
An Innovative SoC Design for Broadband Residential Applications

D. ECONOMOU, N. MOURATIDIS, G. LYKAKIS, A. TAVOULARIS, A. KOSTOPOULOS,
A. MANOUSARIDIS, G. KONSTANTOULAKIS

inAccess Networks, 230, Sigrou Av, GR-17672, Athens, GREECE
email: gkonst@inaccessnetworks.com, http:\\www.inaccessnetworks.com

Abstract: - We present the Convergence Processor, an innovative component that integrates a high performance 32-
bit RISC core, a custom IP core optimised for header-processing and other blocks for specific communication
interfaces required for the delivery of broadband residential applications. The component is a System-on-Chip
supporting the real time processing of packets and protocol data units from various networking interfaces. Its target is
to be used as the central processing unit for various multifunctional networking systems including RGs, IADs, STBs,
and IP PBXs. We focus on the system architecture and the component reusable IP cores, namely the header
processor, the security engine, the data-handling unit and the open source 32-bit RISC LEON CPU. As
communication interfaces, the chip integrates 802.3 MAC, ATM, AAL5, HDLC, UART and a generic packet
interface for voice and video processing peripherals. It has been prototyped using a large XILINX Virtex FPGA and
UMC 0.18u CMOS technology targeting 200MHz operation. The chip supports a total link capacity of 900Mbps and
is optimised to deliver an aggregate sustain rate of up to 100Mbps of multimedia traffic at application level with
acceptable Quality of Service.

Keywords: - Broadband Processor, Packet Processor, Header Processor, Residential Gateway, Linux, Convergence,
System-on-Chip.

1. Introduction
Modern communication networks have already evolved
beyond best-effort traffic patterns, towards real-time, delay
sensitive traffic mixes, which are used to deliver a variety of
services. Devices that were used to simply forward IP traffic
are steadily being replaced by more sophisticated devices,
called multiservice gateways, that have multiple different and
incompatible interfaces. These interfaces cannot be simply
bridged at layer 1 or layer 2 but need a higher layer
interworking function thus increasing system complexity.
Moreover, they have to handle multiple traffic sources in a
service-aware manner, so as to guarantee a variety of
parameters like bitrate, delay, jitter and burstiness for a mix
of traffic patterns ranging from bandwidth-intensive file-
transfers to delay-sensitive voice- or video-streams.
Depending on applications, all these parameters compose the
Quality of Service offered to the user.
Gradually however, specialized access processors have
evolved, that integrate these blocks in a system-on-a-chip
factor, mainly for reducing overall bill-of-material (BoM)
cost, but also for resolving system-level performance
bottlenecks caused by poor interconnection logic. Such
components range in performance, from low-end processors
that simply integrate interfaces for cost-conscious and
limited-performance devices such as modems, routers and

home gateways for DSL or Cable connectivity of medium
bitrate; to high-end processors for access multiplexers, with
the ability to multiplex a number of data streams and pass
them to upper-level routers or switches for redirection to the
core network.

Convergence Processor (CP) is a broadband access processor
that has been designed and dimensioned for broadband
customer-premises’ applications for the small-business and
residential sector; it differentiates from existing devices in
performance and targets high-end services that require real-
time packet video and packet voice traffic. CP is a system-
on-chip which combines the interfaces and processing blocks
that are required for the realization of gateway systems that
combine data, voice and video traffic, while preserving QoS
in a service-aware manner.

CP has been designed combining performance and cost
optimisations. Compared with other leading implementations
of broadband access processors like Philips/Ishoni PTD2210
[1] and Brecis MSP3000 [2], CP extensively employs
proprietary programmable hardware logic for packet
processing, flow classification, data encryption/decryption,
MAC and ATM/AAL. These, along with a 32-channel DMA
controller and service-specific prioritisation, allow the on-
chip SPARC-compliant CPU to concentrate on system
control and execute high-level management tasks, resulting in

a highly scalable and leaner architecture, not limited by the
embedded processor speed.

Chapter 2 describes the functional and physical architecture
of the system. Chapter 3 focuses on the main and reusable IP
cores of CP, namely the CPU, the header processor, the
Security engine and the DMA that are of crucial importance
for advanced system performance. Chapter 4 presents an
analysis and computation of CP performance using reference
application scenarios. Finally, Chapter 5 concludes the paper.

2. Architecture
The Convergence Processor (CP) follows hybrid architecture
in order to be able to support with certain QoS level a various
number of interfaces that are expected to exist in the future
broadband CPE environment. The component supports an
aggregate of 900Mbps traffic; however we consider that a
rather small percentage of this link capacity (about an
aggregation of 100Mbps) is used to deliver user services. CP
is understood in gateway systems where it has to efficiently
support a number of interworking paths among the provided
interfaces. From that point of view, the CP component has to
be able to accommodate instant peaks up to the aggregate
link capacity using on-chip buffers and to support the sustain
rate using the system memory for buffering. This bandwidth
is not limited by the CP data handling capability but by the
software that is running in the system. CP based residential
gateway systems support traffic routing at various layers of
the OSI stack. Although CP performs lower layer processing
in hardware, certain functions are performed in software
either at the driver or at a higher software level. CP combines

the following operations (i) it processes at wire speed lower
layer protocols (e.g. 802.3 MAC, ATM, AAL2, AAL5,
HDLC) and (ii) it accelerates the execution of higher layer
functions (e.g. IPSec with DES/TDES engine and
Firewalling/Routing with the Classification engine). CP
target is to provide the required processing power through a
novel design, incorporating parallelism and pipelining and by
integrating a generic micro-programmed core optimised for
header processing. Furthermore, an efficient data handling
and packet scheduling component is integrated so as to
facilitate all internal data transfers.

The CP SoC supports (i) two 10/100bT Ethernet interfaces
and implements IEEE 802.3 MAC processing in hardware,
(ii) a UTOPIA Level II/III interface for up to 155Mbps link
rate and implements ATM, AAL0, AAL2 and AAL5 protocol
processing in hardware for 32 flows, (iii) a configurable
streaming interface for voice, video or other peripherals, and
(iv) a 2 Mbps interface with HDLC implementation in
hardware. Apart from these networking interfaces, CP
supports two UART ports, a debug interface that offers a
probe in the on-chip bus and a typical micro-processor
interface for access to the system memory. Moreover, the CP
SoC integrates an efficient Header Processor for
programmable field processing and on-chip classification for
256 flows as well as a security engine that implements the
DES and TDES algorithms. In addition, an enhanced DMA
component performs all data transfers between the external
system memory and the chip hardware blocks. Finally, a high
performance 32-bit RISC CPU is integrated to run the system
OS and the software.

Packet Parallel IF10/100
Ethernet

10/100
Ethernet

802.3
MAC
MII IF

802.3
MAC
MII IF

802.3
MAC
MII IF

802.3
MAC
MII IF

UTOPIA

UTOPIA
ATM

A
A

L0

A
A

L5

A
A

L2

UTOPIA
ATM

A
A

L0

A
A

L5

A
A

L2 DSP
IF

Packet Parallel IF

Extension
IF

DSP
IF

Packet Parallel IF

Extension
IF

UART UART

RS-232

DMA (900 Mbps),
Prioritised Round robin,
Configured Weight / IF

Field
Processor

Classifier

Header Processor
(2Mpps)

Flow_ID

Security
Engine

SDRAM
Controller

uP IF

External SDRAM

RISC CPU
(160 MIPS)

REGATE SoC

HDLC

High Speed
Serial IF

RS-232

Figure 1: CP SoC functional architecture

Figure 1 depicts the functional architecture of the
Convergence Processor SoC. The component supports the
following sequence of operations to each incoming packet:

reception, low layer protocol processing per port,
classification, storage to the main memory and further
processing by software. For the outgoing packets, the

sequence of operations involves data transfer to the
respective interface block, lower layer processing, and
transmission. The transmit direction implements packet level
traffic shaping, while on the receive direction certain
thresholds and conditions are monitored for each port FIFO.
Both traffic-control functions are integral part of the DMA
component. In addition to the blocks involved in the transmit

and receive data paths, the chip implements a security engine
that acts as accelerator and performs DES and TDES. All
hardware blocks lead to a significant system performance
enhancement, as we will present later. An important feature
of the chip is that it integrates the open source LEON 32-b
RISC CPU [3]. LEON is a royalty free CPU that has been
developed according to the SPARC V8 open architecture.

RISC CPU (LEON2)

MMU

A M B A

Bus
Arbiter

DMA
controller

MII

UP I/F

UTOPIA

Header Processor
Classifier

MII

802.3
MAC

MII
I/F

ATM

UTOPIA

AA
L5

802.3
MAC

MII
I/F

AA
L2

AA
L0

Security
Engine

Debug
Interface

HDLC UART

RS-232 Debug I/FFast Serial

DSP Interface

D
SP

pa

ck
et

 I
/F

Data
Interface

DSP
Control

Interface

(CPU
Access)

M
PE

G
 p

ac
ke

t
I/

F
(L

oc
al

 b
us

 I
/F

)

Local Bus I/F

FLASH,
SDRAM CTRL PCMCIA I/F

Figure 2: CP SoC block diagram

The component uses the main memory for buffering and the
LEON CPU for processing of the data streams. Thus there is
no pure end-to-end hardware path at wire speed but for high
priority streams all forwarding processing is done at low
level software on a packet or a time window basis. The later
depends on the application and the traffic profile of the
streams. Figure 2 depicts the block diagram of the
Convergence Processor SoC. The CP blocks are
interconnected with a high speed AMBA (AHB) bus with 3.2
Gbps (32bit @ 100MHz) bandwidth. The entire chip has
been designed to run at 100MHz apart from the CPU block
that runs at 200MHz. The embedded CPU offers 180 MIPS
for software processing.

As depicted in Figure 2, the bus arbiter assigns the on-chip
bus either to the CPU or to the DMA. Let assume that the
aggregate application bandwidth is 100Mbps and that
20Mbps of this has to be decrypted (sent to the security
engine). In this case, the DMA has to transfer 100Mbps total
data (e.g. receive 50Mbps and transmit 50Mbps) plus to
transfer 20Mbps to the security engine and then back to the
memory. Thus the DMA has to handle 140Mbps in total that
corresponds to about 5% of the on-chip and of the system bus
capacity.

3. Main Processing Blocks
The CP component integrates generic as well as custom IP
cores for packet and protocol data unit (PDU) processing.
These cores are the LEON CPU, the Header Processor, the
Security Engine and the DMA. In the following these blocks
are explained in more details.

3.1. LEON CPU
LEON is a 32-bit processor core that conforms to the IEEE-
1754 (SPARC V8) specification [3] and includes various
peripheral modules, interconnected over a flexible AMBA
AHB/APB architecture. It features an Integer unit including
all multiply and divide instructions, while the number of
register windows is configurable within the limit of the
SPARC standard (2-32), with a default setting of 8. LEON
supports separate, multi-set instruction and data caches, each
configurable with 1-4 sets, 1-64 kbyte/set, 16-32 bytes per
line. Sub-blocking is implemented with one valid bit per 32-
bit word. The instruction cache uses streaming during line-
refill to minimise refill latency. The data cache uses write-
through policy and implements a double-word write-buffer.
The data cache can also perform bus-snooping on the AHB
bus. LEON implements a flexible memory interface that
provides a direct interface to PROM, memory mapped I/O
devices, SRAM and SDRAM. The memory areas can be
programmed to either 8-, 16- or 32-bit data width. LEON

implements an interrupt controller that can manage a total of
15 interrupts, originating from internal and external sources.

3.2. Header Processor
The header processor block consists of the Field Extraction
engine (FEX) and the Classifier. In this section we mainly
focus on FEX that is considered an important IP block of the
chip. FEX is a small RISC that adopts three-stage pipeline
architecture. It is fully programmable and operates with
protocol or application specific firmware. Payload does not
need to be entirely sent from the respective interface to FEX
for processing but only the headers, that correspond to the

first part of the packet and for certain protocols to the last
part of the packet. FEX performs header verification, field
processing, and selective field extraction based on user
downloaded firmware.

FEX is able to process data with a maximum throughput of
3.2Gbps @ 100MHz. The average throughput is much less,
since certain instructions need more than a clock cycle or
since one 32-bit word may contain several fields that are
separately extracted or checked. The block diagram of the
module is depicted in the left-hand side of Figure 3. FEX
implements a three-stage generic pipeline for enhanced
performance.

Barrel
Shifter
(mask)

Barrel
Shifter
(mask)

Instruction
Memory

Regs
C, D

Data
Input

Data
Output

μP Bus

PCPC

Instruction
Decoder

Control Unit

FSM

==

.........

++

DP

Registers
A, B

Data Memory
32-bit32-bit

Control

K
ey

 R
eg

is
te

r

FEX Classifier

Control UnitControl Unit

Search
Engine

μP Bus

Masks
RAM

.........

......
Rules
RAM

Flow_ID

8-bit

Figure 3: Header Processor block diagram

FEX has been designed as a custom RISC that executes 8
basic instructions and 4 optional commands. Each instruction
can be combined and executed in parallel with any or all of
the commands thus reducing code size and increasing
performance. The instructions are used to parse the data,
while the commands are used to control the internal registers.
FEX uses 4 generic registers, a Program Counter and a Data
Pointer as depicted in Figure 3. The instructions are: NOP;
EXTRACT [n, b] (extracts a field of n + 1 bits with rightmost
being bit b); MOV A to DP; MOV B to DP; ADD A to DP;
ADD B to DP; JMP C, a, addr; JMP D, a, addr (if C or D is
equal to a then jump to addr); and STR (restart the program).
The commands are DEC DP, INC DP, DEC A, and DEC B.
FEX executes firmware up to 2K instructions that is
sufficient enough for the supported applications. FEX is an
innovative IP block that has been reused in PRO3 protocol
processor that is a complex Soc for multi gigabit switching
systems [4]. In PRO3, FEX architecture is the same and
operates at 200MHz.

The Header Processor block includes also the Classifier unit
that performs the classification of the specific flow based on
FEX results and assigns a Flow_ID to each flow. The
Classifier receives the extracted by FEX fields and appends
them to the key register so as to construct the classification
key. For typical IP traffic the classification key is up to 144

bit wide. The block is able to support up to 256 classification
rules, that are distinguished into three sets namely for generic
reject (deny), generic accept and per-flow classification.
Based on the Classifier result (Flow_ID) the DMA (if
Flow_ID is 0 rejects the packet, otherwise it is sent to the
CPU) or the CPU decides upon further processing. The
Classifier supports 8 masks for all flows, configured by CPU.

3.3. Security Engine
The security engine block acts as accelerator. In this case, the
data are not processed on-the-fly while they are transferred
to/from the main memory. The block receives the (part of)
packet from the system memory (through a dedicated DMA
channel) and returns the processed data to the system
memory (through another dedicated DMA channel). The
block is able to perform either DES or TDES security
algorithm at packet level for encryption or decryption of data.
The operation to be performed is specified by the software
that sends each packet for processing. For specific Flow_IDs
pre-configured operations may be performed. Furthermore,
the CPU has to define the security key based on which the
block will process each flow. The block has a context
memory of 16 entries, each being able to hold the security
key and the operation to be performed for the respective
flow. The security engine has been designed to perform
processing of up to 80Mbps data traffic received from the 32-

bit on-chip bus.

3.4. DMA
The DMA is a complex block that supports a number of fast
data transfer paths between two buffering points of the
system. In our implementation one of the end points is always
the system memory (either source or destination of data). The
active end point associations can be configured to be up to 32
and depend on the maintenance of the DMA context and
traffic profile for each path. Prior to each data transfer
operation, the DMA requests and becomes the master of the
AMBA bus so as to directly access the system memory. The
supported data paths are distinguished in receive
(downstream, towards the system memory) and transmit
(upstream, from the system memory to a CP block).

The aim of DMA is to perform data transfers without the
intervention of the CPU. According to the system aggregate
traffic, DMA becomes the master of the on-chip bus for a
certain fraction of total bus time. To enhance the traffic
multiplexing and optimise the sharing of the on-chip bus for
data transfers, the DMA integrates an efficient traffic
handling function. It adopts a two level mechanism to define
the percentage of time that the block performs the
transactions, called traffic descriptor. Apart from the pre-
configured traffic descriptors, the DMA can operate on an
interrupt basis for a certain interface that is almost
overflowed (threshold signal asserted) thus preventing buffer
overflow (receiver) or underflow (transmitter). We define as
interface timeslot the time assigned to the interface and as
DMA timeslot the time that the DMA is master of the bus
and serves one or more interfaces.

In order for a traffic profile to be described to the DMA,
three types of parameters are used. The first separates overall
bus time in two segments, one is used to allocate a cycle
budget to the DMA controller, while the other is the
guaranteed minimum time interval that the DMA will remain
off the system bus. The second parameter defines the
segmentation of the DMA cycle budget per data direction,
i.e. between transmit and receive. The third parameter
allocates DMA time to the served interfaces. This allocation
is independent for each direction. Thus, overall transmit and
receive times, as well as those related to specific interfaces
may be asymmetrical, with no relation to one another.
Furthermore, interface timeslots are not necessarily smaller
than DMA timeslots. It is, therefore, possible, depending on
appropriate configuration, for an interface to be served in one
or more DMA timeslots. In this manner it is possible to
balance transactions over the bus, and cater as much for low
bandwidth or high bandwidth interfaces, that may even carry
small or large data packets.

4. Performance Evaluation
To evaluate the architecture and the impact of certain design
choices to a CP based networking system we used an FPGA
chip prototype. We also used an evaluation board with the
FPGA CP prototype, SDRAM, 10/100 Ethernet and ATM.

The board integrates also an external StrongARM CPU in
order to run experiments with this CPU only and perform
comparisons between the two CPUs. For the FPGA prototype
we used a large XILINX Virtex FPGA of 800.000 gates.

The LEON CPU core is well optimised for embedded
applications. Using 4K+4K caches and a 16x16 multiplier,
the dhrystone 2.1 benchmark reports 1,550 iteration/s/MHz
using the gcc-2.95.2 compiler (-O2). This translates to 0.9
dhrystone MIPS/MHz using the VAX 11/780 value a
reference for one MIPS [3]. Thus in the CP component,
LEON offers 180Mbps @ 200MHz. Apart from the required
processing power, LEON leads to royalty free SoC
implementations, thus reducing the cost that is a major factor
for CPE products.

To compute the performance enhancements of integrated CP
based networking systems we measured the CPU processing
power required for executing these functions in the foreseen
broadband access environments. In our analysis we
decomposed the processing required in such networking
systems using the open source Linux stacks, running on the
FPGA evaluation board and we measured the performance
parameters for typical voice, video and Internet data traffic.
For voice we considered G.711 codec (worst case) that
produces 40 bytes of voice data per 5 msec. We considered
voice over IP thus for each voice packet, we add 20 bytes the
RTP header, 20 bytes the IP header and 14 bytes the Ethernet
header. For video we considered a traffic profile that was
statistically analysed from real MPEG encoded videos in [5].
For Internet traffic we consider typical statistics that are
widely available in the Internet as well as extensive
background work performed in the field ([6, 7]).

To evaluate the impact of CP and estimate performance of
CP based networking systems, we used the evaluation board
to run real application software under Linux. We also used
open source or internally developed software blocks, which
are used in the target CPE systems. These software modules
include the Ethernet driver, the TCP/IP stack, the DES/TDES
engine, the VPN software, the routing software and the
firewalling software.

In our measurements we analysed the involved software and
we computed the CPU MIPS needed per Mbps of average
traffic of each profile and for each of the above software
modules or functions. Based on these performance
parameters we calculated the MIPS that we save with the CP
component from a broadband networking system that has to
perform the following application scenario:
A. The system passes through two encrypted MPEG-2

video streams (each 5.5Mbps) from the WAN (ATM or
Ethernet based) interface to an internal (Ethernet)
interface. The streams must be received and forwarded
to an IP Set-Top-Box with low jitter (prioritised).

B. 4 voice channels are received from the WAN interface
and forwarded to the system DSP through the CP DSP
interface with low delay/jitter (e.g. 5msec port-to-port)
with minimum processing at driver level.

C. 6 Mbps bi-directional encrypted (Internet) data traffic is

processed where 128 firewall rules are applied.

This scenario may be too complex for typical future
residential applications, however it is a demanding example
since it involves voice, video and typical Internet data flows.
In order to evaluate the performance of the CP based system,
we ran typical open source and Linux based software that
support such functions including routing, firewalling, and
IPSec (DES/TDES). The performance results of this software
are considered quite worst case and based on bulk and not
optimised software. These figures are compared with
measurements taken with optimised software where the
packet forwarding function is done in low level using the

Header Processor results and bypassing the Linux based
software paths. In our measurements, the VPN function was
not involved.

In this scenario the total DMA data movements is about
70Mbps since an encrypted stream will pass four times
through the bus (receive from the network, sent to and
receive from the security engine, transmit to the network).
This corresponds to 2.2% of the on-chip bus capacity. Thus
only a small percentage of the on-chip bus is assigned to the
DMA in a CP based system. On the other hand, in a CPU
based system we assume that the CPU performs all functions,
including data transfers to the peripherals.

Linux open source SW Linux with Optimized Low level SW
Function path CP based system CPU based system CP based system CPU based system

Video forwarding 8,4 647,9 13,2 652,6
Voice processing 23,4 28,4 3,9 11,4

Data processing 85,3 434,2 18,0 367,0
TOTAL MIPS needed 117,1 1.110,5 35,0 1.031,0

Table 1: MIPS needed for the existing Linux and for optimised low level software blocks

As depicted in Table 1, CP based system can support the
above scenario even with the existing open source software
blocks. In addition, when optimised software is used, the
CPU offers a small percentage of its power (35 out of 180
MIPS) and can support further user applications without
performance or QoS degradation.
Finally, considering worst-case traffic (small IP packets over
Ethernet – 64 bytes), the CP based system is able to process
and forward 3.1 Mbps of traffic (6,055 pps) using the typical
Linux software and 17.4 Mbps of traffic (33,984 pps) using
Linux and the optimised low level software for forwarding
respectively. Considering large packets (1514 byte long), the
above figures are 56Mbps for the open source software and
153 Mbps for the optimised software. These performance
figures are by far higher than the Ishoni [1] processor that is
able to forward 9.42 Mbps of 64-byte traffic and 98.71 Mbps
of 1512-byte traffic [8].

5. Conclusions
In this paper we presented the Convergence Processor system
with emphasis on the resuable IP blocks of the design.
Furthermore, we analysed the architecture of the design and
how innovative and generic for networking systems IP blocks
are used to alleviate the host processor from high CPU power
consuming tasks.

The component architecture yields efficient VLSI
implementation, with low memory requirements and
flexibility to support multiple service disciplines in a
programmable way. The chip has been prototyped in FPGA
and is going to be fabricated in UMC 0.18μm CMOS process
occupying about 25mm2 of area and packaged in a 456 BGA.

Acknowledgement

The described work has been performed within the EU co-
funded IST-2000-28429-REGATE R&D project.

References:
[1] www.ishoni.com , see product PTD2210
[2] www.brecis.com , see product MSP3000 (MSP300-Product-

Brief.pdf)
[3] LEON-2 users manual, http://www.gaisler.com/doc/leon2-

1.0.10.pdf
[4] K. Vlachos et al. “Processing and Scheduling Components in

an Innovative Network Processor Architecture”, 16th IEEE
International conference in VLSI design, New Delhi, India,
January 4-8, 2003.

[5] "Efficient Modelling of VBR MPEG-1 coded Video Sources",
N. Doulamis, A. Doulamis, G. E. Kontantoulakis and G. I.
Stassinopoulos, in the proceeding of IEEE Transactions on
Circuits and Systems for Video Technology, VOL. 10, N0 1,
Feb. 2000.

[6] A.J. McGregor, H-W.Braun and J.A. Brown, “The NLANR
Network Analysis Infrastructure,” IEEE Communications
Magazine, Vol. 38 (5): pp. 122-128, May 2000.

[7] “Long-term traffic aspects of the NSFNET'', K. Claffy and H.-
W. Braun and G. Polyzos, Proceedings of INET'93.
http://www.caida.org/Papers/lta.html

[8] Tests Prove Ishoni Platform Sets New Price-Performance
http://www.ishoni.com/content/newsstory.asp?article=62

