processing
and Internet technology, and ambitiously promises to
significantly facilitate the offering of a wide variety of
highly sophisticated and personalised services over the
widest possible coverage area.

Finally, it has to be stressed that Web services repre-
sent the convergence between Service-Oriented Archi-
tectures (SOAs) and the Web. SOAs (as the one proposed
by the Telecommunications Information Networking Ar-
chitecture-Consortium, TINA-C) have evolved over the
last 10 years to support high performance, scalability,
reliability and availability [1]. To achieve these proper-
ties, applications are designed as services, that can be
accessed through a programmable interface and run on a
cluster of centralized application servers. In the past,
clients accessed these services using a tightly coupled,
distributed object protocol, such as Microsoft’s DCOM,
OMG’s CORBA or Sun’s Java RMI. While these proto-
cols are very effective for building a specific application,
they limit the flexibility of the system. Furthermore, each
of the protocols is constrained by dependencies on vendor
implementations, platforms, languages or data encoding
schemes that severely limit interoperability and none of
them operates effectively over the Web [2]. Web services
inherit all the best features of the SOAs and all the best
aspects of component-based development in general and
combine them with the Web. Like components, Web ser-
vices represent functionality that can be easily reused
without knowing how the service is implemented. How-
ever, the Web supports universal communication using
loosely coupled connections and Web protocols are com-
pletely vendor-, platform-, and language- independent.

3. A framework for the development
 of web services.

Because of the inherent complexity of Web technolo-
gies and the recent diversification of the telecommunica-
tions environment, Web service engineering activities
should satisfy a number of requirements, in order to

maximise their usefulness, fulfil the emerging increased
expectations regarding their value and impact, and lead
eventually to a Web populated by a variety of service
objects. The most important requirements that Web ser-
vice engineering activities should support during their
desired evolution process are the following [1][3][4][5]:
• The efficient and effective development of Web

services by guiding successfully service developers
during the entire Web service creation process.

• The successful application in a Web services context
(through the appropriate adaptation when necessary) of
carefully selected concepts, models, techniques, design
patterns and practices that are developed, tested and
(extensively) applied during the creation of conven-
tional telecommunications services.

• The reduction of complexity and the increase of
efficiency during the design and implementation of
Web services by hiding from the service developers
commonly encountered implementation details.

• The efficient automation of the Web service creation
process, without semantic loss, with the use of appro-
priate, carefully designed and tested, customisable, and
user-friendly software tools.

• The development of a rich variety of Web services with
enhanced content, which can efficiently support a wide
range of communication, information, business, educa-
tion, entertainment and cooperation needs.

• The representation, processing, management, and trans-
mission (possibly in an integrated manner) of all the
basic information types.

• The adoption of precise service semantics, because in
an open telecommunications market, it is important for
reasons of service interoperability and for maximising
customer satisfaction to specify Web services in a clear
and unambiguous way by using concepts that their
semantic content can be accurately defined.

• Reusability at different abstraction levels (e.g. reusable
service requirements, service specifications, service
components), with the intention to promote rapid Web
service design and deployment.

• The use of a variety of document types and their
population with appropriate values so that they are
semantically coherent and are interpreted correctly by
the service requesters and providers.

• The management of Web services in a flexible manner.
• The interoperability of Web services in a multi-provider

(open) telecommunications environment (with multiple
domains of management and ownership of services) by
facilitating and promoting Web service composition.

• Openness to all types of potential end-users of a Web
service considering all the possibly interested people
(e.g. mobile users, residential users, etc.).

• Openness to change of Web service software and hard-
ware (computer and network infrastructure), because as
technology advances, or as prices change, or as pur-
chasing policies and needs dictate, different hardware

should be able to be used without requiring new in-
vestment in the accompanying software, and vice versa.

• The accommodation of legacy telecommunications ser-
vices and systems as they represent significant invest-
ments that should be protected.

• Security in each message exchange between a service
requester and a service provider, which should be pri-
vate and unmodified, as well as non-reputable.

• The accommodation of relevant standards (if neces-
sary).
Current Web service technology scores rather low

compared to the above mentioned requirements. There-
fore, in an attempt to revitalize Web service engineering
and enable it for the crucial role that is anticipated to have
in the new emerging telecommunications environment,
the Web service engineering framework of Figure 1 is
proposed with the objective to provide a rich conceptual
model for the development and the description of Web
services bringing this technology to its full potential.

Web Service
Architecture

(WSA)

Web Service
Development
Methodology

Web Service
Support

Environment

Web
Service

The proposed framework

Business
Ecology

Web
service

engineering
principles

W e b S e rv ic e E x e c u tio n E n v iro n m e n t

Web Services Platforms (.NET, J2EE)
Core Technologies (XML, SOAP, WSDL, UDDI)

ASPs

MHPs

ISPs

network
operators

ISVs

BSPs

Transport (SOAP)
Description (WSDL)

Discovery (UDDI)

Figure 1. The proposed Web service engineering
framework

As can be seen from Figure 1 the proposed framework
is placed inside a composite organisational context (a
“business ecology”), in order to signify that Web service
engineering activities are normally performed by a variety
of entities / business formations. Although in practice
many of the companies operating in this sector / area
blend various functions into a composite offering and
adopt many different roles, the major players in this new
always-on Web services landscape are Application
Service Providers (ASPs), Managed Hosting Providers
(MHPs), Internet Service Providers (ISPs), network
operators, Independent Software Vendors (ISVs) and
Business Service Providers (BSPs) [6]. Therefore, the
proposed framework is influenced by their business
objectives, their general telecommunications and IT
strategic orientation, their knowledge, their problem
solving attitude and their experience.

The main constituent parts of the proposed Web
service engineering framework, which are depicted in
Figure 1, are:
• A Web service development methodology: It is a

methodology that guides service developers during the
entire process of Web service creation.

• A Web service support environment: It is an
environment aiming to facilitate, both the development
of Web services (in cooperation with the Web service
development methodology) and their execution under
real conditions. It consists mainly of:

− Web service engineering principles: These are
concepts, guidelines, design patterns, practices and
(in general) mental constructs that are applicable to
Web service engineering activities.

− A Web service architecture: It contains in a struc-
tured manner all necessary details for the informa-
tion and computational modelling of Web services.

− A Web service execution environment: It encom-
passes the necessary computing and network infra-
structure and the appropriate ancillary software
(e.g. operating systems, database management
systems, etc.), which is needed for and during the
execution of a Web service. Its most important part
is the Web platform, which abstracts over all the
other parts and reduces greatly the effort needed
for the implementation of a Web service. Further-
more, the Web platform is accompanied by a
collection of software tools (together with a reuse
infrastructure) that are used according to the Web
service development methodology with the aim to
assist the service developer(s) when applying the
methodology.

A Web services environment conforms to the
conceptual roles and operations that characterize every
SOA. The three basic roles are the service provider, the
service consumer and the service broker (see Figure 2). A
service provider offers the service and publishes the
contract that describes its interface. It then registers the
service with a service broker. A service consumer queries
the service broker according to its specific needs and
finds a compatible service. Then, the service broker
informs the service consumer on where to find the service
and its service contract. Finally, the service consumer
uses the contract to bind the client to the service. In order
for the three conceptual roles to accomplish the related
conceptual operations, a SOA system must supply /
specify three core functional architecture components;
namely transport, description, and discovery [7].

Table 1. A comparison of SOA middleware and
Web Services

 DCOM CORBA Java RMI Web Services
Invocation
Mechanism DCE RPC CORBA

RMI Java RMI JAX-RPC,
.NET, etc.

Data Format NDR CDR Serialised Java XML
Wire Protocol PDU GIOP Stream SOAP
Transfer
Protocol RPC CO IIOP JRMP HTTP,

SMTP, etc.
Interface
Description

MIDL /
DCE IDL

CORBA
IDL Java Interface WSDL

Discovery
Mechanism CDS COS

naming Java Registry UDDI

As can be seen in Table 1, the distributed object
platforms (middleware) that form the basis of SOAs

(DCOM, CORBA or Java RMI) define their own vertical
set of formats and protocols to implement the core SOA
functions. This approach ensures consistency among
applications that share the same middleware, but prevents
interoperability with applications that use different
middleware. It also requires that every service producer
and service consumer that engages in a conversation must
have the appropriate middleware installed and loaded on
its computing infrastructure.

On the other hand Web services (Internet middleware),
unlike traditional SOA systems, do not require an entirely
new set of protocols. The most basic Web services proto-
col is XML (an industry standard), which is used as the
message data format and is also used as the foundation of
all other Web services protocols. Web services use XML
to describe their interfaces and to encode their messages.
However, XML by itself does not ensure effortless com-
munication. The applications need standard formats and
protocols that allow them to properly interpret the XML.
Hence, the following XML-based technologies have
emerged as the de facto standards for Web services:
• Simple Object Access Protocol (SOAP) establishes a

common format for addressing messages and defines a
standard communications protocol for Web services.

• Web Services Description Language (WSDL) defines a
standard mechanism to describe a Web service.

• Universal Description, Discovery and Integration
(UDDI) provide a standard and uniform mechanism to
register and discover Web services.
These core Web service technologies define the trans-

port, description and discovery mechanisms respectively
in the way depicted in Table 1, and have a close relation-
ship with a strong semantic underpinning. As most Web
service configurations suggest, the three core functional
architecture components (transport, description, and dis-
covery) are implemented using SOAP, WSDL, and
UDDI, respectively, forming the Web Services Architec-
ture (WSA) that can be seen in Figure 2. A UDDI registry
has the role of a service broker. The register and find op-
erations are implemented using the UDDI Inquiry and
UDDI Publish APIs. A WSDL document describes the
service contract and is used to bind the client to the ser-
vice. All transport functions are performed using SOAP.

The Web Services Architecture (WSA) provides the
necessary means to create Web services for the coverage
of an infinite variety of needs and to dynamically
combine them to satisfy more specialized business re-
quirements at any point in time, by knitting together
micro-services (individual process components) into a
broader application entity offering enriched functionality.
However, such Web service creation activities can be
extremely risky and difficult as Web services can be
relatively simple, like the delivery of a currency converter
or stock quotes to a cell phone, but also very complex,
like a payment processing service where millions of euros
are being transferred in individual transactions from one
account to another.

WSDL
Description

(service
contract)

Client Service

Service
Consumer

Service
Provider

SOAP

UDDI Inquiry
find_xxx

UDDI Publish
save_xxx

Service
Broker

Find Register

Bind

XML

Figure 2. Conceptual roles and operations in a
Web Services Architecture (WSA)

Furthermore, all Web services are currently composed
in a rather ad hoc and opportunistic manner by simply
combining their operations and input and output
messages. If the requirements change or need to be
adjusted, then the composition will have to be respecified
and recreated by possible interlinking additional or
modified service interfaces. This approach leads to a
proliferation of badly specified service operations and
results in unmanageable and cluttered solutions. In this
case, the needs of service developers that want to reuse
the design and implementation of existing Web services
only by extension or restriction, without developing them
from scratch, cannot be satisfied.

An equally important problematic situation arises also
from the fact that unlike a traditional telecommunications
enterprise network, many different providers share the
multi-layered network and software infrastructure of Web
services. While a particular group of dominant network
operators (telcos) provide backbone and last-mile wireline
network services, other providers contribute server
management, data storage, edge cacheing, security, VPN
and wireless services, and several other ancillary services.
Therefore, creating an integrated, end-to-end application
delivery infrastructure incorporated into a Web service
requires close cooperation between all the interconnected,
autonomous participants (providers and enterprises).

It is evident that as Web services become more so-
phisticated and more global in reach and capacity, it be-
comes increasingly important to provide additional assis-
tance to service developers in order to ensure the effective
encounter of the above mentioned problems and the effi-
cient support of commercial-grade application functional-
ity by Web services in an incremental manner, with little
risk and at low cost. Recognising these needs, the Web
service development methodology of Figure 3 is pro-
posed. This methodology “covers” in a systematic and
structured manner the entire Web service creation process
through a requirements capture and analysis phase, a Web
service analysis phase, a Web service design phase, a
Web service implementation phase, and a Web service
validation and testing phase. It recognises the inefficiency
of current general-purpose software engineering method-
ologies to address successfully Web service engineering
matters and proposes a novel Web service creation proc-
ess based on fundamental object-oriented analysis and

design concepts and on important results of service crea-
tion research regarding the development of telematic ser-
vices upon distributed object platforms utilising SOAs.
The novel character of the proposed methodology is rein-
forced by the adoption of an incremental and iterative use
case driven approach, by the consideration of the special
needs imposed by the Web Services Architecture, by the
careful incorporation of the Unified Modelling Language
(UML) notation and the XML technology throughout the
service creation process, by the exploitation of specially
constructed design patterns, and by the promotion of re-
usability and dynamic Web service compositions.

Requirements
Capture and

Analysis

Web Service
Development

Cycle 1

Requirements
Refinement

Web Service
Formation

Web Service
Optimisation

Web Service
Development

Cycle 2

Web Service
Development

Cycle n

Web Service
Analysis

Web Service
Design

Web Service
Implementation

Web Service
Validation

and Testing

- Define Web Service Development Plan
- Define Web Service Requirements
- Define Use Cases (high level & essential)
- Define Draft Conceptual Model
- Consider the Application of Rapid Prototyping
- Define Draft Architecture Layers

- Define Essential Use Cases
-

 Define Web Service Operation Contracts
- Define XML Schemas
- Define Web Service State Diagrams

Define Web Service Conceptual Models
- Define Web Service Sequence Diagrams
-

- Define Real Use Cases
- Define User Interface Aspects
- Define Web Service Interaction Diagrams
- Refine XMLSchemas
- Define Web Service Design Class Diagrams
- Define Web Service Composition Scenarios

- Implement Service Scripts & HTML Code
- Implement Service Classes & Interfaces
- Implement Graphical User Interface
- Consider Interworking / Interoperability Matters
- Implement Database Schema
- Integrate Implementation Work

- Apply Test Scemes
- Check Web Service Composition Matters
- Consider Artifact Synchronisation

Figure 3. Outline of the proposed Web service
development methodology

Unlike other SOA systems, Internet middleware does
not define a specific invocation mechanism. It simply
defines the communication protocols (XML, SOAP, etc).
The specifics of how Web services interact with SOAP
and WSDL have been left as an exercise to the service
developer’s community. Since the WSA is based on stan-
dard XML, Web services can be implemented by using
the pervasive XML processing techniques that are sup-
ported by a variety of software tools, together with ad hoc
invocation implementation patterns. However, efficiency
can be greatly improved by using specialized Web ser-
vices platforms, which provide a ready-made foundation
for building and deploying Web services, based on a set
of carefully selected invocation mechanisms. The advan-
tage of using a Web services platform is that developers
don’t need to be concerned with constructing or inter-
preting SOAP messages. They simply write the service
code (application logic) and rely on the Internet middle-
ware to do the rest.

The two most prominent Web services platforms cur-
rently are Microsoft’s .NET and Sun’s J2EE. More spe-
cifically, Microsoft has defined a set of standard pro-
gramming interfaces and class libraries for the Visual
Studio .NET languages within the .NET framework, and
the Microsoft SOAP Toolkit provides support for COM-
based applications written in Visual Basic and Visual
C++. On the other hand, the Java Community Process’
(JCP) has recently defined a set of standard programming
interfaces for Java Web services, as part of the J2EE

specification: JWSDL (the Java API for WSDL), JAX-
RPC (the Java API for XML based RPC), JAXM (the
Java API for XML Messaging), SAAJ (the SOAP with
Attachments API) and JAXR (the Java API for XML
Registries). Although J2EE is an open standard, there are
several competing J2EE development environments
(Jboss+Tomcat, BEA WebLogic, IBM WebSphere, Sy-
base EAServer). It is evident that due to the increased
capabilities of these platforms and their continual im-
provement the selection process is a challenging task [8].

4. The importance of service grids

A distributed Web services infrastructure will be re-
quired before Web services technology can be broadly
deployed to support mission critical applications within
and across enterprises. The difference between traditional
Web content and Web services originates from the addi-
tion of process – the sequence of events that need to hap-
pen in order to produce a result. The fact that the users /
participants of a Web service are distributed across the
Web and need to complete certain processes adds
important new operating requirements, such as con-
sistency, authenticity, timeliness, integrity, and per-
sistence [6].

The distributed Web services infrastructure must sup-
port these requirements. Service grids constitute a key
component of this infrastructure, especially as its scope
expands beyond the boundaries of the enterprise to en-
compass a broad range of business partners. Service grids
provide a set of enabling utilities and ancillary services to
support more robust connections between providers and
users of Web services. This enabling functionality offered
by service grids is distinct from application functionality
that is directly useful to end-users. It focuses on support-
ing the application logic with functionality like security,
routing of messages across Web services or data trans-
formation so that one Web service can access data from
another Web service. It can be considered as the equiva-
lent of the supporting functionality provided by object-
oriented middleware in SOAs, with the difference that in
this case it is delivered as a set of managed services,
rather than installed in the computing infrastructure com-
municating at either end of the connection [5].

The full value of the proposed framework for the
development of Web services is realized when it is used
in combination with a carefully created service grid in an
integrated manner. This will also require the enhancement
of the proposed methodology in order to take into account
the availability of the managed services offered by the
service grid, especially during the specification of non-
functional requirements.

Although service grids are still at a very early stage of
development, there is no doubt that the adoption of Web
services technology will be significantly affected by the
pace and scope of service grid deployments. Nevertheless,
significant initiatives are already taking place leading to

the emergence of early generations of service grids and
specialized service grid utilities.

5. Conclusions and future work

Web service engineering provide a sound basis for de-
veloping and deploying interoperable Web services, al-
lowing the gradual transformation of the Internet to a
global common information networking platform where
organizations and individuals communicate with each
other to carry out various commercial activities and to
provide value-added functionality. With the emergence of
Web services the Internet has ceased to be solely a con-
tent transmission network. It has become a computing
execution network, processing commercial transactions
and business applications.

However, many of the standards required for Web
services are not yet fully defined. The SOAP, WSDL and
UDDI specifications that underpin current Web services
technology form a de facto standard infrastructure with
little endorsement by official standards organizations. For
this reason, the existing specifications contain a number
of ambiguities and inconsistencies, and address only basic
Web services communications. Two standards groups are
currently working on the definition of official Web
services standards: The World Wide Web Consortium
(W3C) and the Organisation for the Advancement of
Structured Information Standards (OASIS). W3C focuses
on core infrastructure specifications and OASIS focuses
on higher-level functionality.

In general, Web services computing poses significant
theoretical and engineering challenges as developers de-
termine how to leverage emerging technologies to auto-
mate semantically rich application domains and to create
software entities with an open interoperable character,
based on cross-organisational, heterogeneous software
components. The proposed framework for the develop-
ment of Web services aims to address this movement to-
wards Web-enabled service-oriented computing, where
application logic is offered as a set of services both within
and across enterprises. Regarding this framework, it is
currently attempted to examine it and specify it in greater
detail, focusing especially on the Web service develop-
ment methodology, as it presents increased research inter-
est and practical value. Furthermore, the validation and
evaluation of the proposed methodology is considered by
applying it to the development (from requirements elici-
tation up to actual implementation) of a complex repre-
sentative Web service (eXtended e-Learning Interactive
eXperience using Internet Services, eXeLIXIS). This
Web service enables students to specify their learning
objectives and learning preferences, attend specially de-
signed e-classes that satisfy their needs, participate in
training multiplayer games that enhance their under-
standing and test their knowledge, getting feedback in
order to amend or enrich their learning objectives. Two

alternative implementations of this Web service are being
constructed (using Microsoft’s .NET and Sun’s J2EE) and
special emphasis is placed on Web service composition
matters, as the training material can originate by a variety
of providers, and on the incorporation of session tracking,
as the maintenance of state information for the students
by the Web service improves the overall performance,
simplifies program development and provides for a more
intuitive user interface. This validation attempt aims to
provide tangible evidence about the correctness, the effi-
ciency and the true practical value of the proposed meth-
odology. All these efforts treat the proposed framework as
a conceptual “umbrella” for Web service engineering
activities and gradually transform it to a more precise and
concrete construct.

Web services constitute undoubtfully a promising
technology that will increasingly assist the integration of
heterogeneous islands of application logic (objects on the
Web) to homogeneous component-based solutions (a web
of objects), especially when supported by robust service
grids. However, developers should keep in mind that Web
services are still a fast moving target and an immature
technology. Nonetheless, Web services technology pro-
vide the appropriate solution for the agility requirements
that software engineering must cope with today and per-
haps will encounter increasingly in the future. Existing
object-oriented middleware such as COM+/.NET,
CORBA, and EJB/RMI may be still necessary to imple-
ment sophisticated back-end services, but Web services
claim a prominent role when these functionality islands
must be connected to fully operational networked
systems.

References

[1] D.X. Adamopoulos, G. Pavlou, and C.A. Papandreou,

“Advanced Service Creation Using Distributed Object
Technology”, IEEE Communications Magazine, Vol. 40, No.
3, March 2002, pp. 146-154.

[2] J.-Y. Chung, K.-J. Lin, and R.G. Mathieu, “Web Services
Computing: Advancing Software Interoperability”, IEEE
Computer, Vol. 36, No. 10, October 2003, pp. 35-37.

[3] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weer-
awarana, “The Next Step in Web Services”, Communications
of the ACM, Vol. 46, No. 10, October 2003, pp. 29-33.

[4] D. Fensel and C. Bussler, “The Web Service Modeling
Framework WSMF”, Electronic Commerce: Research and
Applications, Vol. 1, 2002, pp. 113-137.

[5] J. Hagel and J.S. Brown, “Service Grids: The Missing Link
in Web Services”, White Paper, 2002.

[6] P. Wainewright, “Web Services Infrastructure: The Global
Utility for Real-Time Business”, White Paper, 2002.

[7] Web Services Architecture Working Group, “Web Services
Architecture Requirements”, W3C Working Draft, Aug. 19,
2002[http://www.w3.org/TR/2002/WD-wsa-reqs-20020819].

[8] J. Williams, “The Web Services Debate: J2EE vs. .NET”,
Communications of the ACM, Vol. 46, No. 6, June 2003, pp.
59-63.

