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Abstract: A constructive procedure for realization of two-dimensional (2D)
general filters is proposed which may lead to a Roesser local state-space model
with lower order than the existing realization procedures. An illustrative ex-
ample shows that minimal realization, which cannot be reached by the existing
algorithms, may also be obtained for a certain class of 2D filters by our method.
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1 Introduction

One of the fundamental issues in two-
dimensional (2D) systems theory is the re-
alization of a given transfer function by a
certain kind of 2D local state-space model,
typically by Roesser model or Fornasini-
Marchesini second (FM-II) model (see, e.g.,
[3]-[14]). Unlike the one-dimensional (1D)
case, it is not always possible to obtain a
minimal state-space realization for an arbi-
trary filter in the 2D case. Minimal realiza-
tion can only be reached for some particu-
lar categories of 2D systems, e.g., continued
fraction expandable systems, all-pole, and
all-zero filters [1–12]. Therefore, it is desir-
able to obtain a state-space realization with
as low order as possible, and ideally with the
minimal one.

In this paper, we are concerned with the
realization problem for single-input single-
output (SISO) systems by Roesser model.

In Section 2 some preliminaries are briefly
presented. In Section 3, a new constructive
realization procedure is proposed which may
lead to a Roesser local state-space model
with lower order than the existing realiza-
tion procedures [1, 2]. In Section 4, an il-
lustrative example is provided to show the
details and effectiveness of the proposed pro-
cedure.

2 Preliminaries

The 2D Roesser model for a 2D SISO system
is described by [13][

xh(i + 1, j)
xv(i, j + 1)

]
= A

[
xh(i, j)
xv(i, j)

]
+Bu(i, j) (1a)

y(i, j) = C

[
xh(i, j)
xv(i, j)

]
+Du(i, j) (1b)

where

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
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xh(i, j) ∈ Rn1 is the horizontal state vec-
tor; xv(i, j) ∈ Rn2 is the vertical state vec-
tor, u(i, j) is the input, y(i, j) is the output,
and A11, A12, A21, A22, B1, B2, C1, C2,
A, B, C, D are all real matrices of appro-
priate dimensions. The transfer function of
(1) is

G(z1, z2) = CZ (I − AZ)−1 B + D (2)

with Z = diag{z1In1 , z2In2}.
Let G(z1, z2) be a general 2D transfer

function expressed as follows.

G(z1, z2) =
n(z1, z2)

d(z1, z2)

=
n10z1 + n01z2 + · · · + nmnzm

1 zn
2

1 + d10z1 + d01z2 + · · · + dmnzm
1 zn

2

(3)

As it is ready to get D = G(0, 0) from (2), we
assume here without loss of generality that
the transfer function G(z1, z2) under inves-
tigation is strictly causal, which means that
n(0, 0) = 0. It is also assumed without loss
of generality that d(0, 0) = 1. The realiza-
tion problem now becomes how to find the
real matrices A, B, C such that

G(z1, z2) = CZ(I − AZ)−1B (4)

Currently, there are mainly two tech-
niques leading to the realization of a general
2D transfer function with Roesser Model [1,
2]. Both of them dealt with the considered
2D transfer function (3) as a transfer func-
tion of one parameter (for example, z1) over
the field of rational functions in the other
parameter (i.e., z2).

The first realization technique [1] reduces
essentially to an implementation method for
a 2D rational transfer function using some
delay elements z1 and z2. The circuit imple-
mentation corresponds directly to a Roesser

model. The order of the realization is m+2n
(or n + 2m).

The second technique [2] is based on two-
step realization. The first-level realization
provides a 1D system with matrices having
entries on the field of rational functions in
one variable, and the second-level realization
gives the system matrices in Roesser’s form.
The order of the realization is also m + 2n
(or n + 2m).

For the transfer function of a particular
system, there may be some terms absent in
the polynomials d(z1, z2) and n(z1, z2). That
is to say, some power products zh

1 zk
2 may

have zero coefficient in the polynomials. It is
natural to consider that in such cases it may
be possible to have a realization with lower
order. In the next section, a new realiza-
tion constructive procedure will be proposed
for 2D general filters, by which a Roesser
state-space model with lower order may be
achieved.

3 New Constructive Realiza-

tion Procedure

Consider a general 2D transfer function

G(z1, z2) =
n(z1, z2)

d(z1, z2)
(5)

where it is assumed without loss of gener-
ality that d(0, 0) = 1 and n(0, 0) = 0. A
realization of G(z1, z2) can be constructively
obtained by the following procedure.

Step 1. Collect all the power products zh
1 zk

2

with non-zero coefficients occurring in
both d(z1, z2) and n(z1, z2), and con-
struct the column vectors Ψ̃1, Ψ̃2 and
Ψ̃12 by putting the collected power
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products zh
1 , zk

2 into Ψ̃1, Ψ̃2 accord-
ing to the descending total degree
lexicographic order and zh

1 zk
2 into Ψ̃12

according to the ascending total de-
gree lexicographic order, respectively.
It is assumed, without loss of general-
ity, that the order of z2 is higher than
z1 in this paper. Let Ψδ = z−1

δ Ψ̃δ,
δ = 1, 2 and nδ, n12 be the dimen-
sions of the vectors Ψδ and Ψ̃12, respec-
tively, i.e., Ψδ ∈ Rnδ , Ψ̃12 ∈ Rn12 , δ =
1, 2. Denote the jth element of Ψδ

by Ψδ(j), j = 1, · · · , nδ. Note that
Ψ1(1) = zh1

1 and Ψ2(1) = zk1
2 have the

highest order among the elements of
Ψ1 and Ψ2, respectively. In the case
that there is no collected power prod-
uct to put into, e.g., Ψδ, we denote it as
an empty vector by Ψδ = ∅ and set the
dimension of Ψδ to zero, i.e., nδ = 0.

Step 2. Fill all absent power products zh
1 , 0 ≤

h < h1 into Ψ1 following the descend-
ing total degree lexicographic order.
Carry out the same operation for Ψ2.
Thus the dimensions of the vectors
Ψδ, δ = 1, 2 are n1 = h1 + 1 and
n2 = k1 + 1, respectively. In the case
when Ψδ is empty, however, do not
carry out the filling operation.

Step 3. j = 0. If Ψ̃12 �= ∅, proceed to Step 4.
Otherwise, go to Step 6.

Step 4. j = j + 1.

If j > n12, go to Step 6.

Otherwise, for the jth entry of Ψ̃12, say
Ψ̃12(j) = zh

1 zk
2 , verify whether there

exists 1 ≤ j1 ≤ n1 or 1 ≤ j2 ≤ n2

such that (a) or (b) is satisfied.

(a) z−1
1 Ψ̃12(j) = z1Ψ1(j1) or

z−1
1 Ψ̃12(j) = z2Ψ2(j2)

(b) z−1
2 Ψ̃12(j) = z1Ψ1(j1) or

z−1
2 Ψ̃12(j) = z2Ψ2(j2)

• If yes, then insert z−1
1 Ψ̃12(j) =

zh−1
1 zk

2 into Ψ1 and set n1 = n1+1
when (a) is satisfied, or insert
z−1
2 Ψ̃12(j) = zh

1 zk−1
2 into Ψ2 and

set n2 = n2 + 1 when (b) is satis-
fied, according to the descending
total degree lexicographic order.

For the case that both the condi-
tions (a) and (b) are satisfied, in-
sert z−1

1 Ψ̃12(j) into Ψ1 at an ap-
propriate position and set n1 =
n1 + 1 when h ≥ k, or insert
z−1
2 Ψ̃12(j) into Ψ2 at an appropri-

ate position and set n2 = n2 + 1
when h < k.

Repeat Step 4.

• If no, go to Step 5.

Step 5. Insert z−1
1 Ψ̃12(j) into Ψ1 and set n1 =

n1 +1 when h ≥ k, or insert z−1
2 Ψ̃12(j)

into Ψ2 and set n2 = n2 + 1 when
h < k, according to the descending to-
tal degree lexicographic order. Mean-
while, also insert the corresponding
power product into Ψ̃12 as the (j+1)th
element Ψ̃12(j +1) and set n12 = n12 +
1. (Note that we do not follow the to-
tal degree lexicographic order here.)

Return to Step 4.

Step 6. Denote Ψ = [ΨT
1 ΨT

2 ]T . Let d̃(z1, z2) =
1 − d(z1, z2) and express d̃(z1, z2) and
n(z1, z2) in the forms of

d̃(z1, z2) =DHT ZΨ (6)

n(z1, z2) =NHT ZΨ (7)

where Z = diag{z1In1, z2In2}, and
DHT , NHT ∈ R1×(n1+n2) are row
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vectors whose entries are the corre-
sponding coefficients of d̃(z1, z2) and
n(z1, z2), respectively.

Step 7. Let τ ∈ Rn1+n2. Set the initial value of
τ(i) = 0 for i = 1, · · · , n1 +n2. Then
for i = 1, · · · , n1 + n2, let τ(i) = h if
there exists a Ψ(h) such that

Ψ(i) = z1Ψ(h) with 1 ≤ h ≤ n1, (8)

or, in the case that (8) is not satisfied,

Ψ(i) = z2Ψ(h) with n1+1 ≤ h ≤ n1+n2.
(9)

Construct the matrix A0 ∈
R(n1+n2)×(n1+n2) and the column vec-
tor B ∈ Rn1+n2 by the following
method. Set initially A0(i, j) = 0 and
B(i) = 0, i, j = 1, . . . , n1 + n2. For
i = 1, . . . , n1 + n2, let A(i, h) = 1 if
τ(i) = h �= 0, and let B(i) = 1 if
Ψ(i) = 1.

Similar to the basic idea of [14], we
have that

Ψ
1

d(z1, z2)
= (I − AZ)−1B (10)

with A = A0 + BDHT .

It follows from (7) and (10) that

G(z1, z2) =
n(z1, z2)

d(z1, z2)
= NHT ZΨ

1

d(z1, z2)

= CZ(I − AZ)−1B (11)

with C � NHT .

That is, (A, B, C) gives a realization for
G(z1, z2).

4 An Illustrative Example

A simple example is shown here to illustrate
some details of the procedure.

Example 1. Consider the transfer function

G(z1, z2) =
n(z1, z2)

d(z1, z2)

=
n01z2 + n11z1z2 + n12z1z

2
2

1 + d01z2 + d11z1z2 + d12z1z2
2

.

• As the power products in d(z1, z2) and
n(z1, z2) with non-zero coefficients are
{z2, z1z2, z1z

2
2}, we have that

Ψ̃1 = ∅, Ψ̃2 = [z2], Ψ̃12 = [z1z2, z1z
2
2 ]T

and Ψ1 = z−1
1 Ψ̃1 = ∅, Ψ2 = z−1

2 Ψ̃2 =
[1] with n1 = 0, n2 = 1.

• First, consider the entry Ψ̃12(1) =
z1z2. Because z−1

1 Ψ̃12(1) = z2Ψ2(1),
insert z−1

1 Ψ̃12(1) = z2 into Ψ1 to get
an updated Ψ1 as Ψ1 = [z2] with
n1 = 0 + 1 = 1.

Then, consider the entry Ψ̃12(2) =
z1z

2
2 . Because z−1

2 Ψ̃12(2) = z1Ψ1(1),
insert z−1

2 Ψ̃12(2) = z1z2 into Ψ2 to get
an updated Ψ2 as Ψ2 = [z1z2 1]T with
n2 = 1 + 1 = 2.

• Denote

Ψ =

[
Ψ1

Ψ2

]
=


 z2

z1z2

1




Next, let d̃(z1, z2) = 1 − d(z1, z2) and
express d̃(z1, z2) and n(z1, z2) in the
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forms of

d̃(z1, z2)=−d01z2 − d11z1z2 − d12z1z
2
2

=
[−d11 −d12 −d01

]z1 0 0
0 z2 0
0 0 z2




 z2

z1z2

1




�
= DHT ZΨ

n(z1, z2) = n01z2 + n11z1z2 + n12z1z
2
2

=
[
n11 n12 n01

]z1 0 0
0 z2 0
0 0 z2




 z2

z1z2

1




�
= NHT ZΨ.

• Let τ ∈ R3. Set the initial value
of τ(i) = 0 for i = 1, 2, 3. Since
Ψ(1) = z2Ψ(3), Ψ(2) = z1Ψ(1) and
Ψ(3) = 1, we have that τ(1) = 3,
τ(2) = 1 and τ(3) = 0.

Based on the values of τ(i), we can
now construct the matrix A0 as fol-
lows.

A0 =


0 0 1

1 0 0
0 0 0




Construct the column vector B as

B =
[
0 0 1

]T

because Ψ(3) = 1.

The matrix A can now be obtained as

A = A0+DHT B =


 0 0 1

1 0 0
−d11 −d12 −d01




It is easy to verify that

(I − AZ)−1B

=


 1 0 −z2

−z1 1 0
d11z1 d12z2 1 + d01z2



−1 

0
0
1




= Ψ
1

d(z1, z2)
.

Then it is straightforward to get that

G(z1, z2) = CZ(I − AZ)−1B

with C = NHT , and (A, B, C) giving a real-
ization for G(z1, z2).
Remark 1. As shown in Example 1, the
order of the realization by the proposed con-
structive procedure is 3, which is lower than
the one (m + 2n = 5) obtained by existing
procedures [1, 2]. It is obvious that the order
given by our procedure closely relates to the
number of the terms absent in d(z1, z2) and
n(z1, z2), and generally the more the absent
terms are, the lower the obtained order may
be. It should be noted, however, that if no
or few terms are absent, then the order of
the realization due to our procedure may be
higher than that obtained by the procedures
of [1, 2].
Remark 2. It is observed that the Roesser
model obtained in Example 1 is in fact a
minimal realization of the considered trans-
fer function. It is ready to see that if for an
(m + n)-order transfer function, the dimen-
sion of the constructed vector Ψ is n + m as
well, i.e., n1 +n2 = m+n, then the minimal
realization of Roesser model can be achieved.

It should be mentioned that G(z1, z2) used
in Example 1 does not satisfy the conditions
required by the methods of [3–12], and thus
the minimal realization cannot be reached by
these methods.

5 Conclusions

A constructive realization procedure has
been proposed for the 2D general filters.
Based on the procedure, a Roesser model
with lower order than the existing proce-
dures may be obtained. An example was
presented to illustrate the effectiveness of
the proposed realization procedure.
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