
Methodology of Data Mining:
Preprocessing, Extracting Knowledge, and Postprocessing

IVAN BRUHA
Department Computing & Software

McMaster University
Hamilton, Ont., L8S4K1

CANADA

Abstract
Real-world datasets processing becomes very attractive disciplines in artificial intelligence (AI) applications

for both research and industry. It is commonly called Data Mining (DM) and Knowledge Discovery in Databases
(KDD). Their goal is to extract pieces of knowledge from usually very large databases. They consists of a usually
robust sequence of procedures that have to be carried out so as to derive reasonable and understandable results.

The crucial component of DM symbolizes an inductive process which induces the above pieces of
knowledge; usually it is Machine Learning (ML). However, most of the machine learning algorithms require perfect
data in a reasonable format. Therefore, some preprocessing routines as well as postprocessing ones should fill up
the entire chain of data processing. This paper overviews and discusses the knowledge discovery process as a series
of several steps which include preprocessing of data, machine learning itself, and postprocessing of the resulting
knowledge induced.

Keywords: data mining, knowledge discovery in databases, machine learning, preprocessing, postprocessing,
attribute selection, attribute mining, knowledge integration

1 Data Mining: An Overview
Data Mining (DM) tools process usually very

large databases in a profound and robust way. Since
data are collected and stored at a very large accelera-
tion these days, there has become an urgent need for a
new generation of robust software packages to extract
useful information or knowledge from large volumes
of data. Research in DM develops methods and tech-
niques to process large data in order to receive a
knowledge (which is hidden in these databases) that
would be compact, more or less abstract, but under-
standable, and useful for further applications. The
paper [1] defines data mining as ‘a nontrivial process
of identifying valid, novel, and ultimately understand-
able knowledge in data’.

Quite a few names for extracting a useful
knowledge (models) from databases have been launch-
ed; e.g., knowledge extraction, data analysis, informa-
tion discovery, knowledge discovery in databases
(KDD), data mining. Some researches claim that data
mining is a subset of KDD (see e.g. [14]), some de-
clare that it is the opposite way [25], others postulate
that these terms are equivalent. In this paper we will
follow the last interpretation.

In our understanding, data mining or
knowledge discovery points to the overall process of
determining a useful knowledge from databases, i.e.
extracting high-level knowledge from low-level data
in the context of large databases. Data mining can be
viewed as a multidisciplinary activity because it ex-
ploits several research disciplines of artificial intelli-
gence (AI) such as machine learning, pattern recogni-
tion, expert systems, knowledge acquisition, as well as
mathematical disciplines such as statistics, theory of
information, uncertainty processing.

The input to a data mining process is a data-

base, i.e. a collection (a set) of objects. An object
(also called case, event, evidence, fact, instance, mani-
festation, record, observation, statement) is a unit of
the given problem. Its formal description can be of
either quantitative (numerical) or qualitative (sym-
bolic) character. Their collections can be of various
forms, too, e.g. vectors, lists, strings, graphs, ground
facts.

The overall output of the knowledge discov-
ery process is a collection of pieces of knowledge dug
from a database. They should exhibit a high-level
description in a particular language. Such a knowledge
base (model, concept description) is usually repre-
sented by a set of production (decision) rules, decision
trees, collection of prototypes (cases, representative
exemplars), etc.

The entire chain of data mining consists of
these steps:
(1) Selecting the problem area. Prior to any process-
ing, we first have to find and specify an application
domain, and to identify the goal of the data mining
process from the customer's viewpoint. Also, we are
to choose a tool for representing such a goal.
(2) Collecting the data. Next, we have to choose the
tools for representing objects, and to collect data as
the formally represented objects. If a domain expert is
available, then the expert could suggest what fields
(attributes, features) are the most informative. If not,
then the simplest method is a 'brute-force' which indi-
cates that we measure everything available and only
think that the right (informative, relevant) attributes
are among them.
(3) Preprocessing of the data. A data set collected is
not usually appropriate for an immediate induction
(knowledge acquisition); it comprises in most cases a
noise, missing values, the data are not consistent, etc.
Also, we should use any suitable method for selecting

and ordering attributes (features) according to their
informativity.
(4) Extracting pieces of knowledge. Now, we are at
stage of selecting a paradigm for extracting pieces of
knowledge (e.g., statistical methods, neural net ap-
proach, symbolic/logical learning, genetic algorithms).
We have to realize that there is no optimal algorithm
which would be able to process correctly any data-
base. Second, we are to follow the criteria of the end-
user (e.g., interest in understanding the model extract-
ed rather than its predictive capabilities). Afterwards,
we apply the algorithm selected and derive (extract)
new knowledge.
(5) Postprocessing of the knowledge derived. The
knowledge extracted in the previous step could be
further processed. We can evaluate the extracted
knowledge, visualize it, or merely document it for the
end user. Also, we may interpret the knowledge and
incorporate it into an existing system, and check it for
potential conflicts with previously induced knowledge.

It is worth mentioning here that we may re-
turn from any step of DM process to any previous step
and change our decisions. Thus, this process involves
significant iteration and represents a quite time-con-
suming mechanism with many loops. Most work has
been done in step 4. However, the other steps are also
important for the successful application of knowledge
discovery in practice.

2 Data Collection and Prepro-
cessing

(a) Choosing Tools for Object Representation
The input to a DM process is a database, i.e.

a set of objects. An object as a unit of the given prob-
lem must be formally described as a collection of
elementary descriptions. Therefore, we have to choose
the tools for object representation. The most common
is the attribute representation of objects. Elementary
properties, called attributes, are selected on actual
objects. An object is thus represented by a list of at-
tributes and their values; each pair attribute =
value is called a selector. E.g. here we have an
attribute list:
[hair = black & eyes = blue &
 height = 165 & salary = 65000]

Each attribute has its domain of possible
values. We distinguish three basic types of attributes:
symbolic (discrete, nominal, categorical) such as
colour, continuous (numerical) such as weight,
and structured ones (whose value domain has a tree-
oriented graph structure). This categorization depends
on the task to be processed.

(b) Mapping and collecting data
After selecting a proper representation, we

choose the attributes to be measured on objects (either
following a suggestion of a domain expert or using the
'brute-force' method). Also, we have to determine
attribute names and names of their values. Data col-
lected are thus mapped into a single naming conven-
tion and uniformly represented.

(c) Scaling large datasets

Almost all learning algorithms assume that
data are in the main memory and pay no attention how
the algorithm could deal with extremely large data-
bases when only a limited number of data can be view-
ed. One possible solution is called windowing. About
10 to 20% objects are randomly selected from a data-
base and a data mining algorithm is invoked. For the
next step, only a small portion of wrongly classified
objects from the rest of the database in processed, etc.

Quite a new possibility of solving the prob-
lem of extremely large databases is called batch-incre-
mental mode of a learning algorithm. A large database
is processed in relatively small subsets; this is a natu-
ral scenario especially, if extremely large databases
are collected in the relative small dispatches. Hence,
each dispatch (batch) is analyzed independently and
thus several knowledge bases are generated for each
batch. Then, a knowledge integration algorithm has to
be called to combine or merge these knowledge bases.

(d) Handling noise and errors
They are generally two origins of errors.

External errors are introduced from the world outside
the system itself. Internal errors are caused by poor
properties of the learning (data mining) system itself,
e.g., poor search heuristics or preference criteria. If the
system is deficient in some sense, then it will occa-
sionally fail to predict correctly the class of some
unseen objects. It may happen by either a system's
limited mechanism or limited computational power;
see e.g. [26].

External errors have the following four
sources:
! Random data errors: Data often contain random or
noisy components in it, caused by the inherent unpre-
dictability of some events in nature. If we deal with
noisy data we can exploit two techniques: transforma-
tion of data, or modification of a learning algorithm.
! Other external errors are caused by limited de-
scription language, incomplete description, limited
amount of data, and intractable data.
! Systematic errors such as the calibration error can
be processed as follows: use an independent knowl-
edge source to detect errors, derive general conclusion
from tests, explain how errors arose, and eliminate the
errors.
! An imperfect teacher: It is known that the learner
learns concepts according to the information in a data-
base whose author (designer) is a teacher. Therefore,
the learner 'copies' its teacher's way of looking and
interpreting a real-world problem. Hence, if the teach-
er makes systematic errors there no way to find errors
in the database designed by the teacher. However, if
the teacher makes temporary mistakes, then the quali-
tative background knowledge can be used to validate
the results presented by the imperfect teacher, or a
preprocessor itself may observe the 'real world' and
verify whether the information provided by the teacher
is right.

(e) Processing unknown attribute values
When processing real-world data, one impor-

tant aspect in particular is the processing of unknown
(missing) attribute values. This topic has been dis-
cussed and analyzed by several researchers; see e.g.
[4], [8], [12], [22]. The most important direction in
this topic is the source of 'unknownness' [19]:

(1) a value is missing because it was forgotten or lost;
(2) a certain attribute is not applicable for a given
object , e.g., it does not exist for a given object; (3) an
attribute value is irrelevant in a given context; (4) for
a given object a designer does not care about a value
of a certain attribute (dont-care value).

The paper [24] surveys and investigates quite
a few techniques for unknown attribute values pro-
cessing for the TDIDT (Top Down Induction Decision
Trees) family and indicates seven best combinations of
processing the missing attribute values. The paper [8]
portrays the performance of six unknown value pro-
cessing strategies in an algorithm employing the cov-
ering paradigm:
(i) ignore the example with unknown values;
(ii) consider the unknown value as an additional

regular value for a given attribute; or
(iii) substitute the unknown value by a suitable value

which is either the most common value, a propor-
tional fraction, randomly selected value, or any
value of the known values of the attribute that
occurs in the training set.

(f) Discretization/fuzzification of numerical attributes
and processing of continuous classes

The symbolic, logical learning algorithms are
able to process symbolic, categorical data only. How-
ever, real-world problems involve both symbolic and
numerical attributes. Therefore, there is an important
issue in DM to discretize numerical (continuous) at-
tributes.

The task of discretization of numerical vari-
ables is well known to statisticians. Different approa-
ches are used, for instance, discretization into a given
number of categories using equidistant cutpoints, or
categorization based on mean and standard deviation.
All these approaches are 'class-blind', since they do
not take into account that objects belong to different
classes.

Most of the newer learning algorithms can
also deal with numerical data. They are 'class-sen-
sitive', which means that the procedures perform the
discretization according to the class-membership of
the training objects.

In the TDIDT family (ID3, C4.5), the algo-
rithms for discretization are mostly based on binariza-
tion within a subset of training data created during tree
generation [23]. A domain of a certain numerical
attribute is split into two intervals by calculating the
threshold according to a certain statistics. An improve-
ment of the above binarization methods is recursive
binarization [11]; the domain of a numerical attribute
is first binarized into two intervals; afterwards, each of
these intervals is recursively binarized to subintervals,
until a certain stopping condition is satisfied. [2] intro-
duces an iterative discretization. It exploits a proce-
dure for splitting domains of numerical attributes
generally to more than two intervals.

A discretization procedure can be invoked
either off-line (numerical attributes are discretized by
a preprocessor, before the actual inductive process) or
on-line (within the inductive algorithm), see, e.g. [9].

In many application areas, discretization of
numerical attributes into crisp intervals does not corre-
spond to real situations. Small difference in the value
of an attribute cannot completely change the class of
an object. Thus, it seems more realistic to fuzzify the

numerical ranges into fuzzy intervals.
Similar to the above issue is the processing of

continuous classes. Most inductive symbolic algo-
rithms process the discretized (symbolic) classes. In
some applications, however, we are faced by a contin-
uous (numerical) classes. Also, there exist two funda-
mental approaches. The first one splits the domain of
a continuous class to a set of intervals by a prepro-
cessor, i.e. off-line splitting. The other approach per-
forms the splitting on-line, i.e. during the inductive
process.

In both cases, the simpler versions replace
such an interval by m ± F , where m is the mean of the
class values on the given interval, and F is the vari-
ance. More sophisticated versions allow an expression
to be a regression function of continuous attributes,
see e.g. Retis [17] and HTL [27].

(g) Grouping of values of symbolic attributes
It is a known problem that attributes exhibit-

ing too many values are overestimated within the
process of selecting the most informative attributes,
both for inducing decision trees [12] and decision
rules [3], [10]. To overcome this overestimation, the
values of multivalued attributes are grouped into two
subsets that maximize attribute informativity. Hence,
this binarization normalizes the informativity of all
attributes with respect to the numbers of values.

(h) Attribute mining
If we employ the recommendation of a do-

main expert or just use the 'brute-force' method for
extracting attributes for a given task, we cannot be
definitely sure that they are the informative ones for
the given target. In real-world data, the representation
of data often exhibits too many attributes, but only a
few of which may be related to the target concept.
Consequently, attribute mining, which consists of
attribute selection, ordering, construction, and trans-
formation, is a very useful process.

Attribute selection and ordering procedures
order the entire set of (input) attributes according to
their informativity, and select a subset of the most
informative attributes, some of them are the input
attributes but some could be defined as a mapping of
existing input ones. Well-known is Karhunen-Loeve
method, see e.g. [15]. Recently, the algorithm Relief
[18] and several its extensions [20] for attribute selec-
tion has been designed.

If attributes are inappropriate for the target
concept, a data mining system needs to be capable of
generating (constructing) new appropriate attributes.
This is done by so-called attribute construction. Given
a set of existing attributes and a set of so-called con-
structive operators (a part of the background, domain-
specific knowledge of the given problem), the attribute
construction results in producing a set of new attrib-
utes. Various systems differ in the way how they
search in the space of all possible new attributes; see,
e.g. the system Struct [28], or ID2-of-3 [21].

Another approach, attribute transformation,
decomposes the original set of training examples to
several smaller subsets and generates hierarchical
attribute trees whose nodes are new (intermediate)
attributes; see, e.g. the algorithms HINT [13], [29].

(i) Consistency checking
Inconsistency of data may not be eliminated

by the previous steps of preprocessing. A typical case
of inconsistency comprises two or more identical
objects (with the same attribute values) that belong to
different classes (concepts). There are two general
approaches to handle the inconsistency of data. The
first one is done off-line, i.e. by a preprocessor (usu-
ally by removing the inconsistent data), or within the
DM process itself. Another possibility is to utilize the
loop facility of the knowledge discovery process, i.e.
to return to one of the previous steps and perform it
again for different parameters.

3 Extracting Knowledge
The input to this step of DM is the database

of preprocessed objects (examples), optionally with a
background knowledge, and its output is an extracted
knowledge. The term data mining has mostly been
used by statisticians, data analysts, and the manage-
ment information systems. The researchers working in
AI have been using the term machine learning for
such activities. In fact, both terms overlap and the
difference between the above two disciplines has not
been precisely resolved.

The paradigms for machine learning have
been discussed in literature in a deep and precise fash-
ion for many years. Therefore, we will not go in this
survey paper to details nor to list the references to
huge amount of research papers devoted to these para-
digms. We will just briefly introduce them:
! Symbolic/logic learning methods involve the

divide-and-conquer paradigm that generates deci-
sion trees, e.g. TDIDT family (ID3, C4.5), or the
covering paradigm that induces a set of decision
rules, e.g. AQx and CNx families.

! Case-based methods extract representative exam-
ples (prototypes) from the database to approxi-
mate the knowledge "hidden" in the database, or
they derive new prototypes (not appearing in the
database). These techniques include the nearest-
neighbour methods and case-based reasoning.

! Statistical methods encompass various techniques
including discriminant-function (parametric)
methods, non-parametric (distr ibution-
parameters-estimate) methods, linear and nonlin-
ear regression, Bayesian methods, cluster meth-
ods, etc. They mostly process numerical-based
databases.

! Neural nets are applied to numerical data, and
include various topologies and a wide variety of
learning techniques.

! Genetic algorithms emulate the biological evolu-
tion, and are utilized for optimization processes,
similarly to simulated annealing. There are quite
a few attempts to incorporate the genetic algo-
rithms into machine learning.

Another taxonomy of learning is based on the
way of processing of training examples:
! Batch (one-trial) mode assumes all training ex-

amples to be presented to the learner at once
since all of them are required for acquiring a
concept description.

! In incremental (sequential) mode, the learner
reads training examples subsequently; it forms

one or more hypotheses of the concept, and
gradually refines these hypotheses when reading
the next available example.

Let us define the entire problem more for-
mally. Let X be the space of all objects of the given
task. A concept (class) can be characterized as a set
c f X of objects having common properties in the
given task. A training example (learning example,
training data) is actually a pair
[object, desired_concept]

Both object and its desired class (concept) are pro-
vided by a teacher (designer of the project). A finite
set T f X of training examples given to the learner is
called training set (learning set). A positive example
of a concept is an object belonging to this concept, a
negative example is not.

Besides an object description language, the
specification of a learning task has to comprise a lan-
guage for concept descriptions (hypotheses, models,
knowledge bases). Such a language is of types similar
to those that can be used for representing knowledge
in general. There exist various formalisms, but deci-
sion trees and sets of decision rules are mostly used in
machine learning.

The problem of learning a concept c from
examples can be specified as follows: Given a finite
training set T f X, find an expression (formula)
Descr (called concept description, concept hypothe-
sis, or inductive assertion, model) in a concept de-
scription language, such that
! the concept description is complete, i.e. each

positive example of the concept (class) c in T
matches Descr, and

! the concept description is consistent, i.e. no nega-
tive example in T matches Descr .

4 Knowledge Postprocessing
(a) Knowledge filtering: Rule truncation and post-
pruning

Since most real-world datasets are noisy, a
learning algorithm generates leaves of a decision tree
or decision rules that cover a very small number of
training examples. It happens because a learning algo-
rithm tries to split subsets of training examples to even
smaller subsets that would be genuinely consistent
(i.e., would contain examples of one class only). This
issue is commonly called overfitting.

Hence, a decision tree or a set of decision
rules induced without considering noise could be too
large (i.e., containing a large number of nodes or rule
conditions) and thus hard to understand, and (what is
much worse) its leaves or rules would be supported by
relatively small sets of training data. The leaves or
decision rules formed on the basis of fewer examples
reflect small trends in the training set, are more
suspectable to noise, and thus have less predictive
power (i.e. unreliably classify unseen objects). Indeed,
it is better to create a leaf for a larger training set even
with a few negative examples rather than to split the
training set into small subsets of examples of one class
only.

Consequently, the constraint to the absolute
consistency of a class (concept) description should be
relaxed for noisy data, i.e., we should abandon the

requirement that the decision tree or a set of decision
rules induced by a learner classify all training data
correctly. The underlying idea is quite straightforward:
we hope that the misclassified training examples are
those that comprise noise. It happens very often that a
slightly inconsistent concept description is more pre-
dictive.

Postpruning of decision trees goes along a
decision tree from the root down towards leaves. Be-
ing at a certain node it decides according to a criterion
whether to retain this node as it is, or to remove the
subtree under this node and, thus, change it to a leaf. It
is worth noticing that the inductive algorithm itself can
perform pruning during the process of constructing a
decision tree; it is called prepruning (forward prun-
ing).

Truncation of rules simplifies a set of deci-
sion rules usually in two steps. First, each rule is sim-
plified separately by dropping irrelevant selectors.
Second, it eliminates any rule that is either a subset of
another rule, or a rule which would decrease the over-
all performance of the model (knowledge base) only
by a negligible percentage, or a rule that is below a
certain quality threshold; see, e.g. [23].

(b) Interpretation and explanation
Now, we may use the acquired knowledge

directly for prediction or in an expert system shell as a
knowledge base. If the knowledge discovery process is
performed for an end-user, we usually document the
derived results. Another possibility is to visualize the
induced knowledge, or to transform it to an under-
standable form for the user-end. Also, we may check
the new knowledge for potential conflicts with previ-
ously induced knowledge.

In this step, we can also summarize the rules
and combine them with a domain-specific knowledge
provided for the given task.

It should be noticed that especially expert
system applications should be accompanied by the
explanation facility for an end-user to accept the deci-
sion of the expert system.

(c) Evaluation
After a learning system induces concept hy-

potheses (models) from the training set, their evalua-
tion (or testing) should take place. There are several
widely used criteria for this purpose:
! Classification accuracy is usually defined as the
percentage of unseen objects correctly classified by
the induced concept (class) descriptions. Alternatively,
classification error rate can be defined as its comple-
ment. There are in fact three schemes for evaluation of
the knowledge induced:
- The designer of the task provides both training

and testing sets that should be disjoint. The ac-
quired knowledge base is then evaluated on the
testing set provided, and the result of evaluation
is the classification accuracy measured on this
testing set.

- If there is just one dataset, then we can split it
randomly to a training set (say 70% size) and
testing set (30%) and measure the classification
accuracy on the testing set; this procedure is to be
repeated several times.

- The N-cross-validation seems to be the most
favourite scheme. The original data are parti-

tioned randomly into N subsets; each subset is
used for testing whereas the remaining N-1 sub-
sets are used for learning. This learning and test-
ing process is thus done N times, and the classifi-
cation accuracy is then calculated as the average
accuracy from N2 runs.

Some evaluation schemes do not use the
above, rather simple definition of classification accu-
racy as the percentage, but so-called loss matrix, sup-
plied by the end-user. Each element of this matrix
expresses the magnitude of loss (error) which arises if
an object belonging to one class is actually classified
to a different class.
! Comprehensibility or understandability of the
induced knowledge is very important to exhibit inter-
esting issues about the application domain. From this
viewpoint, symbolic paradigm is a winner in compet-
ing with e.g. neural nets (since the weights in a neural
network do not express anything comprehensible).
This subjective evaluation is performed by asking a
human expert to classify objects of the given task by
using the induced knowledge [16].
! Computational complexity comprises the memory
size for storing induced concept descriptions, the run-
time speed for learning and for classification, etc.

Also, it is worth noticing that classification
could be accompanied by some conflict situations,
particularly when several rules belonging to different
classes match a tested (unseen) object. One of the
possible solutions to this conflict is to associate each
decision rule induced with a numerical factor which
can express its properties and characterize a measure
of belief in correctness of the rule, its power, predict-
ability, reliability, likelihood, etc. A collection of these
properties is symbolized by a function commonly
called the rule quality. A survey of formulas for rule
quality can be found e.g. in [6], [7].

(d) Knowledge integration
The traditional decision-making systems have

been dependant on a single technique, strategy. There-
fore, their accuracy and successfulness is not usually
too high. New sophisticated decision-supporting sys-
tems utilize results obtained from several models, each
usually (but not required) is based on different para-
digm, or combine or refine them in a certain way.
Thus, such a multistrategy (hybrid) system consists of
two or more individual 'agents' which interchange
information and cooperate together. The first project
in this subject can be found in [5].

Knowledge integration, a relatively new field
of AI, is focusing on three scenes:
- Knowledge Modification (Revision). The input is an
existing knowledge base (model) KB and a new data-
base DB . A data mining algorithm revises (modifies)
the current knowledge base KB according to the
knowledge hidden in the current database DB . The
new knowledge base (model) KB1 thus exhibits the
"old" knowledge KB updated on the basis of a new
information extracted from the database DB .
- Knowledge Merging. The input to this system are
several knowledge bases (models) KB1,...,KBn gener-
ated by several algorithms. The output is a single
knowledge base (model) which arises by merging the
input knowledge bases.
- Knowledge Combination. This system has at its

disposal several knowledge bases (models)
KB1,...,KBn generated by several data mining algo-
rithms. These bases remain independent. Each know-
ledge base builds its decision about predic-
tion/classification independently. The results of these
models are then combined in order to produce the final
decision about the class/prediction. In this system, the
mechanism of quality of knowledge bases is usually
exploited.

5 Conclusion
This paper surveys DM as a sequence of se-

veral steps including preprocessing and postprocess-
ing. If an inductive technique is to be successfully
applied in a real-world domain, the raw data has to be
preprocessed that the data analysis be performed cor-
rectly and efficiently. Data preprocessing also helps
the designers to understand better the nature of the
data and the process.

Postprocessing is also important for the suc-
cess of DM techniques. The raw output of a data min-
ing algorithm has several drawbacks: the rules in-
duced are not of equal importance and quality, and
also, there is always a possibility that the end-user is
not interested in some irrelevant rules. Postprocessing
thus particularly assists the end-users to interpret,
validate, and apply the rules in a better fashion.

There are, however, several other issues we
have not mentioned in this paper; e.g. uncertainty,
redundancy, overgeneralization, brittleness, learning
from a very few training examples, irrelevant formal
descriptions, representativeness of training examples,
discovery of underlying principles. As for the above
topics, we ask the reader to a large list of papers and
monographs that (because fo space limitations) cannot
be introduced here.

References:
[1] R. Agrawal, G. Psaila, “Active data mining”, 1st

International Conference on Knowledge Discovery
and Data Mining, Menlo Park, Calif., 1995, pp. 3-8

[2] P. Berka, I. Bruha, “Various discretizing procedures
of numerical attributes: Empirical comparisons”, 8th
European Conf on Mach. Learning, Workshop Sta-
tistics, Mach. Learning, and Knowledge Discovery
in Databases, Heraklion, Crete, 1995, 136-141

[3] P. Berka, I. Bruha, “Discretization and grouping:
Preprocessing steps for data mining”, in: J.M.
Zytkow, M. Quafafow (eds.), Principles of Data
Mining and Knowledge Discovery, Lecture Notes in
AI, Springer, 1998, pp. 239-245

[4] P.B. Brazdil, I. Bruha, “A note on processing miss-
ing attribute values: A modified technique”. Work-
shop on Machine Learning, Canadian Conference
on AI, Vancouver, 1992

[5] P. Brazdil, L. Torgo, “Knowledge Acquisition via
Knowledge Integration”, in: Current trends in
Knowledge Acquisition, IOS Press, 1990

[6] J. Tkadlec, I. Bruha, “Formal aspects of a multiple-
rule classifier”, International Journal of Pattern
Recognition and Artificial Intelligence, 17, 4
(2003), 581-600

[7] I. Bruha, “Quality of decision rules: Definitions and
classification schemes for multiple rules”, in: G.
Nakhaeizadeh, C.C. Taylor (eds.), Machine Learn-

ing and Statistics: The Interface, John Wiley, 1996,
pp. 107-131

[8] I. Bruha, F. Franek, “Comparison of various rou-
tines for unknown attribute value processing: Cov-
ering paradigm”, Intern’l Journal of Pattern Recog-
nition and Artif.Intelligence, 10, 8, 1996, 939-955

[9] I. Bruha, P. Berka, “Numerical attributes in sym-
bolic learning algorithms: Discretization and
fuzzification”, 2nd International Conference Neural
Networks and Expert Systems in Medicine, Plym-
outh, UK, 1996, pp. 131-138

[10] I. Bruha, S. Kockova, “A support for decision mak-
ing: Cost-sensitive learning system”, Artificial Intel-
ligence in Medicine, 6, 1994, pp. 67-82

[11] J. Catlett, ” On changing continuous attributes into
ordered discrete attributes”, EWSL-91, Porto,
Springer-Verlag, 1991, pp. 164-178

[12] B. Cestnik, I. Kononenko, I. Bratko, “Assistant 86:
A knowledge-elicitation tool for sophisticated us-
ers”, in: I. Bratko, N. Lavrac (eds.), Progress in
Machine Learning: EWSL'87, Sigma Press, 1987

[13] J. Demsar et al., “Constructing intermediate con-
cepts by decomposition of real functions”, ECML-
97, Prague, 1997, 93-107

[14] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, “From
data mining to knowledge discovery in databases”,
AI Magazine, 1996, pp. 37-53

[15] K. Fukunaga, W.L.G. Koontze, “Application of the
Karhunen-Loeve expansion to feature selection and
ordering”, IEEE Trans. on Computers, C-19, 4,
1970, pp. 311-318

[16] R.J. Henery et al., “Statlog: Comparative testing of
statistical and machine learning algorithms”. Techn.
Rep., Strathclyde Univ., Glasgow, 1991

[17] A. Karalic, “Employing linear regression in regres-
sion tree leaves”, ECAI-92, John Wiley, 1992, pp.
440-441

[18] K. Kira, L.A. Rendell, “A practical approach to
feature selection”, ICML-92, 1992, pp. 249-256

[19] I. Kononenko, “Combining decisions of multiple
rules”, in: B. du Boulay, V. Sgurev (eds.), Artificial
Intelligence V: Methodology, Systems, Applications,
Elsevier Science Publ., 1992, pp. 87-96

[20] I. Kononenko, E. Simec, M. Robnik-Sikonja,
“Overcoming the myopia of inductive learning algo-
rithms with RELIEFF”, Applied Intelligence, 7,
1997, pp. 39-55

[21] P.M. Murphy, M.J. Pazzani, “ID2-of-3: Construc-
tive induction of M-of-N concepts for discrimina-
tors in decision tree”, ICML-91, 1991, pp. 183-187

[22] J.R. Quinlan, “Induction of decision trees”, Ma-
chine Learning, 1, 1986, pp. 81-106

[23] J.R. Quinlan, “Simplifying decision trees”, Interna-
tional J. Man-Machine Studies, 27, 1987, pp. 221-

[24] J.R. Quinlan, “Unknown attribute values in ID3",
International Conference ML, 1989, 164-168

[25] Stolorz et al., “Fast spatio-temporal data mining of
large geophysical datasets”, 1st International Con-
ference on Knowledge Discovery and Data Mining,
Menlo Park, Calif., 1995, pp. 300-305

[26] P.V. Tadepulli, “Learning in intractable domains”,
in: T.M. Mitchel, J.G. Carbonell, R.S. Michalski
(eds.), Machine Learning: A guide to current re-
search, Kluwer, 1986

[27] L. Torgo, “Functional models for regression tree
leaves”, ICML-97, Morgan Kaufman, 1997

[28] L. Watanabe, L. Rendell,” Feature construction in
structural decision tree”, ICML-91, 1991, 218-222

[29] B. Zupan et al., “Feature transformation by function
decomposition”, IEEE Expert, 1998

