
 1

Design Patterns in Telecommunications Service Engineering

Dr. DIONISIS X. ADAMOPOULOS Dr. CONSTANTINE A. PAPANDREOU
University of Piraeus, GREECE and University of Piraeus

Centre for Communication Systems Research (CCSR) GREECE
University of Surrey, ENGLAND

Abstract: - The advent of deregulation combined with new opportunities opened by advances in
telecommunications technologies has significantly changed the paradigm of telecommunications services,
leading to a dramatic increase in the number and type of services that telecommunication companies can offer.
Building new advanced multimedia telecommunications services in a distributed and heterogeneous
environment is very difficult, unless there is a methodology to support the entire service development process
in a structured and systematic manner, and assist and constrain service designers and developers by setting out
goals and providing specific means to achieve these goals. Therefore, in this paper, after a brief presentation of
a proposed service creation methodology, its service design phase is examined in detail focusing on the
essential activities and artifacts. In this process, the exploitation of important service engineering techniques
and UML modelling principles is especially considered. Finally, alternative and complementary approaches for
service design are highlighted and a validation attempt is briefly outlined.

Key-Words: - Service design, new telecommunications services, service engineering, service creation, UML.

1 Introduction
The creation of new advanced telecommunications
services (telematic services) within an open network
environment with increased intelligence and
programmable features is a highly complex activity.
This complexity stems not only from the technical
nature of the tasks involved, but also from the
number of the participating actors and the variety in
their roles, concerns, and skills. Therefore, there is a
need to support the complex service creation process
in order to ensure that resulting services actually
perform as planned and as required by customers and
service providers. A methodology is an important
part of such an attempt, as it provides a systematic
and structured base for the flexible and efficient
management of the development of telecommunica-
tions services.

In this paper, in order to structure and control the
service development process from requirements
capture and analysis to service implementation, to
reduce the inherent complexity, and to ensure the
thorough compatibility among the many involved
tasks, a service creation methodology, conformant to
the open service architectural framework specified
by the Telecommunications Information Networking
Architecture Consortium (TINA-C) [3][11], is pro-
posed. Special emphasis is given to the service
design phase of the methodology as it provides
valuable answers to several important service
engineering matters and thus facilitates the transition
to a telecommunications environment where many
different (enhanced) services are offered by a multi-
plicity of service providers to several categories of
customers within an open market.

2 The Proposed Service Creation
 Methodology
Telecommunications operators need to master the
complexity of service software, because of the highly
diversified market demands, and consequently,
because of the necessity to quickly and economically
develop and introduce a broad range of new services.
To achieve such an ambitious, yet strategic to the
telecommunications operator’s goal, a service crea-
tion methodology based on the rich conceptual
model of TINA-C is proposed [1].

Requirements
Capture and

Analysis

Service
Development

Cycle 1

Requirements
Refinement

Service
Formation

Service
Optimisation

Service
Development

Cycle 2

Service
Development

Cycle n

Artifacts
Synchronisation

Service Analysis

Service Design

Service
Implementation

Service Validation
and Testing

Fig. 1: Overview of the proposed service creation
 methodology.

A high-level or macro-level view of the proposed
service creation methodology can be seen in Fig. 1.
The proposed service development process is based
on an iterative and incremental, use case driven
approach. An iterative service creation life cycle is
adopted, which is based on successive enlargement
and refinement of a telematic service through
multiple service development cycles within each one

 2

the telematic service grows as it is enriched with new
functions. More specifically, after the requirements
capture and analysis phase, service development
proceeds in a service formation phase, through a
series of service development cycles. Each cycle
tackles a relatively small set of service requirements,
proceeding through service analysis, service design,
service implementation and validation, and service
testing. The telematic service grows incrementally as
each cycle is completed.

According to Fig. 1 the main phases of the
proposed methodology are the following:
• Requirements capture and analysis phase: It iden-

tifies the telematic service requirements (together
with a number of roles), and presents them in a
structured way.

• Service analysis phase: It describes the semantics
of the problem domain that the telematic service is
designed for. Thus, it identifies the objects that
compose a service (information service objects),
their types, and their relationships.

• Service design phase: It produces the design speci-
fications of the telematic service under examina-
tion. Computational modelling is taking place in
this phase and thus the service is described in
terms of TINA-C computational objects interacting
with each other.

• Service implementation phase: In this phase the
pieces of the service software (computational
objects) are defined and implemented in an object-
oriented programming language (e.g. C++, Java),
inside a TINA-C compliant Distributed Processing
Environment (DPE).

• Service validation and testing phase: It subjects
the implemented telematic service to a variety of
tests in order to ensure its correct and reliable
operation.

• Service optimisation phase: It examines thor-
oughly the service code in order to improve its
performance in the target DPE, and thus prepare
the telematic service for a successful deployment.
As can be seen from Fig. 1, the proposed

methodology is conceptually consistent with the
viewpoint separation as advocated by TINA-C in
accordance with the Reference Model for Open
Distributed Processing (RM-ODP), and uses the
service life-cycle of Fig. 1 as a roadmap. It has to be
stressed that the proposed methodology does not
imply a waterfall model in which each activity is
done once for the entire set of service requirements.
Furthermore, graphical and textual notations are
proposed for almost all phases to improve the
readability of the related results and ensure a level of
formalism sufficient to prevent any ambiguity. In the
following paragraphs the service design phase of the
proposed methodology is examined focusing on its
essential characteristics and artifacts.

3 The Service Design Phase
During this phase the service developer defines

the behaviour of the service concepts (service
Information Objects, IOs) that were identified in the
service analysis phase and structures the telematic
service in terms of interacting service computational
objects (service components or service objects),
which are distributable, multiple interface service
objects. They are the units of encapsulation and
programming. While service IOs mainly explain how
a service is defined, service Computational Objects
(COs) reveal what actions have to be performed in
order to execute the service. Therefore, the output of
this phase is (mainly) the dynamic view of the
internal structure of the telematic service.

Service
Development

Cycle 1

Requirements
Refinement

Service
Development

Cycle 2

Service
Development

Cycle n

Artifacts
Synchronisation

Service Analysis

Service Design

Service
Implementation

Service Validation
and Testing

Define Service
Interaction Diagrams

Define Real Use Cases 3

Define User Interface Aspects

Define Service
Architecture Layers 1

Define Service
Design Class Diagrams

Define Database Schema 2

1: varied order
2: if applicable
3: optional

Notes

Fig. 2: Service design phase activities.

The activities of the service design phase are
depicted in Fig. 2. The linear order that may be
inferred from this figure is not strictly the case, as
some artifacts may be made in parallel (e.g. the
service interaction diagrams and the service design
class diagram). The dependencies between the arti-
facts produced during the service design phase and
the way that they depend on some of the service
analysis phase artefacts can be seen in Fig. 3. The
most important activities of the service design phase
are examined in the following sections.

3.1 Definition of User Interface Aspects
In this activity important characteristics of the user
interface of the service are defined by examining the
related prototype (produced during service analysis)
and taking into account the feedback from the users
of the service. The adherence to specific GUI
standards and user interface design principles is also
decided in this activity.

The application of the Model-View separation
principle, according to which the service logic
should not be bound to a particular user interface, is
proposed. More specifically, it is usually desirable
that there is no direct coupling from service objects
to user interface objects, because the user interface
objects are related to a particular telematic service,
while (ideally) the service objects may be reused in

 3

new telematic services or attached to a new interface.
The application of the Model-View separation prin-
ciple in the service design phase supports the
creation of cohesive service design phase artifacts
that focus on the service domain processes and not
on the satisfaction of user interface requirements,
allows the separate development of the service logic
from the necessary user interface, and minimises the
impact upon the service logic layer from changes of
the requirements regarding the user interface [5][10].

3.2 Definition of Service Interaction
 Diagrams
After identifying the service COs, by taking into
account the service conceptual model(s) and the
TINA-C service architecture, a (separate) service
interaction diagram is created for each service
operation under development in the current service
development cycle. Service interaction diagrams
illustrate how service objects communicate in order
to fulfil the service requirements. More specifically,
initially the expanded use cases suggested the service
events which were explicitly shown in service
sequence diagrams, then an initial best guess at the
effect of these service events was described in
service operation contracts, and finally the identified
service events represent messages that initiate
service interaction diagrams, which illustrate how
service objects interact via messages to fulfil the
required tasks.

Service
Interaction
Diagrams

dependency on

Use Cases
(real)

Service Design
Class Diagrams

Service
Conceptual

Model
ODL Specifications

Service State
Diagrams

Service
Operation
Contracts

Use Cases
(expanded,
essential)

Database
Schema

Service Architecture
Package Diagrams

Service Analysis Phase Artifacts Service Design Phase Artifacts

Fig. 3: Service design phase artifact dependencies.

Therefore, service interaction diagrams reveal
choices in assigning responsibilities to service
objects. The responsibility assignment decisions are
reflected in the messages that are sent to different
service objects. Responsibilities are related to the
obligations that a service object has in terms of its
behaviour. In the service implementation phase,
methods will be implemented to fulfil responsibili-
ties or alternatively responsibilities will be
implemented using methods, which either act alone
or collaborate with the methods of other service
objects.

UML defines two kinds of interaction diagrams,
either of which can be used to express similar or
even identical message interactions; namely collabo-

ration diagrams, which illustrate object interactions
in a graph or network format, and sequence
diagrams, which illustrate interactions in a kind of
fence format [8]. The use of collaboration diagrams
for the expression of service interaction diagrams is
preferred over the use of sequence diagrams, because
collaboration diagrams are characterised by expres-
siveness, an ability to convey more contextual infor-
mation (such as the kind of visibility between service
objects), and a relative spatial economy.

Nevertheless, either notation can express similar
constructs. What is really important is that service
interaction diagrams is one of the most significant
artifacts created during both service analysis and
service design, because the skilful assignment of
responsibilities to service objects and the design of
collaborations between them are two of the most
critical (for the satisfaction of the service require-
ments and thus for the successful realisation of a
service) and unavoidable tasks (which also require
the application of design skill) that have to be
performed during service creation [10].

This activity of the service design phase consists
mainly from the following steps:
Step 1: Identify the service COs.

During this step, the service IOs depicted in the
service conceptual models (main and ancillary) that
were created in the service analysis phase are
considered as potential candidates for service COs.
In many cases, service IOs are mapped to one
corresponding service CO encapsulating the
information defined by the service IO and providing
an operational interface to access that information.
However, the mapping between service IOs and
service COs is not necessarily one to one.
Furthermore, the existence of a relationship between
service IOs, either provides a good rationale for
encapsulating them together in the same service CO
or indicates the need for a binding between interfaces
of their corresponding service COs [6][7].

Service IOs / Session Concepts TINA-C Service Components
Access Session (AS) with User-Provider Roles PA and UA
Access Session (AS) with Peer-to-Peer Roles PeerA and PeerA

User Domain Access Session (UD_AS) PA
Provider Domain Access Session (PD_AS) UA
Peer Domain Access Session (PeerD_AS) PeerA

User Profile with User-Provider Roles UA
User Profile with Peer-to-Peer Roles PeerA
Contract with User-Provider Roles PA and UA
Contract with Peer-to-Peer Roles PeerA and PeerA

Table 1: Mapping between service concepts and
 TINA-C access session related COs.

This mapping process is significantly simplified
by adopting the use of the generic (access session,
service session, and communication session related)
service COs, proposed by the TINA-C service archi-
tecture [11], in terms of their identified functionality
and not in terms of specific interfaces / feature sets.
Furthermore, by taking into account the related
documentation that is available by the TINA-C,
Table 1 and Table 2 are constructed and reveal the

 4

way that the functionality of the TINA-C service
COs was devised.

Regarding these two tables, it has to be noted that
when a session concept is mapped to a TINA-C
service CO, then the service CO supports the
functionality and state of the session, and controls
the resources which are part of the session. If a
session concept is mapped to several TINA-C
service COs, then each of them supports part of the
functionality and state, and controls some of the
resources of the session. When a service IO is
mapped to a TINA-C service CO then the informa-
tion represented by the service IO is contained within
the CO, which may also provide access to that infor-
mation to other TINA-C service COs.

Service IOs / Session Concepts TINA-C Service Components
Service Session (SS) ss-UAP, USM, SSM

Usage Service Session (USS) ss-UAP, USM
User Domain Usage Service Session (UD_USS) ss-UAP

Provider Domain Usage Service Session (PD_USS) USM
Provider Service Session (PSS) SSM

Composer Domain Usage Service Session
(CompD_USS)

CompUSM

Peer Domain Usage Service Session (PeerD_USS) PeerUSM
Service Session Graph Information Model IOs ss-UAP, USM, SSM, CompUSM,

PeerUSM

Table 2: Mapping between service concepts and
 TINA-C service session related COs.

Considering Table 1 and Table 2, together with
the service requirements and any other artifact
produced by the proposed methodology so far, the
service IOs depicted in the service conceptual
models (main and ancillary) that were created in the
service analysis phase are mapped to the appropriate
service COs. As a result of this process a table is
constructed listing all the service COs that will be
used in the service design phase and their corre-
sponding service IO(s).

Considering the previous discussion, the following
actions take place during this step:
• Consider the generic TINA-C service COs and

their mapping to service IOs (Table 1 and Table 2).
• Relate each service IO in the service conceptual

models (main and ancillary) to the appropriate
service CO.

• Construct a table regarding the service COs that
will be used during the service design phase.

Step 2: Consider the generic TINA-C service scenar-
ios and select the most appropriate.

After identifying the service COs and before
proceeding to the construction of the service
interaction diagrams, the computational views of a
number of generic TINA-C service scenarios,
deduced by the computational modelling guidelines
of TINA-C [11], should be considered. These are
useful for improving structure and general
comprehension throughout the service design phase,
and for offering to the service developer(s) a generic
pattern of thought, compatible with fundamental
TINA-C concepts, that he / she could use / consider
when designing the service interaction diagrams.

Step 3: Form the service interaction diagrams.
A telematic service is composed of a set of service

COs interacting with each other via messages with
the objective to complete the required service
operations. The service operation contracts present
an initial best guess at responsibilities and post
conditions for the service operations. Service
interaction diagrams illustrate the proposed design
solution (in terms of service COs) that satisfies
theses responsibilities and post conditions, and
therefore the corresponding service operations.

A service interaction diagram in the form of a
UML collaboration diagram is created for each one
of the service operations that were identified in the
service analysis phase. The objective is to fulfil the
responsibilities and the post-conditions of the corre-
sponding service operation contracts, recognising
however that their accuracy should be questioned.

As was explained in step 1 of this activity the ser-
vice COs that participate in the service interaction
diagrams are drawn from the service conceptual
model(s). Therefore, the links between them are ac-
tually instances of the associations present in the ser-
vice conceptual model(s), represent connection paths
between service object instances, and indicate that
some form of navigation between the instances is
possible. More specifically, in order for a service
object to send a message to another service object it
must have visibility to it. Thus, it is important to en-
sure that the necessary (attribute, parameter, locally
declared or global) visibility is present in order to
support the required message interaction [9][10].

Finally, all telematic services have a “Start Up”
use case and some initial service operation related to
the starting up of the telematic service. Therefore,
there should also be a “Start Up” service interaction
diagram, which is proposed to be created last.
Although the “Start Up” service operation is the
earliest one to execute, the development of its
service interaction diagram should be delayed until
after all other service operations have been
considered. This ensures that significant information
has been discovered concerning what initialisation
activities are required to support the “Start-Up”
service operation interaction diagram. The way that a
telematic service starts and initialises is affected by
related concepts / guidelines in the TINA-C service
architecture (e.g. it is assumed that the IA must be
present at the provider domain), and is dependent
upon the DPE, the programming language, and the
operating system that is being used.

Taking into account the previous discussion, the
following actions take place during this step:
• Create a separate service interaction diagram for

each service operation under development in the
current service development cycle. More specifi-
cally, for each service operation, create a service
interaction diagram with it as the starting point.

 5

• Design a set of interacting service COs with the
intention to fulfil the responsibilities and post-
conditions of the appropriate service operation
contracts. Consider also the corresponding use case
descriptions.

• Split each service interaction diagram into smaller
diagrams (if it gets complex).

3.3 Definition of Service Design Class
 Diagrams
Another important artifact created during service
design is the service design class diagram, which
illustrates the specifications for the software classes
of a telematic service using a strict and very infor-
mative notation. More specifically, from the service
interaction diagrams the service designer identifies
the software classes (service classes) that participate
in the software realisation of the telematic service
under examination, together with their methods, and
from the service conceptual model(s) the service
designer adds detail to the service class definitions.

A service design class diagram typically includes /
illustrates service classes, their attributes and
methods, attribute type information, navigability, and
associations and dependencies between service
classes. In practice, service design class diagrams
and service interaction diagrams are usually created
in parallel. Furthermore, in contrast with a service
conceptual model, a service design class diagram
shows definitions of software entities (service
components), rather than real-world concepts.

The following steps are proposed for the creation
of a service design class diagram:
Step 1: Identify the service classes by analysing the

service interaction diagrams.
Step 2: Draw all the identified service classes in a

simple service design class diagram.
Step 3: Duplicate the attributes to the service classes

from the associated concepts in the service
conceptual model(s). All attributes are
assumed to be private by default.

Step 4: Add method names to the service classes by
analysing the service interaction diagrams. In
general, the set of all messages sent to a
service class X across all service interaction
diagrams indicates the majority of methods
that service class X must define.

Step 5: Add type information to the attributes, me-
thod parameters, and method return values. It
is only recommended when automatic
processing of the service design class
diagram is anticipated by a specialised
software tool.

Step 6: Add the (different types of) associations nec-
essary to support the required attribute
visibility. In general, associations are added

in order to satisfy the ongoing memory needs
indicated by the service interaction diagrams.

Step 7: Add navigability arrows to the associations to
indicate the direction of attribute visibility.

Step 8: Add dependency relationship lines to indicate
non-attribute visibility between service
classes (i.e. parameter, global, or locally
declared visibility).

Step 9: Split the service design class diagram into
smaller diagrams (if it gets complex).

3.4 Complementary and Alternative
 Approaches

In the service design phase, Specification and De-
scription Language (SDL) can be used to describe
the behaviour of a telematic service exploiting the
finite state machine concept. Then, the SDL specifi-
cation will serve also as a basis for validation, simu-
lation and test case generation [4]. In general, for
making formal models of telematic services and be-
ing able to reason about these models, SDL is un-
doubtedly the notation of choice, as the tool support
for SDL is perhaps the most advanced of all the for-
mal notations existing today. However, adopting an
SDL-based approach cannot guarantee that the de-
veloped services will be error free and the value of
SDL for service creation purposes is questioned, as it
may introduce unnecessary complexity in the service
design phase. Furthermore, the application of SDL
can be difficult (or even problematic) in the case of
relatively complex telematic services with many ser-
vice objects interacting in non-trivial ways, due to
the problem of state space explosion.

In the service design phase, service COs have a
dominant role. Their interfaces are the result of the
examination of the service IOs and the correspond-
ing information models that they participate in,
which reveal the way that service IOs are related to
each other. This aggregation of interfaces into a ser-
vice CO ensures the semantic understanding that op-
erations at one interface may affect the behaviour of
other interfaces because they may be linked by a
common, underlying information model captured by
the service CO. Therefore, such information models
influence considerably the parameters and the se-
mantics of the operations found on the interfaces of
the service COs.

In order to aid the service development process
TINA-C, proposes and prescribes a set of generic
interfaces for the generic TINA-C service COs.
These interfaces correspond to the interactions that
take place between business administrative domains,
support a particular session role, and are defined by
the appropriate reference point specifications. TINA-
C assembles the proposed interfaces into feature sets.
A feature set is a group of related interfaces that ex-

 6

poses restricted parts of the appropriate information
model(s) for manipulation or examination, defines
the details of interactions between service COs, and
specifies levels of functionality inside a service (e.g.
basic or multiparty session control) [11].

Use Cases
(real)

1: static
 model
2: dynamic
 model

Notes

Service
Design
Model

Service State
Diagrams
for Service

COs / Classes

Service Design
Class

Diagrams

Service
Design

Use Case
Model 2

Service
Object

Behaviour
Model 2

Service
Class

Model 1

Service
Architecture

Model 1

Service
Design
State

Model 2

Use Case
Diagram(s)

Service
Interaction
Diagrams

Service
Contracts

for Methods
& Operations

Service
Architecture

Package
Diagrams

Service
Deployment
Diagrams

Fig. 4: The service design model.

Although not suggested, feature sets can be
applied during the service design phase of the
proposed methodology. More specifically, service
developers with a TINA-C expertise can critically
use them as an aid (by taking from them whatever
they consider useful) when devising and constructing
the interfaces of the service COs. However, service
developers should not use feature sets as an excuse
for not carefully performing the requirements capture
and analysis phase and the service analysis phase.
Moreover, they should try to fully integrate them in
the service design phase, improving as much as
possible the consistency of the results of this phase
with the results of the previous phases. Finally, it has
to be noted that the importance of feature sets is
expected to increase when their specification by
TINA-C is completed. The application of feature sets
will be especially useful for telematic services that
span multiple business administrative domains and
have to consider composition and federation issues.

4 Concluding Remarks

The activities of the service design phase can be
seen in Fig. 2. The artifacts that are produced during
this phase can be seen in Fig. 3. From the service
design model depicted in Fig. 7, is evident that real
use cases are members of the service design use case
model, service interaction diagrams are members of
the service object behaviour model, because they
describe the behaviour of service COs, and service
design class diagrams compose the service class
model. Furthermore, for reasons of completeness, the
service design model includes service state diagrams
for service COs / classes as members of the service
design state model. Such diagrams may be useful to
summarise the results of a service design (at the end
of the service design phase) or when the service code
is to be produced with a code generator that will be
driven by the state diagrams.

Finally, it has to be stressed that the proposed
service creation methodology (and thus its ser-
vice design phase) was validated and its true
practical value and applicability was ensured as it
was applied to the design and development of a real
complex representative telematic service (a Multi-
Media Conferencing Service for Education and
Training, MMCS-ET). More specifically, a variety
of scenarios were considered involving the support
of session management requirements (session estab-
lishment, modification, suspension, resumption, and
shutdown), interaction requirements (audio / video,
text, and file communication), and collaboration
support requirements (chat facility, file exchange
facility, and voting). Considering all the artifacts
produced in the service design phase, the MMCS-ET
was implemented using Microsoft’s Visual C++ to-
gether with Microsoft’s Distributed Component
Object Model (DCOM) [2] (appropriately extended
with a high-level API in order to support continuous
media interactions) as a distributed object-oriented
environment.

References:
[1] Adamopoulos, D.X., Pavlou, G., Papandreou, C.A.,

“Advanced Service Creation Using Distributed
Object Technology”, IEEE Communications Maga-
zine, Vol. 40, No. 3, March 2002, pp. 146-154.

[2] Adamopoulos, D.X., Pavlou, G., Papandreou, C.A.,
“Continuous Media Support in the Distributed
Component Object Model”, Computer Communica-
tions, Vol. 25, No. 2, 2002, pp. 169-182.

[3] Berndt, H., Hamada, T., Graubmann, P., “TINA: Its
Achievements and its Future Directions”, IEEE
Communications Surveys & Tutorials, Vol. 3, No. 1,
First Quarter 2000.

[4] Combes, P., Renard, B., “Service Validation”, Com-
puter Networks, Vol. 31, No. 17, 1999, pp. 1817-34.

[5] Constantine, L.L., Lockwood, L.A.D., “Software for
Use: A Practical Guide to the Models and Methods
of Usage-Centered Design”, Reading, Addison-
Wesley, 1999.

[6] Declan, M., “Adopting Object Oriented Analysis for
Telecommunications Systems Development”, Pro-
ceedings of IS&N ’97, LNCS, Vol. 1238, Springer-
Verlag, Berlin, 1997, pp. 117-125.

[7] Demestichas, P.P., et al, “Issues in Service Creation
for Open Distributed Processing Environments”,
Proceedings of ICC ’99, Vol. 1, Vancouver, Canada,
June 1999, pp. 273-279.

[8] Evits, P., “A UML Pattern Language”, Macmillan
Technology Series, February 2000.

[9] Jacobson, I., Booch, J., Rumbaugh, J., “Unified Soft-
ware Development Process”, Addison-Wesley, 1999.

[10] Larman, C., “Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design
and the Unified Process”, Prentice Hall, 2002.

[11] TINA-C, “Service Architecture”, Version 5.0, June
1997

