Inheriting the Insertion Operator in C++
MICHAEL L. DOWELL

Department of Mathematics and Computer Science
Augusta State University

2500 Walton Way, Augusta, Georgia 30904 USA

Abstract: - In the C++ programming language, the insertion (<<) operator can be written for user-defined classes. However, combining polymorphism with the insertion operator does not work correctly since the insertion operator cannot be inherited. Inheritance is typically used when polymorphism is wanted so the ability to inherit the insertion operator is an improvement over the current standard. This paper presents a solution and implementation.
Key-Words: - Object-oriented Programming; Inheritance; Class Operators

1 Introduction

Polymorphism combined with type inheritance implies that if a class, Derived, is a subtype of another class, Base, then all operators that apply to values of type Base apply to values of type Derived as well [7]. In C++, virtual methods are used to implement this behavior. However, polymorphism does not work for the insertion operator since it is a function and not a class method. Thus, the insertion operator cannot be made virtual and no previous method exists to make the insertion operator polymorphic.

Additional motivation is that textbooks present overloading an insertion operator before discussing inheritance and polymorphism [1,4,5]. Surprisingly, many textbooks illustrate polymorphism using a print method. This is surprising because beginning students often use print methods to avoid the difficulty and additional syntax involved in overloading the insertion operator. Thus, for students, the polymorphic print example provides another reason not to contend with the insertion operator. A typical example of polymorphism might consist of two classes comparable to these:
class Base

{

public:

 virtual void print() const;

};

class Derived : public Base

{

public:

 void print() const;

};

The print methods for each class are defined as:

void Base::print() const

{

 cout << "Print Base" << endl;

}

void Derived::print() const

{

 Base::print();

 cout<<"Print Derived”<<endl;

}

To demonstrate polymorphism, the print method is invoked as follows:

 Base *pBase = new Derived;

 pBase->print();

Since the object is a Derived type, this invokes the Derived class’s print method and displays:

 Print Base

 Print Derived

An example of the insertion operator for both of these classes is shown below:

ostream& operator<<(ostream& os,

 const Base& aBase)

{

 cout << "Print Base" << endl;

 return os;

}

ostream& operator<<(ostream& os,

 const Derived& aDerived)

{

 os << (Base&)aDerived;

 cout << "Print Derived" << endl;

 return os;

}

 While these operators work for normal, nonpolymorphic cases, they do not work for polymorphic cases. To demonstrate polymorphism, the following code could be used:

 Base *pBase = new Derived;

 cout << *pBase;

However, this does not invoke the Derived class insertion operator as intended – it invokes the Base class insertion operator. The indirection operator (*) is performed first. The data type returned from the indirection operator is the data type that the operand addresses. In this case, because pBase is a Base pointer, the data type returned from *pBase is a Base class. Since the Base pointer is dereferenced before the function call is matched to a function signature, it will match the Base insertion operator. Thus, the instruction (cout << *pBase) becomes a function call like this: operator<<(cout, *pBase) where *pBase returns a Base data type. Therefore, it matches the operator<<(ostream&, const Base&) function and not the operator<<(ostream&, const Derived&) function.
2 Solution One:
Modify Base Class insertion operator
To fix this problem, the Base class insertion operator is modified so it calls the Derived class operator. Thus, the operator<<(ostream&, const Base&) call will also print the Derived class information using the Derived insertion operator shown below.

ostream& operator<<(ostream& os,
const Base& aBase)

{

 os << "Print Base" << endl;
 os << (Derived&) aBase;
// Call child’s <<
 return os;

}

However, an infinite loop occurs if the Derived operator is not modified. The call to the Derived parent operator (os << (Base&) aDerived) must be removed.
ostream& operator<<(ostream& os,
 const Derived& aDerived)

{
 os << "Print Derived" << endl;

 return os;

}

While this fixes the previous problem and avoids an infinite loop between the two insertion functions, it introduces two other problems. These problems occur when the insertion operator is called using objects and not pointers. Calling the derived operator using a derived object will not call the Base parent’s insertion function. For example:
 Derived d;

 cout << d;
This displays only the child’s properties and not the parent’s properties. In addition, calling the parent’s insertion operator always attempt to call the child’s insertion operator even if the object is not an instance of the child.

 Base b;

 cout << b; // calls Derived’s operator<< function
3 Solution Two: Base Class
Selectively Calls Derived Class

To prevent the Base class operator from attempting to call the Derived class operator, the call to the Derived operator in the Base operator should be done only for Derived objects. Therefore, the Base insertion operator must determine if it is dealing with a Base or Derived object. The dynamic_cast operator provides a technique for checking the type of a polymorphic object to see if it is a Base or Derived object. The dynamic_cast operator allows a pointer to a parent to be downcast to a child [6]. If the object is not an instance of the Derived class, the result is null. The dynamic_cast operator is incorporated into a new version of the Base class insertion function shown below.

ostream& operator<<(ostream& os,

const Base& aBase)

{

 os << "Print Base" << endl; // display Base class

 Derived* pD=dynamic_cast<Derived*>(aBase);

 if (pD != NULL) // call Derived << only if it is a

 os << *pD; // Derived object

 return os;

}

While this fixes the parent’s insertion operator, the infinite loop problem reoccurs since the child’s operator must still call its parent’s operator to display all the object’s properties. Once inside the parent’s operator, this function determines it is dealing with a child object, so it calls the child’s insertion operator thus leading to the loop. There must be a way to stop this loop.

4 Solution Three:
Breaking the loop

To stop the loop, one operator must determine that the other operator is already executing. Both operators must have this feature since a Derived object starts the process by calling the Derived insertion operator while a polymorphic Base pointer to a Derived object starts the process by calling the Base insertion operator. A time-tested solution is to use a flag.

 A Boolean variable is added to the child class to act as a flag. Each operator checks the flag before calling the other operator. However, this introduces one last problem. The insertion operator usually specifies that the second argument, the class, is a constant and thus cannot be changed. To implement the flag solution, the constant argument restriction must be circumvented. The const_cast operator provides a way to add or remove the constness of a data type [6].

 A private Boolean variable, _printed, along with two new methods are added to the Derived class. Now the Derived class declaration is:

class Derived : public Base

{

public:

 friend ostream&

 operator<<(ostream& os,

 const Derived& aDerived);

 // Added to allow inheriting of insertion operator

 void set_printed(bool value) const;

 bool get_printed() const;

private:

 static bool _printed;

};

The Derived class’s private Boolean flag must be accessed by the Base insertion operator therefore a public accessor method is added.

bool Derived ::get_printed() const

{

 return _printed;

}

The flag is set to true when one of the operators executes so that the second operator will not again call the first operator and start the infinite loop. Both insertion operators change the value of the flag by calling the toggle_print method. Before the Boolean flag is changed, the const_cast operator removes the restriction that the class argument to the insertion operator is a constant.

void Derived::set_printed(bool value) const

{

 Derived& D = const_cast<Derived &>(*this);

 D._printed = value;

}

The new version of the Base insertion operator checks to see if it is dealing with an instance of the Derived class before attempting to call the Derived insertion operator. If it’s a Derived class, it calls the Derived operator only if the flag has not been set indicating the Derived operator is already executing.

To ensure the Derived operator will not start the infinite loop by calling the Base operator again, the flag is set before calling the Derived operator. After the Derived operator is done, the flag is reset so that it works the next time. The new insertion operator for the Base class appears below.

ostream& operator<<(ostream& os,

const Base& aBase)

{

 os << "Print Base" << endl;

 Base& B = const_cast<Base &>(aBase);

 Derived* pD = dynamic_cast<Derived*>(&B);

 // if it is a Derived object and not been printed

 if ((pD != 0) && (pD->get_printed() == false))

 {

 // Started with base, so call derived operator

 pD->set_printed(true);

 os << *pD;

 pD->set_printed(false);

 }

 // Else started with derived so don’t call it again

 return os;

}

The Derived insertion operator follows a similar approach except it does not have to check if it is dealing with an instance of the Base class. It does check the flag to make sure it will not call the Base operator if the Base operator is already executing. Likewise, it must set the flag to tell the Base operator that it is executing and reset the flag for next time. The new insertion operator for the Derived class appears below.

ostream& operator<<(ostream& os,

const Derived& aDerived)

{

 if (aDerived.get_printed() == false)

 {

 // started with derived, so call parent

 aDerived.set_printed(true);

 os << static_cast<const Base&>(aDerived);

 aDerived.set_printed(false);

 }
// else started with base so don’t call it again

 os << "Print Derived" << endl;

 return os;

}

5 Conclusions

Both insertion operators work correctly when used with objects. The Derived class insertion operator displays its parent’s properties without entering an infinite loop. When the parent’s insertion operator changes, these changes will appear in the Derived operator since it calls its parent operator. The Base class will not call its child’s insertion operator unless invoked using a polymorphic pointer to the child. Thus, the code shown below works correctly.

Derived d;

cout << d; // calls Base’s operator << function

This code displays all the properties of a Derived class including the parent’s properties.

Print Base

Print Derived

When calling the Base insertion operator, only the Base class properties are displayed.

Base b;

cout << b;
// will not call

// Derived’s operator<< function

This displays:
Print Base

Normally, when a polymorphic Base pointer is used with the insertion operator, the Base insertion operator is called and not the Derived operator. This paper has presented an implementation that correctly calls the Derived insertion operator for this case. An infinite loop does not result since the flag is set.

Base *pBase = new Derived;

cout << *pBase;

Even though the Base insertion operator is called, this code displays all the properties of a Derived class including the parent’s properties using the parents insertion operator. The code above displays:

Print Base

Print Derived

References:

[1] Deitel, H. M. and Deitel, P.J., C++: How to Program, Forth Edition, Prentice Hall, 2003.

[2] Bjarne Stroustrup. Multiple Inheritance for C++, Proceedings of the European Unix Users Group Conference ‘87, 1987, pp. 189-207.

[3] Grogono,Peter and Sakkinen, Markku, “Copying and Comparing: Problems and Solutions”, Proceedings of the European Conference on Object-Oriented Programming (ECOOP 2000), Springer, 2000, pp. 226-250.

[4] Gaddis, Tony, Starting Out with C++, Second Edition. Scott Jones Publisher, 2001.

[5] Ford, William H. and Topp, William R., Introduction to Computing using C++ and Object Technology, Prentice Hall, 1999.

[6] Josuttis, Nicolai M. The C++ Standard Library: A Tutorial and Reference. Addison Wesley. 1999.

[7] C. J. Date. “Polymorphism and Substitutability: A look at the fundamental mechanisms for achieving code reuse”, Intelligence Enterprise, Volume 3 – Number 3, February 9, 2000.

6 Appendix

The following is the code for the example.

// Must enable Run-Time Type Information (RTTI)

// in the project settings

#include <iostream>

using namespace std;

class Base

{

public:

 friend ostream& operator<<(ostream& os,

 const Base& aBase);

 virtual void vir_method() const;

 // Base class must have one virtual method

};

class Derived : public Base

{

public:

 friend ostream& operator<<(ostream& os,

 const Derived& aDerived);

 // ------ Added for inheriting <<

 void set_printed(bool value) const

 {

 Derived& D=const_cast<Derived &>(*this);

 D._printed = value;

 }

bool get_printed() const {return _printed; }

private:

static bool _printed;

};

ostream& operator<<(ostream& os,

const Base& aBase)

{

 os << "Print Base" << endl;

 // ------ Added for inheriting <<

 Base& B = const_cast<Base &>(aBase);

 Derived* pD = dynamic_cast<Derived*>(&B);

 if ((pD != 0) && (pD->get_printed() == false))
 {

 pD->set_printed(true);

 os << *pD;

 pD->set_printed(false);

 }

 return os;

}

void Base::vir_method() const

{} // In real example, Base would already have virtual methods

// ------ Added for inheriting <<

bool Derived::_printed = false;

ostream& operator<<(ostream& os,

const Derived& aDerived)

{

 // ------ Added for inheriting <<

 if (aDerived.get_printed() == false)

 // started child and do parent

 {

 aDerived.set_printed(true);

 os << static_cast<const Base&>(aDerived);

 aDerived.set_printed(false);

 }

 os << "Print Derived" << endl;

 return os;

}

void main()

{

 Base base;

 cout << "Print base object”

<< ”-- Should NOT call derived" << endl;

 cout << base << endl << endl;

 Base *pBase = new Base;

 cout << "Print ptr to base”

<< “-- Should NOT call derived" << endl;

 cout << *pBase << endl << endl << endl;

 Derived derived;

 cout << "Print derived object" << endl;

 cout << derived << endl << endl << endl;

 Base* Base_ptr_to_Derived = new Derived;

 cout <<"Print Base_ptr_to_Derived”

< ” using pointer to Base" << endl;

 cout << *Base_ptr_to_Derived << endl;

}

