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Abstract: - We present the Convergence Processor, an innovative component that integrates a high performance 32-
bit  RISC core,  a  custom IP core  optimised  for  header-processing  and  other  blocks  for  specific  communication
interfaces  required  for  the  delivery  of  broadband  residential  applications.  The  component  is  a  System-on-Chip
supporting the real time processing of packets and protocol data units from various networking interfaces. Its target is
to be used as the central processing unit for various multifunctional networking systems including RGs, IADs, STBs,
and  IP  PBXs.  We  focus  on  the  system architecture  and  the  component  reusable  IP  cores,  namely  the  header
processor,  the  security  engine,  the  data-handling  unit  and  the  open  source  32-bit  RISC  LEON  CPU.  As
communication  interfaces,  the  chip  integrates  802.3  MAC,  ATM,  AAL5,  HDLC,  UART and  a  generic  packet
interface for voice and video processing peripherals. It has been prototyped using a large XILINX Virtex FPGA and
UMC 0.18u CMOS technology targeting 200MHz operation. The chip supports a total link capacity of 900Mbps and
is optimised to deliver an aggregate sustain rate of up to 100Mbps of multimedia traffic at application level with
acceptable Quality of Service.

Keywords: - Broadband Processor, Packet Processor, Header Processor, Residential Gateway, Linux, Convergence,
System-on-Chip.

1. Introduction
Modern  communication  networks  have  already  evolved
beyond best-effort  traffic patterns,  towards real-time,  delay
sensitive traffic mixes, which are used to deliver a variety of
services. Devices that were used to simply forward IP traffic
are  steadily  being replaced  by more  sophisticated  devices,
called multiservice gateways, that have multiple different and
incompatible  interfaces.  These  interfaces  cannot  be  simply
bridged  at  layer  1  or  layer  2  but  need  a  higher  layer
interworking  function  thus  increasing  system  complexity.
Moreover, they have to handle multiple traffic sources in a
service-aware  manner,  so  as  to  guarantee  a  variety  of
parameters like bitrate, delay, jitter and burstiness for a mix
of  traffic  patterns  ranging  from  bandwidth-intensive  file-
transfers  to  delay-sensitive  voice-  or  video-streams.
Depending on applications, all these parameters compose the
Quality of Service offered to the user.
Gradually  however,  specialized  access  processors  have
evolved,  that  integrate  these  blocks  in  a  system-on-a-chip
factor,  mainly  for  reducing  overall  bill-of-material  (BoM)
cost,  but  also  for  resolving  system-level  performance
bottlenecks  caused  by  poor  interconnection  logic.  Such
components range in performance, from low-end processors
that  simply  integrate  interfaces  for  cost-conscious  and
limited-performance  devices  such  as  modems,  routers  and

home gateways for  DSL or  Cable connectivity of  medium
bitrate; to high-end processors for access multiplexers, with
the ability to multiplex a number of data streams and pass
them to upper-level routers or switches for redirection to the
core network.

Convergence Processor (CP) is a broadband access processor
that  has  been  designed  and  dimensioned  for  broadband
customer-premises’  applications  for  the  small-business  and
residential  sector;  it  differentiates  from existing devices  in
performance and targets high-end services that require real-
time packet video and packet voice traffic. CP is a system-
on-chip which combines the interfaces and processing blocks
that are required for the realization of gateway systems that
combine data, voice and video traffic, while preserving QoS
in a service-aware manner. 

CP  has  been  designed  combining  performance  and  cost
optimisations. Compared with other leading implementations
of broadband access processors like Philips/Ishoni PTD2210
[1]  and  Brecis  MSP3000  [2],  CP  extensively  employs
proprietary  programmable  hardware  logic  for  packet
processing,  flow  classification,  data  encryption/decryption,
MAC and ATM/AAL. These, along with a 32-channel DMA
controller  and  service-specific  prioritisation,  allow the  on-
chip  SPARC-compliant  CPU  to  concentrate  on  system
control and execute high-level management tasks, resulting in



a highly scalable and leaner architecture, not limited by the
embedded processor speed. 

Chapter 2 describes the functional and physical architecture
of the system. Chapter 3 focuses on the main and reusable IP
cores  of  CP,  namely  the  CPU,  the  header  processor,  the
Security engine and the DMA that are of crucial importance
for  advanced  system  performance.  Chapter  4  presents  an
analysis and computation of CP performance using reference
application scenarios. Finally, Chapter 5 concludes the paper.

2. Architecture
The Convergence Processor (CP) follows hybrid architecture
in order to be able to support with certain QoS level a various
number of interfaces that are expected to exist in the future
broadband  CPE  environment.  The  component  supports  an
aggregate  of  900Mbps traffic;  however we consider  that  a
rather  small  percentage  of  this  link  capacity  (about  an
aggregation of 100Mbps) is used to deliver user services. CP
is understood in gateway systems where it has to efficiently
support a number of interworking paths among the provided
interfaces. From that point of view, the CP component has to
be able  to  accommodate instant  peaks up to  the aggregate
link capacity using on-chip buffers and to support the sustain
rate using the system memory for buffering. This bandwidth
is not limited by the CP data handling capability but by the
software that is running in the system. CP based residential
gateway systems support traffic routing at various layers of
the OSI stack. Although CP performs lower layer processing
in  hardware,  certain  functions  are  performed  in  software
either at the driver or at a higher software level. CP combines

the following operations (i) it processes at wire speed lower
layer  protocols  (e.g.  802.3  MAC,  ATM,  AAL2,  AAL5,
HDLC) and (ii)  it accelerates the execution of higher layer
functions  (e.g.  IPSec  with  DES/TDES  engine  and
Firewalling/Routing  with  the  Classification  engine).  CP
target is to provide the required processing power through a
novel design, incorporating parallelism and pipelining and by
integrating a generic micro-programmed core optimised for
header  processing.  Furthermore,  an  efficient  data  handling
and  packet  scheduling  component  is  integrated  so  as  to
facilitate all internal data transfers.

The CP SoC supports (i) two 10/100bT Ethernet interfaces
and implements IEEE 802.3 MAC processing in hardware,
(ii) a UTOPIA Level II/III interface for up to 155Mbps link
rate and implements ATM, AAL0, AAL2 and AAL5 protocol
processing  in  hardware  for  32  flows,  (iii)  a  configurable
streaming interface for voice, video or other peripherals, and
(iv)  a  2  Mbps  interface  with  HDLC  implementation  in
hardware.  Apart  from  these  networking  interfaces,  CP
supports  two UART ports,  a  debug interface  that  offers  a
probe  in  the  on-chip  bus  and  a  typical  micro-processor
interface for access to the system memory. Moreover, the CP
SoC  integrates  an  efficient  Header  Processor  for
programmable field processing and on-chip classification for
256 flows as well as a security engine that implements the
DES and TDES algorithms. In addition, an enhanced DMA
component performs all data transfers between the external
system memory and the chip hardware blocks. Finally, a high
performance 32-bit RISC CPU is integrated to run the system
OS and the software. 
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Figure 1: CP SoC functional architecture

Figure  1  depicts  the  functional  architecture  of  the
Convergence  Processor  SoC.  The  component  supports  the
following sequence of operations to each incoming packet:

reception,  low  layer  protocol  processing  per  port,
classification,  storage  to  the  main  memory  and  further
processing  by  software.  For  the  outgoing  packets,  the



sequence  of  operations  involves  data  transfer  to  the
respective  interface  block,  lower  layer  processing,  and
transmission. The transmit direction implements packet level
traffic  shaping,  while  on  the  receive  direction  certain
thresholds and conditions are monitored for each port FIFO.
Both traffic-control functions are integral part  of the DMA
component. In addition to the blocks involved in the transmit

and receive data paths, the chip implements a security engine
that  acts  as  accelerator  and performs DES and TDES.  All
hardware  blocks  lead  to  a  significant  system performance
enhancement, as we will present later. An important feature
of the chip is that it integrates the open source LEON 32-b
RISC CPU [3]. LEON is a royalty free CPU that has been
developed according to the SPARC V8 open architecture.
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Figure 2: CP SoC block diagram

The component uses the main memory for buffering and the
LEON CPU for processing of the data streams. Thus there is
no pure end-to-end hardware path at wire speed but for high
priority  streams  all  forwarding  processing  is  done  at  low
level software on a packet or a time window basis. The later
depends  on  the  application  and  the  traffic  profile  of  the
streams.  Figure  2  depicts  the  block  diagram  of  the
Convergence  Processor  SoC.  The  CP  blocks  are
interconnected with a high speed AMBA (AHB) bus with 3.2
Gbps  (32bit  @ 100MHz)  bandwidth.  The  entire  chip  has
been designed to run at 100MHz apart from the CPU block
that runs at 200MHz. The embedded CPU offers 180 MIPS
for software processing.

As depicted in Figure 2, the bus arbiter assigns the on-chip
bus either to the CPU or to the DMA. Let assume that the
aggregate  application  bandwidth  is  100Mbps  and  that
20Mbps  of  this  has  to  be  decrypted  (sent  to  the  security
engine). In this case, the DMA has to transfer 100Mbps total
data  (e.g.  receive  50Mbps  and  transmit  50Mbps)  plus  to
transfer 20Mbps to the security engine and then back to the
memory. Thus the DMA has to handle 140Mbps in total that
corresponds to about 5% of the on-chip and of the system bus
capacity.

3. Main Processing Blocks
The CP component integrates generic as well as custom IP
cores for  packet  and protocol  data unit  (PDU) processing.
These cores are the LEON CPU, the Header Processor, the
Security Engine and the DMA. In the following these blocks
are explained in more details.

3.1. LEON CPU
LEON is a 32-bit processor core that conforms to the IEEE-
1754  (SPARC  V8)  specification  [3]  and  includes  various
peripheral  modules,  interconnected  over  a  flexible  AMBA
AHB/APB architecture. It features an Integer unit including
all  multiply  and  divide  instructions,  while  the  number  of
register  windows  is  configurable  within  the  limit  of  the
SPARC standard (2-32), with a default setting of 8. LEON
supports separate, multi-set instruction and data caches, each
configurable  with 1-4 sets,  1-64 kbyte/set,  16-32 bytes per
line. Sub-blocking is implemented with one valid bit per 32-
bit word. The instruction cache uses streaming during line-
refill  to minimise refill latency. The data cache uses write-
through policy and implements a double-word write-buffer.
The data cache can also perform bus-snooping on the AHB
bus.  LEON  implements  a  flexible  memory  interface  that
provides a direct  interface to PROM, memory mapped I/O
devices,  SRAM  and  SDRAM.  The  memory  areas  can  be
programmed to  either  8-,  16-  or  32-bit  data  width.  LEON



implements an interrupt controller that can manage a total of
15 interrupts, originating from internal and external sources.

3.2. Header Processor
The header processor block consists of the Field Extraction
engine (FEX) and the Classifier.  In this section we mainly
focus on FEX that is considered an important IP block of the
chip.  FEX is a small RISC that adopts three-stage pipeline
architecture.  It  is  fully  programmable  and  operates  with
protocol or application specific firmware. Payload does not
need to be entirely sent from the respective interface to FEX
for processing but only the headers,  that correspond to the

first part  of the packet and for certain protocols to the last
part  of the packet.  FEX performs header verification, field
processing,  and  selective  field  extraction  based  on  user
downloaded firmware.

FEX is able to process data with a maximum throughput of
3.2Gbps @ 100MHz. The average throughput is much less,
since  certain  instructions  need more  than a  clock cycle  or
since  one  32-bit  word  may contain  several  fields  that  are
separately extracted  or  checked.  The block diagram of the
module is  depicted in  the left-hand side of  Figure 3.  FEX
implements  a  three-stage  generic  pipeline  for  enhanced
performance.
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Figure 3: Header Processor block diagram

FEX has been designed as a custom RISC that executes 8
basic instructions and 4 optional commands. Each instruction
can be combined and executed in parallel with any or all of
the  commands  thus  reducing  code  size  and  increasing
performance.  The  instructions  are  used  to  parse  the  data,
while the commands are used to control the internal registers.
FEX uses 4 generic registers, a Program Counter and a Data
Pointer as depicted in Figure 3. The instructions are: NOP;
EXTRACT [n, b] (extracts a field of n + 1 bits with rightmost
being bit b); MOV A to DP; MOV B to DP; ADD A to DP;
ADD B to DP; JMP C, a, addr; JMP D, a, addr (if C or D is
equal to a then jump to addr); and STR (restart the program).
The commands are DEC DP, INC DP, DEC A, and DEC B.
FEX  executes  firmware  up  to  2K  instructions  that  is
sufficient enough for the supported applications. FEX is an
innovative IP block that has been reused in PRO3 protocol
processor that is a complex Soc for multi gigabit switching
systems  [4].  In  PRO3,  FEX  architecture  is  the  same  and
operates at 200MHz.

The Header Processor block includes also the Classifier unit
that performs the classification of the specific flow based on
FEX  results  and  assigns  a  Flow_ID  to  each  flow.  The
Classifier receives the extracted by FEX fields and appends
them to the key register so as to construct the classification
key. For typical IP traffic the classification key is up to 144

bit wide. The block is able to support up to 256 classification
rules, that are distinguished into three sets namely for generic
reject  (deny),  generic  accept  and  per-flow  classification.
Based  on  the  Classifier  result  (Flow_ID)  the  DMA  (if
Flow_ID is 0 rejects the packet, otherwise it is sent to the
CPU)  or  the  CPU  decides  upon  further  processing.  The
Classifier supports 8 masks for all flows, configured by CPU.

3.3. Security Engine
The security engine block acts as accelerator. In this case, the
data are not processed on-the-fly while they are transferred
to/from the main memory. The block receives the (part of)
packet from the system memory (through a dedicated DMA
channel)  and  returns  the  processed  data  to  the  system
memory  (through  another  dedicated  DMA  channel).  The
block  is  able  to  perform  either  DES  or  TDES  security
algorithm at packet level for encryption or decryption of data.
The operation to be performed is specified by the software
that sends each packet for processing. For specific Flow_IDs
pre-configured  operations  may be  performed.  Furthermore,
the CPU has to define the security key based on which the
block  will  process  each  flow.  The  block  has  a  context
memory of 16 entries, each being able to hold the security
key  and  the  operation  to  be  performed  for  the  respective
flow.  The  security  engine  has  been  designed  to  perform
processing of up to 80Mbps data traffic received from the 32-



bit on-chip bus.

3.4. DMA
The DMA is a complex block that supports a number of fast
data  transfer  paths  between  two  buffering  points  of  the
system. In our implementation one of the end points is always
the system memory (either source or destination of data). The
active end point associations can be configured to be up to 32
and  depend  on  the  maintenance  of  the  DMA context  and
traffic  profile  for  each  path.  Prior  to  each  data  transfer
operation, the DMA requests and becomes the master of the
AMBA bus so as to directly access the system memory. The
supported  data  paths  are  distinguished  in  receive
(downstream,  towards  the  system  memory)  and  transmit
(upstream, from the system memory to a CP block).

The aim of  DMA is  to  perform data  transfers  without the
intervention of the CPU. According to the system aggregate
traffic,  DMA becomes the master  of the on-chip bus for a
certain  fraction  of  total  bus  time.  To  enhance  the  traffic
multiplexing and optimise the sharing of the on-chip bus for
data  transfers,  the  DMA  integrates  an  efficient  traffic
handling function. It adopts a two level mechanism to define
the  percentage  of  time  that  the  block  performs  the
transactions,  called  traffic  descriptor.  Apart  from the  pre-
configured traffic  descriptors,  the DMA can operate  on an
interrupt  basis  for  a  certain  interface  that  is  almost
overflowed (threshold signal asserted) thus preventing buffer
overflow (receiver) or underflow (transmitter). We define as
interface timeslot the time assigned to the interface and as
DMA timeslot the time that the DMA is master of the bus
and serves one or more interfaces.

In  order  for  a  traffic  profile  to  be  described to  the DMA,
three types of parameters are used. The first separates overall
bus time in  two segments,  one is  used  to  allocate  a  cycle
budget  to  the  DMA  controller,  while  the  other  is  the
guaranteed minimum time interval that the DMA will remain
off  the  system  bus.  The  second  parameter  defines  the
segmentation of the DMA cycle budget per data direction,
i.e.  between  transmit  and  receive.  The  third  parameter
allocates DMA time to the served interfaces. This allocation
is independent for each direction. Thus, overall transmit and
receive times, as well as those related to specific interfaces
may  be  asymmetrical,  with  no  relation  to  one  another.
Furthermore,  interface timeslots are not necessarily smaller
than DMA timeslots. It is, therefore, possible, depending on
appropriate configuration, for an interface to be served in one
or  more  DMA timeslots.  In  this  manner  it  is  possible  to
balance transactions over the bus, and cater as much for low
bandwidth or high bandwidth interfaces, that may even carry
small or large data packets.

4. Performance Evaluation
To evaluate the architecture and the impact of certain design
choices to a CP based networking system we used an FPGA
chip prototype. We also used an evaluation board with the
FPGA CP prototype,  SDRAM, 10/100 Ethernet  and ATM.

The board integrates  also an external  StrongARM CPU in
order  to  run experiments  with this  CPU only and  perform
comparisons between the two CPUs. For the FPGA prototype
we used a large XILINX Virtex FPGA of 800.000 gates. 

The  LEON  CPU  core  is  well  optimised  for  embedded
applications.  Using 4K+4K caches and a 16x16 multiplier,
the dhrystone 2.1 benchmark reports 1,550  iteration/s/MHz
using the gcc-2.95.2 compiler  (-O2).  This translates to 0.9
dhrystone  MIPS/MHz  using  the  VAX  11/780  value  a
reference  for  one  MIPS  [3].  Thus  in  the  CP  component,
LEON offers 180Mbps @ 200MHz. Apart from the required
processing  power,  LEON  leads  to  royalty  free  SoC
implementations, thus reducing the cost that is a major factor
for CPE products.

To compute the performance enhancements of integrated CP
based networking systems we measured the CPU processing
power required for executing these functions in the foreseen
broadband  access  environments.  In  our  analysis  we
decomposed  the  processing  required  in  such  networking
systems using the open source Linux stacks, running on the
FPGA evaluation board and we measured the performance
parameters for typical voice, video and Internet data traffic.
For  voice  we  considered  G.711  codec  (worst  case)  that
produces 40 bytes of voice data per 5 msec. We considered
voice over IP thus for each voice packet, we add 20 bytes the
RTP header, 20 bytes the IP header and 14 bytes the Ethernet
header.  For  video we considered  a  traffic  profile  that  was
statistically analysed from real MPEG encoded videos in [5].
For  Internet  traffic  we  consider  typical  statistics  that  are
widely  available  in  the  Internet  as  well  as  extensive
background work performed in the field ([6, 7]).

To evaluate the impact of CP and estimate performance of
CP based networking systems, we used the evaluation board
to run real application software under Linux. We also used
open source or internally developed software blocks, which
are used in the target CPE systems. These software modules
include the Ethernet driver, the TCP/IP stack, the DES/TDES
engine,  the  VPN  software,  the  routing  software  and  the
firewalling software.

In our measurements we analysed the involved software and
we computed the CPU MIPS needed per Mbps of average
traffic  of  each profile  and  for  each of  the  above software
modules  or  functions.  Based  on  these  performance
parameters we calculated the MIPS that we save with the CP
component from a broadband networking system that has to
perform the following application scenario:
A. The  system  passes  through  two  encrypted  MPEG-2

video streams (each 5.5Mbps) from the WAN (ATM or
Ethernet  based)  interface  to  an  internal  (Ethernet)
interface. The streams must be received and forwarded
to an IP Set-Top-Box with low jitter (prioritised).

B. 4 voice channels are received from the WAN interface
and forwarded to the system DSP through the CP DSP
interface with low delay/jitter  (e.g.  5msec port-to-port)
with minimum processing at driver level.

C. 6 Mbps bi-directional encrypted (Internet) data traffic is



processed where 128 firewall rules are applied.

This  scenario  may  be  too  complex  for  typical  future
residential applications, however it is a demanding example
since it involves voice, video and typical Internet data flows.
In order to evaluate the performance of the CP based system,
we ran typical  open source and Linux based software that
support  such  functions  including  routing,  firewalling,  and
IPSec (DES/TDES). The performance results of this software
are considered quite worst case and based on bulk and not
optimised  software.  These  figures  are  compared  with
measurements  taken  with  optimised  software  where  the
packet  forwarding function is  done  in  low level  using the

Header  Processor  results  and  bypassing  the  Linux  based
software paths. In our measurements, the VPN function was
not involved.

In  this  scenario  the  total  DMA  data  movements  is  about
70Mbps  since  an  encrypted  stream  will  pass  four  times
through  the  bus  (receive  from  the  network,  sent  to  and
receive from the security engine,  transmit  to  the network).
This corresponds to 2.2% of the on-chip bus capacity. Thus
only a small percentage of the on-chip bus is assigned to the
DMA in a CP based system. On the other hand, in a CPU
based system we assume that the CPU performs all functions,
including data transfers to the peripherals.

Linux open source SW Linux with Optimized Low level SW
Function path CP based system CPU based system CP based system CPU based system

Video forwarding 8,4 647,9 13,2 652,6
Voice processing 23,4 28,4 3,9 11,4

Data processing 85,3 434,2 18,0 367,0
TOTAL MIPS needed 117,1 1.110,5 35,0 1.031,0

Table 1: MIPS needed for the existing Linux and for optimised low level software blocks

As depicted in  Table  1,  CP based  system can support  the
above scenario even with the existing open source software
blocks.  In  addition,  when optimised  software  is  used,  the
CPU offers a small percentage of its power (35 out of 180
MIPS)  and  can  support  further  user  applications  without
performance or QoS degradation. 
Finally, considering worst-case traffic (small IP packets over
Ethernet – 64 bytes), the CP based system is able to process
and forward 3.1 Mbps of traffic (6,055 pps) using the typical
Linux software and 17.4 Mbps of traffic (33,984 pps) using
Linux and the optimised low level software for forwarding
respectively. Considering large packets (1514 byte long), the
above figures are 56Mbps for the open source software and
153  Mbps  for  the  optimised  software.  These  performance
figures are by far higher than the Ishoni [1] processor that is
able to forward 9.42 Mbps of 64-byte traffic and 98.71 Mbps
of 1512-byte traffic [8].

5. Conclusions
In this paper we presented the Convergence Processor system
with  emphasis  on  the  resuable  IP  blocks  of  the  design.
Furthermore, we analysed the architecture of the design and
how innovative and generic for networking systems IP blocks
are used to alleviate the host processor from high CPU power
consuming tasks.

The  component  architecture  yields  efficient  VLSI
implementation,  with  low  memory  requirements  and
flexibility  to  support  multiple  service  disciplines  in  a
programmable way. The chip has been prototyped in FPGA
and is going to be fabricated in UMC 0.18μm CMOS process
occupying about 25mm2 of area and packaged in a 456 BGA.
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