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       Abstract: - Network bandwidth is an important resource in the Internet. As high performance applications move to grids of clusters, connected through Internet, the measurement of network bandwidth becomes a critical and challenging issue.
We have developed a new network-bandwidth measurement method: PATH (PAcket-Train with Header) algorithm. For a large number of applications, PATH has improved practicability, accuracy and performance as compared to the existing algorithms such as PathChar, BProbe and Cartouche algorithms. PATH is the combination of single-packet and packet-pair algorithms. It is a sender-based algorithm that has been designed for ease of use by a user on the Internet.

To test and validate the PATH algorithm, we have developed two user-friendly tools: BAMA (BAndwidth Measurement Algorithms) simulator and ETVOC. We have used these tools and Network Simulator to implement the PATH algorithm and to compare it with the other algorithms. Through tests, using these tools, we are able to prove that, under heavy cross traffic, PATH is more accurate than existing sender-based algorithms. 

      Key-words: - Bottleneck link bandwidth, single packet, packet pair, packet train, PATH, SMSP and SDSP.
1. Introduction
Nielsen's Law of Internet bandwidth states that: “a high-end user's connection speed grows by 50% per year” [19]. Although over the last decade, the Internet bandwidth has increased enormously, the applications, which need greater bandwidth, have also proliferated. Hence monitoring the performance of the network, especially the network bandwidth, continues to be a challenging research field.
     In the context of Network Performance Characteristics, the term ‘bandwidth’ specifies the amount of data in bits that a network can transfer per second. For a multi-hop network, the capacity of a link is the amount of data per second that a hop or path can carry when there is no competing traffic. If there are H hops in a path and Ci is the capacity of link i, then the bottleneck link bandwidth [11] is 

[image: image1.wmf]C

C

i

H

i

=

=

min

.

.

.

0



(1)

Measuring bottleneck bandwidth is also of importance for network designers, networking protocols, web-servers, mobile computing and for guaranteeing QoS. There are many methods for measuring the bandwidth. However every available 
method is not equally appropriate for an ordinary Internet user, other than a network manager. Every user of data on bandwidth may not have access to the SNMP databases. A user may be interested in finding the bottleneck bandwidth between his workstation and a target. But he may not be able to load a software package on the target machine.

This paper presents an algorithm, titled PATH, which can be used by any Internet user, who may not have any rights to use any other machine, except his own workstation, on the Internet. PATH is a sender-based method, specifically designed for providing relatively accurate data for such applications.


Since the Grid is being developed, by common usage, as an IP-based network, the grid application tool-kit has to be made network-aware, so that it may be able to adapt process scheduling to the continuously varying environment. This is made possible by providing network parameters through a software module, and its associated protocol, (called Network Awareness Module, or NAM) which continuously monitors the status of the network. Similar work is being pursued by many researchers [2]. WebDedip [1], another cluster computing tool, is now being redesigned to work jointly with NAM so that an effective tool for use in a Grid environment can be created. All such tools require computation of bandwidth on the fly. 


The use of a Sender-based algorithm, which is accurate and which is not resource-hungry, would make NAM easier to use. PATH has been specifically developed for such an application.

2. The Existing Algorithms
By general consensus, packet dispersion techniques are the preferred methods for measurement of bandwidth. A number of research workers have worked on developing new algorithms based on packet dispersion. A packet dispersion algorithm injects carefully spaced datagrams into the network and the differences between the dispersions of probe packets are observed. The packet dispersion techniques estimate bandwidth of a link or an end-to-end path by measuring the dispersion.


Packet-pair methods, which form a class of packet dispersion techniques, have been studied by many researchers [4 to 10]. A packet pair algorithm requires sending out of two probe packets back-to-back. The bottleneck link on the path separates packets with the widest space. If this dispersion made by the bottleneck link is maintained through the rest of the path, by observing the dispersion of the packets one can infer the bottleneck capacity.
Practicability: Most of the packet-pair algorithms [4 to 9] for estimating the link bandwidth need to install software on the receiver side. This may add another layer to the middleware required for a grid environment. 


Single-packet and Sender-based Packet Pair algorithms are easy to implement. Based on the TCP/IP protocol, these do not need installation of any special software on the receiver side to measure the parameters of network. However the accuracy of measurement of the existing sender-based methods is much poorer than that of receiver-based algorithms.
Performance: To get better estimates of bandwidth, methods based on single-packet algorithms send out a large number of probe packets, which may consume a large part of the available bandwidth of the network. It affects the network performance adversely. 

PAcket Train with Header (PATH) has been developed for use with grid applications. It is based on the previous work of BProbe [11], packet-tailgating [5, 6], Pathrate[11, 12] and Cartouche [8] algorithms.  PATH is sender-based and it consumes relatively a smaller amount of bandwidth for the same high accuracy in measurement that is available by use of some of the receiver-based algorithms. 
3. The PATH Algorithm

3.1 Algorithm Description
There are two steps to implement the PATH algorithm:


First Step: We use simple single-packet algorithm (SMSP) to check the network structure and get the bottleneck link Lk. Compared with the standard single-packet algorithm (SDSP) [13], SMSP algorithm does not have to measure the bandwidth of each link of the whole network.  It only checks the position of the minimal bandwidth, which is the bandwidth of the bottleneck link. Although SMSP can give an estimate of the bottleneck link bandwidth, this value may not be accurate. It is only used as a reference value for the second step of the PATH algorithm.


In the case of 
Fig.1
, the bottleneck link (between router Rk-1 and Rk) is Lk. The main purpose of SMSP algorithm is to estimate the value of k. This greatly reduces the volume of traffic, as compared to the one that SDSP algorithm generates. 


The Second Step: Use Packet Train with header probe to measure the bandwidth of the link Lk.

In 
Fig.1
, suppose that the link between router Rk-1 and Rk is the bottleneck link Lk. The source sends out a header packet H and a packet train T1, T2,… Tn , as shown in Fig.2. Both the header and packet train are UDP packets. All the packets Ti of the packet-train are of the same size. Sh, the size of header packet H, is much larger than St, the size of Ti. Each Ti, packet has a data of only 8 bytes. This data is for identifying the packet.


The TTL of packet H is (k-1). Therefore the packet will be removed after it arrives at the router Rk-1. This releases the packet train to test the bottleneck link. The TTL of packet-train packet Ti is k. So the Ti packets  will stop at router Rk.  Rk would respond through an ICMP time-exceeded packet to the source. 

ICMP packets include the 8 bytes original data from the UDP packets. This identifies the packet. We can check these identifications to take into account the loss of packets and out-of-order receipt of packets.  

The estimated interval ΔtI is computed through the use of a probability density function [15].  The bottleneck bandwidth β can be calculated from equation (2):
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where St is the size of packet in the packet train.

In both the steps, a number of packets are sent till the result converges. This takes care of the problem of loss of some of the packets. The algorithm described in this paper has the limitation that it can be used only if the router at the beginning of the bottleneck link responds through an ICMP time-exceeded message. However the routers on the Internet paths are designed to respond with ICMP error messages. The ICMP rate limiting will not cause an error because the final result is obtained on the basis of a large number of readings. The results will be distorted only if the particular router is leading to a single link path to a web-server under a continuous DDoS attack. However under such an abnormal condition, no method of measurement will be able to provide correct results.
4.2 Cross Traffic
PATH algorithm works better than the standard sender-based algorithms under cross traffic. We consider two cases to discuss the effect of cross-traffic on the accuracy of measurements by PATH as well as by other available algorithms. In the structure of 
Fig.1
, cross traffic can exist in the link: between source computer and router Rk-1, or between router Rk and destination computer. 
i. Cross traffic may exist in the links between router Rk and the destination computer: Because all the PATH packets will stop at the router Rk, so the cross traffic in the link between router Rk and destination computer will not affect the measurement of PATH algorithm. 

But the other sender-based algorithms need to send packets to the destination computer. The cross traffic in the link between router Rk and destination computer will distort the spacing among the probes. This will adversely affect the accuracy of the estimates of bandwidth. 

ii. Cross traffic exists in the links between source computer and router Rk-1: In this case, the large header of PATH probe train can make packets T1, T2,… Tn  stay together before they reach router Rk-1. In Fig.3, suppose link Lj (between router Rj-1 and Rj) is part of the network in 
iii. Fig.1
, and j<k-1.  If Sh is large enough, H will temporarily block the link Lj. If the packet train packets, T1, T2, … Tn, reach the router   Rj-1 during the transmission of the header packet H in the link Lj, they will queue in the router Rj-1 and wait until the header packet is received by Rj. After H is received by Rj, packet train T1, T2,… Tn will be transferred as shown in Fig.3. The link Lj may cause the appropriate packet dispersion
Fig.4 shows the packet train as it reaches router Rj. Again, the packets will wait in the queue of Rj and the intervals among the packet-train packets will become zero. So if the header is large enough, it can keep the packet train together until they reach the bottleneck link. 


Consider that the link Lj has cross traffic. Fig.5 shows that the cross traffic packet waits in the queue of router Rj-1. CT is the cross traffic packet. From Fig.6 and Fig. 8, if the cross traffic is not to go to link Lj+1. it will not be in the same queue of router Rj. The intervals between the packet-train packets will become zero again. So this kind of cross traffic will not affect the result of PATH algorithm. But it will affect the spacing among the probes in the other sender-based algorithms.
So under cross traffic, PATH may generate more accurate estimates of bandwidth than the estimates by other sender-based methods.

4. Test Results
Since it is difficult to test PATH and other algorithms, under different types of cross traffic on Network Simulator-2 [16], we have used BAMA Simulator [17] for the purpose. We used Network Simulator [NS] to verify the BAMA simulator.  Based on the same parameters, we used the BAMA simulator and Network Simulator respectively to implement BProbe.  By comparing the results, shown in Figures 9 and 10, we can see that the distributions of the estimated results are similar and the accuracy of estimation is the same. Test results and test data for further validation of BAMA is available in the Technical Report on BAMA [17].
The workload and the dataset for the network path has been taken from the papers describing other algorithms, with which PATH has been compared. For cross-traffic simulations, we have shown results for 6 Mbps or less. We have tested PATH for a traffic, which is a scale higher than this level. However since no comparable results from real test-beds have been reported for other algorithms, it is difficult to validate such results by using BAMA alone.  

4.1 The comparison of PATH with other algorithms by using BAMA Simulator

We have compared PATH with three other algorithms, namely the Packet Train, BProbe and Cartouche algorithms.

4.1.1 PATH without ACK vs Packet Train

PATH without ACK algorithm can get 99.99% accurate result with Flow Rate A in Table 1. When we remove the big header (it becomes packet-train algorithm), the accuracy percentage drops to 91.66%. If we add cross traffic on other links, as shown in Flow Rate B in Table 1, PATH without ACK algorithm can obtain an accuracy of  98.17%. The packet train is able to give a lower accuracy of 90.3%. 

4.1.2 PATH vs BProbe

We find that PATH can get 100% accuracy estimate while BProbe can get 93.16% with Flow Rate A in Table 1. If we add cross traffic on other links, as shown in Flow Rate B in Table 1, PATH algorithm has an accuracy of 94.54% and BProbe gets 87.70%. 

It is assumed that there is no cross traffic on the return path.

4.1.3 PATH vs Cartouche

Cartouche algorithm is similar to the PATH without ACK.  The major difference between Cartouche algorithm and the PATH is that Cartouche algorithm discards some probes to enlarge the space between the packet pair. Our tests show that both PATH and Cartouche can obtain almost 100% accuracy with cross traffic as in Flow Rate A in Table 2. If we add cross traffic, as shown in Flow Rate B in Table 2, the accuracy of PATH falls to 94.85% and that of Cartouche to 94.41%.  


However PATH is a Sender-based algorithm, whereas Cartouche is a Receiver-based algorithm. The dataset has been chosen so that there is no cross traffic on the return path.

4.2  Testing of PATH and B Probe Algorithms using Network Simulator

Table 3 shows the network structure and parameters that we simulated by using Network Simulator.  To implement the BProbe algorithm, with cross traffic, the sender sent out 10 probes in each run. These probes will reach the destination server and ACK packets will be returned. The sender will record these ACK packets when they arrive at the sender. We sent out 1000 runs to test BProbe algorithm. 
Fig.11
 displays the results.  It shows that, using BProbe algorithm, 3787 / 8594 = 44.07% of estimates are in the bin 1535 –1600 kbps (The bottleneck link bandwidth is 1544 kbps). 


PATH algorithm sends out a large packet header and 10 probes in each run. Header packet will stop after it passes the link 9 and the other 10 probes will be released at the link 10 and stop. ICMP packets will be sent out and the sender will record the time when they arrive at the sender. 


We sent out 1000 runs. In the estimates of Fig.12, there are 8385 / 8564 = 97.90% of estimates in the bin 1535 –1600 kbps (The bottleneck link bandwidth is 1544 kbps).  Thus the tests show that PATH yields a greater accuracy in measurement as compared to B Probe. 

4.3 
Comparison of SDSP and SMSP
The difference of traffic volume generated by SDSP and SMSP is measured using a tool called Estimation of Traffic VOlume for Convergence (ETVOC) [18].


The network between Colby College, Waterville, Maine and San Diego Supercomputing Center was named by Downey [13] as the SDSC dataset. We have used the SDSC dataset [13, 14] for testing.


To compare SDSP and SMSP algorithms, using ETVOC, we first send a small number of packets and check the measurements. Based on these measurements, we estimated the position of the bottleneck link (for SMSP) and the bandwidth of each link (for SDSP). If the estimates are not convergent [13], we will go on sending more packets to get additional measurements. The tool will stop only when either the estimation results are convergent or we reach the maximum probes limit. 


To detect convergence, we divided the sample into two parts, odd and even. By using these two sub-samples, we can get three estimates [13]: one from odd sub-sample, one from the even part, and one from the whole sample. If the difference between the largest and smallest of these three estimates is less than 10% of the smallest, we will assume that the measurement has  converged to the final estimate.


After sending a small number of packets (we call it the first “run”), we check whether the measurements converge. If the measurements do not converge, we will send out more packets to get more measurements. There are two ways to send the second run packets:

· Send packets with the same size

There are 64 packets for each link in the first run. Each packet is of 120 bytes. The size of packets in the following runs will be increased by 32 bytes each time. For example, in the second run, we will send another 64 packets and their size is 152 bytes and so on.

By using this method to implement the tool to compare SDSP and SMSP, we found that the SMSP can get accurate position after the fourth run. For SDSP, most links can get convergent results only after 29 runs. The bandwidth measurements for some links do not converge even after 45 runs.

· Send packets with different sizes

In this case, in the first run, there are 90 packets of 45 different sizes (from 120 bytes to 1528 bytes) for each link. It is two packets for each size. In the second run, we will send another 90 packets of 45 different sizes for each link, and so on.

The experiments show that, SMSP can get an accurate result after the third run while SDSP cannot get convergent results for some links even after 32 runs. 

The experiments prove that SMSP consumes much less bandwidth than SDSP. The methods based on standard single-packet algorithm consume a large part of the available network bandwidth and may affect the network performance. SMSP algorithm reduces the data traffic that PATH generates and improves the efficiency of the PATH algorithm.

5. Conclusions and Future Work
As the Internet grows in complexity and scale, accurate measurement of network performance becomes increasingly important. For example the goal of bandwidth estimation techniques in a grid or a multi-cluster environment is to obtain the network bandwidth accurately as soon as a new node becomes available.


The paper presents a new bottleneck link-bandwidth estimation algorithm: PATH. It is a sender-based algorithm and easy to implement. Our experiments, on Network Simulator and on BAMA Simulator show that PATH is not only appropriate for use in Load Balancing algorithms on a grid, it is more accurate than the other available measurement methods. 


By using another tool called ETVOC, our experiments show that the SMSP algorithm sends much less data traffic volume than the SDSP algorithm.

5.1 Future Work

Most sender-based algorithms do not work well when the number of nodes is greater than 10. The performance of the PATH algorithm should be better because only the path between the sender and the bottleneck link will affect the estimate. The experiments that we have used to verify the PATH algorithm are based on the simulators (BAMA and Network Simulator). The next stage of testing may be on a test-bed. PATH may be further tuned for better performance with these tests. By collaborating with some large ISP, production tests could be the final method of tuning PATH. We are working on integrating PATH with NAM and WebDedip, the two tools, which are being developed by our research group. PATH may also be used in a Web Service application or with any other GRID tool-set.
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	Bandwidth (bps)
	Latency
	Cross Traffic Flow Rate A

(bps)
	Cross Traffic Flow Rate B

(bps)

	Link 1
	1600K
	10ms
	0
	10K

	Link 2
	450K
	100ms
	4500K
	4500K

	Link 3
	400K
	100ms
	0
	10K

	Link 4
	1200K
	10ms
	0
	10K

	Link 5
	100K
	10ms
	0
	10K

	Link 6
	1000K
	10ms
	0
	10K

	Link 7
	600K
	10ms
	0
	10K


Table 1 Parameters for comparison of PATH, Packet Train and BProbe

	
	Bandwidth (bps)
	Latency
	Cross Traffic Flow Rate A

(bps)
	Cross Traffic Flow Rate B

(bps)

	Link 1
	1600K
	10ms
	0
	10K

	Link 2
	450K
	100ms
	4500K
	4500K

	Link 3
	400K
	100ms
	0
	10K

	Link 4
	1200K
	10ms
	0
	10K

	Link 5
	100K
	10ms
	0
	10K

	Link 6
	1200K
	10ms
	0
	10K

	Link 7
	400K
	10ms
	0
	10K

	Link 8
	450K
	10ms
	0
	10K

	Link 9
	1600K
	10ms
	0
	10L


Table 2 Parameters for comparison of PATH and Cartouche

	
	Bandwidth (bps)
	Latency
	Cross traffic flow rate (bps)

	Link 1
	2 Mb
	10ms
	200 k

	Link 2
	622 Mb
	10ms
	200 k

	Link 3
	10 Mb
	10ms
	200 k

	Link 4
	2 Mb
	10ms
	2500 k

	Link 5
	5 Mb
	10ms
	6000 k

	Link 6
	10 Mb
	10ms
	200 k

	Link 7
	16 Mb
	10ms
	200 k

	Link 8
	51 Mb
	10ms
	200 k

	Link 9
	2 Mb
	10ms
	200 k

	 Link 10
	1.544 Mb
	10ms
	200 k

	 Link 11
	10 Mb
	10ms
	200 k

	 Link 12
	16 Mb
	10ms
	200 k

	 Link 13
	622 Mb
	10ms
	200 k

	 Link 14
	2 Mb
	10ms
	200 k


Table 3 Parameters for comparison by using Network Simulator
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