Task Allocation in Multi-Agent Systems with Swarm Intelligence of Social Insects
X. ZHUANG AND N. E. MASTORAKIS
HIEST and WSEAS
Agiou Ioannou Theologou 17-23, 15773, Zografou, Athens, GREECE

Abstract: - The Ant Task Allocation algorithm is proposed for task allocation in multi-agent systems, which is inspired by the swarm intelligence of social insects. The Ant Task Allocation algorithm is a variation of the Ant Colony Optimization, in which the task selection model of honeybees is adopted. In the simulation experiments, the Ant Task Allocation algorithm achieves efficient and reasonable task allocation in a random working environment. Moreover, when the working condition changes, the proposed algorithm implements effective and efficient task re-allocation. Experimental results indicate the adaptability and robustness of the Ant Task Allocation algorithm.
Key-Words: - Multi-agent system, multi-robot, task allocation, swarm intelligence, ant colony optimization, ATA algorithm
1
Introduction

Intelligent robot techniques have been intensively studied and widely applied in many fields of the human society. With the increasing demands of new applications, single robot systems can not meet the requirements of more and more complex tasks. As a promising solution, multi-robot systems have become a field of great research interest because they have advantages over single robot systems, such as the system’s reliability and robustness[1]. Cooperation is the key problem in the control of multiple robots, which determines the effectiveness and efficiency of multi-robot systems. In recent years, the research of multi-agent theory makes the theoretical foundation of multi-robot systems[2]. The design of cooperating multi-agent systems has been investigated from a standpoint of system engineering. The cooperation of the agents derives from the agents’ interaction with others and the environment. Therefore, it is of high complexity and difficulty to achieve cooperation in the agent group by the design of individual behaviors. Moreover, the difference of robots’ capability and the changing conditions in dynamic environments require adaptive task-allocation for optimal working performance, which can not be well satisfied by pre-determined task allocation methods.

Swarm intelligence has become a new field in the artificial intelligence research, which is inspired by the social insects that display intelligence on the swarm level with simple interacting individuals[3]. The Ant Colony Optimization (ACO) is a typical case of swarm intelligence that has been widely applied in the applications of optimization[4]. Since labour division is a crucial feature in social insects, the success of many insect colonies in the natural selection indicates the biologically inspired approach is a promising way for the solution of complex cooperation problems in multi-agent systems.
For complex tasks, task allocation is the basis of cooperation in multi-agent systems. In this paper, the Ant Task Allocation (ATA) algorithm is proposed based on the task selection model of honeybees and the Ant Colony Optimization. The ATA algorithm is a variation of ACO, in which task allocation is learned with the agent group as an ant colony. Experimental results show that the ATA algorithm can perform efficient and reasonable task allocation in a random working environment. Moreover, when the number of agents change, the ATA algorithm can implement efficient task re-allocation, which makes the system adaptive and robust.
2
Task allocation with swarm intelligence
2.1
Task Selection Based on the Model of Honeybees
Honeybees are considered as a kind of highly developed social insect. In honeybee colonies, individuals are specialized for different tasks by task selection with the response threshold, which enables high efficiency of the colony[5,6]. The task selection is in a random manner. Therefore, one individual may engage in several tasks. However, there may be great difference in the individual’s threshold values for different tasks. The probability of selecting a certain task is proportional to the stimulus intensity of the task, and to the reciprocal value of the individual’s response threshold for that task[5]:

[image: image36.png]

 (1)
where P(T) is the probability of selecting task T. S is the stimulus intensity of T.
[image: image2.wmf]q

 is the individual’s response threshold for T.

Tasks can always be divided into different categories. For the task allocation method proposed in this paper, the response threshold is defined for different categories of tasks rather than particular tasks. According to the task selection model of honeybees, the task selection probability is defined as following:

[image: image3.wmf]å

=

=

M

k

ik

k

ij

j

j

i

S

S

T

P

1

)

(

)

(

q

q

 (2)
where Tj represents the tasks of the j-th category.
[image: image4.wmf])

(

j

i

T

P

 is the i-th agent’s selection probability for Tj. Sj is the current stimulus intensity of Tj, which reflects the current task amount of Tj. M is the number of task categories.
[image: image5.wmf]ij

q

is the i-th agent’s response threshold for Tj . The smaller the response threshold, the larger the tendency of selecting the corresponding task. With different response thresholds, agents are specialized for different categories of tasks, i.e. the task allocation can be achieved.

2.2
The Ant Colony Optimization
In the task selection method proposed in 2.1, the constant response threshold is not suitable to the changing of working conditions, such as the changing of task amount, the number of workers, etc. In this paper, a learning process is introduced with the Ant Colony Optimization, based on which the Ant Task Allocation algorithm is proposed.
The Ant Colony Optimization (ACO) is an algorithm inspired by the phenomenon that ants can always find the shortest path from their colony to the food source[4,7]. The ACO algorithm has been widely applied in optimization problems. In ACO, the solution to a problem corresponds to a state-transfer path from the starting state to the goal state. Each ant in the ACO algorithm moves from one state to another randomly with probability according to the pheromone trial density. When every ant in the colony has finished its tour in the discrete state space, the pheromone trail is updated based on each ant’s performance, i.e. the quality of the solutions found. With the positive feedback process and the partiality for better solutions, the ACO algorithm can quickly find solutions of high quality.
The configuration of the ACO can be modified to suit different real-world applications. The configuration of the ACO includes:
1. The set of starting states S

2. The set of goal states G

3. The number of the ants

4. The termination condition of each ant’s state transfer

5. The definition of the path cost
In this paper, the response thresholds are updated by the agents with the positive feedback process in ACO to achieve adaptive and robust task allocation, which is the underlying idea of the Ant Task Allocation algorithm.
Therefore, the cost can reflect how skilled an agent is in a specific category of tasks and the agent tends to be specialized for those tasks it is skilled in. With the positive feedback mechanism of the ant optimization, reasonable task allocation can be efficiently achieved in the agent group. The flow-chart of the ATA algorithm is shown as Fig. 1.

 The ATA algorithm is a variation of the Ant Colony Optimization, which differs from ACO in two major aspects. First, the ATA algorithm is for dynamic task allocation in an environment where task requirements arise randomly. On the other hand, the ACO is widely applied in static optimization problems such as the travelling salesman problem (TSP), the quadratic assignment problem (QAP), etc[4]. Second, the ants in ACO share a common pheromone field because they need to build a common optimal solution to the problem. On the other hand, in the ATA algorithm each agent keeps its private record of its response thresholds for different task categories to achieve specialization.
2.3
The Ant Task Allocation Algorithm
The Ant Task Allocation (ATA) algorithm is proposed based on the honeybee’s task selection model and the ant optimization. In the ATA algorithm, each agent select its current task randomly according to the probability defined in (2). When an agent finishes its current task, the threshold for that category of task is updated according to the agent’s working performance:

[image: image6.wmf])

(

)

(

)

1

(

t

t

t

ij

ij

ij

q

r

q

q

D

×

-

=

+

 (3)
where
[image: image7.wmf])

(

t

ij

q

 and
[image: image8.wmf])

1

(

+

t

ij

q

 are the thresholds of the i-th agent for the j-th category of task at iteration t and t+1 respectively.
[image: image9.wmf]r

 is the learning rate which is a small positive value.
[image: image10.wmf])

(

t

ij

q

D

 is the value of threshold updating, which is defined as following:

[image: image11.wmf])

(

1

)

(

t

C

t

ij

ij

=

D

q

 (4)

where
[image: image12.wmf])

(

t

C

ij

 is the cost of the i-th agent to accomplish the j-th category of task at iteration t. Different applications may have different definitions of the cost, such as the time or energy consumed to finish the task. The value for threshold updating is proportional to the reciprocal value of the cost. The better an agent performs a task, the smaller the cost. And the smaller the cost, the faster the corresponding threshold decreases. This is the same kind of positive feedback mechanism as in ACO, which causes that each agent will be more and more likely to choose the tasks it is skilled in.

Therefore, the cost can reflect how skilled an agent is in a specific category of tasks and the agent tends to be specialized for those tasks it is skilled in. With the positive feedback mechanism of the ant optimization, reasonable task allocation can be efficiently achieved in the agent group. The flow-chart of the ATA algorithm is shown as Fig. 1.
The ATA algorithm is a variation of the Ant Colony Optimization, which differs from ACO in two major aspects. First, the ATA algorithm is for dynamic task allocation in an environment where task requirements arise randomly. On the other hand, the ACO is widely applied in static optimization problems such as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), etc[4]. Second, the ants in ACO share a common pheromone field because they need to build a common optimal solution to the problem. On the other hand, in the ATA algorithm each agent keeps its private record of its response thresholds for different task categories to achieve specialization.
3
Simulation experiments
In the computer simulation experiments, the agents’ workspace is discretized. The x coordinate and y coordinate are discretized into 6 and 4 intervals respectively. There are 24 discrete positions in the workspace. Moreover, the workspace is divided into six local areas, which can be considered as six categories of tasks. Each local area is a square of 4 positions, which is shown as Fig. 2.
[image: image1.wmf]q

S

T

P

µ

)

(

Begin

Randomly initialize the response

thresholds for each agent

For the agents free from task,

calculate the probability values

of task selection, and then

select one of the current tasks

For the agents engaged in tasks,

let them do their tasks

For the agents that just finished

their current tasks, update the

corresponding response thresholds

 Is the iteration time larger than no
a pre-defined value?

 yes

End

Fig. 1 The flow-chart of the ATA algorithm
[image: image13.png]FAea I -Area 2--frea 3

[-Area d-{-Area 5-Area 6-{

Fig 2. The workspace of the multi-agent system

Six agents are distributed in the workspace to move around and do the work on the discrete positions. The task amount on each position is increased randomly. On each position, the amount of work is increased by 1.0 with a probability of 0.1 in each learning iteration. In every iteration, each agent can move one step towards the target position, or decrease the amount of work by 1.0 if it is already on the target position. If the amount of work is decreased to zero, the task on that position is finished and the corresponding agent is free. The total task amount is the sum of the task amount for each position in the workspace. Reasonable task allocation among the agents is required to keep the total amount of work on a stable level as low as possible. The workspace is an abstract one that can serve as a benchmark problem to evaluate dynamic task allocation algorithms.

3.1
The Experiment of Labour Division by the ATA Algorithm
Initially, the six agents are randomly distributed in the workspace and the thresholds are assigned the value of 20. Then the ATA algorithm is implemented for task allocation. The agent’s cost of finishing one task is defined as its moving time to the target position. The more the responsibility of an agent for an area, the lower the corresponding threshold. Therefore, for each agent the areas of thresholds lower than 6.0 are regarded as its own allocated working area. The task allocation result is obtained after 4000 learning iterations, which is shown as Fig. 3. Fig. 3 shows that each agent has neighboring areas as its working area. All the working areas of the agents cover the whole workspace. Since working in neighboring areas can reduce the time of moving to target positions, the task allocation result is reasonable. On the other hand, the division of the workspace into working areas indicates the cooperation of the agents to do the tasks. Moreover, there are overlaps between some agents’ working areas, which indicates another kind of cooperation that agents may undertake tasks together in a common neighboring area.
[image: image14.png]

[image: image15.png]

(a) The working area of Agent1 (b) The working area of Agent2
[image: image16.png]

[image: image17.png]

(c) The working area of Agent3 (d) The working area of Agent4
[image: image18.png]

[image: image19.png]

(e) The working area of Agent5 (f) The working area of Agent6
Fig. 3 The result of task allocation for the six agents (the gray local areas are the corresponding working area allocated to the corresponding agent)
To investigate the practical working situation of the agents, the frequencies of each agent to visit the local areas are recorded. Fig. 4 shows the most frequently visited area of each agent. In Fig. 4 there is no overlap among the most frequently visited areas of the agents. It is indicated that although there are overlaps in the task allocation of the agents, each agent virtually concentrates on independent local area. The overlaps in task allocation is a kind of redundancy that can ensure fault-tolerance, while the concentration of the agents on independent local areas in practice guarantees high efficiency.
To investigate the performance of the task allocation with the ATA algorithm, the average total task amount is calculated every 600 iterations. We get Fig. 5 according to the data obtained in the experiment. The x coordinate in Fig. 5 represents the time ordinal numbers at which the statistical data is recorded. Fig. 5 shows that the average total task amount has a decreasing tendency with vibration.
[image: image20.png]

[image: image21.png]

 (a) The most frequently visited (b) The most frequently visited
 local area of Agent1 local area of Agent2
[image: image22.png]

[image: image23.png]

 (c) The most frequently visited (d) The most frequently visited
 local area of Agent3 local area of Agent4
[image: image24.png]

[image: image25.png]

 (e) The most frequently visited (f) The most frequently visited
 local area of Agent5 local area of Agent6
Fig. 4 The most frequently visited local area for the six agents (the black local area is most frequently visited by the corresponding agent)
[image: image26.png]35

a0

10

15

[image: image27.png]

The learning time

Fig. 5 The relationship between the average total task amount and the learning time

3.2
The Experiment of Task Re-Allocation with the ATA Algorithm when the Working Condition Changes
To investigate the robustness of the ATA algorithm, Agent6 is removed after 4800 iterations when the task allocation has become stable. Task re-allocation occurs after Agent6 is removed. Fig. 6 shows the re-allocation result of the working areas. Compared with Fig. 3, Fig. 6 shows that the working area which formerly belongs to Agent6 is now undertaken by Agent2, Agent4 and Agent5.
Fig. 7 shows the performance of task re-allocation with the ATA algorithm according to the data obtained in the experiment. The average total task amount is calculated every 1000 iterations. The dotted line a shows the case of task allocation with 5 agents from the beginning. The real line b shows the case of task allocation with 6 agents at beginning and 5 agents remaining after 4800 iterations. Fig. 7 indicates that after removing Agent6 the average total task amount increases and then is kept on the same level as the case of 5 agents from the beginning. The result proves the task re-allocation is effective and efficient.
[image: image28.png]

[image: image29.png]

(a) The working area of Agent1 (b) The working area of Agent2
[image: image30.png]

[image: image31.png]

(c) The working area of Agent3 (d) The working area of Agent4
[image: image32.png]

(e) The working area of Agent5

Fig. 6 The result of task re-allocation with the ATA algorithm after Agent6 is removed

[image: image33.png]

[image: image34.png]

The learning time

Fig. 7 The performance of task re-allocation with the ATA algorithm

3.3
The Experiment of Task Allocation with the ATA Algorithm for Unbalanced Task Distribution in the Workspace
In the above experiments, the amount of work is increased with the same probability of 0.1 on each position in the workspace, i.e. the work load is evenly distributed in the workspace. In another experiment, different local areas are assigned different probability for increasing the work amount. For Area1 to Area6, the probability values are assigned 1/20, 1/18, 1/16, 1/14, 1/12 and 1/10 respectively. The result of task allocation with six agents is shown as Fig. 8. Compared with Fig. 3, with the increase of total work load, the number of local areas allocated to each agent also increases. According to Fig. 8, the number of the agents assigned to each local area can be obtained as Table 1. In Table 1, the total work load for each local area is the sum of the task amount on each position of that area in the whole learning process. Table 1 indicates that the number of the agents assigned to a local area is appropriate for its work load. The experimental result proves another adaptability of the ATA algorithm that more agents will be assigned to the category of task that has higher work load.
[image: image35.png]

 (a) The working area of Agent1 (b) The working area of Agent2

 (c) The working area of Agent3 (d) The working area of Agent4

 (e) The working area of Agent5 (f) The working area of Agent6
Fig. 8 The result of task allocation for the six agents with unbalanced task distribution (the grey local areas are the corresponding working area allocated to the agents)

4
Conclusion

In this paper, the Ant Task Allocation (ATA) algorithm for multi-agent cooperation is proposed, which is inspired by the swarm intelligence of social insects. The ATA algorithm is proposed based on the task selection model of honeybees and the Ant Colony Optimization. In the experiments, the ATA algorithm achieves efficient and reasonable task allocation in a random working environment. Moreover, effective and efficient task re-allocation is achieved when the working condition changes. Experimental results indicate that the ATA algorithm is adaptive and robust for task allocation in multi-agent systems.
Table 1 The total work load of each local area and the corresponding number of agents assigned

	Local Area
	Probability of task amount increasing
	Total work load in the local area
	Number of agents assigned

	Area1
	1/20.0
	3992
	2

	Area2
	1/18.0
	4463
	3

	Area3
	1/16.0
	5025
	3

	Area4
	1/14.0
	5611
	3

	Area5
	1/12.0
	6714
	4

	Area6
	1/10.0
	8093
	4

References:

[1] Tamio Arai, Enrico Pagello, Lynne E. Parker, Editorial: Advances in Multi-Robot Systems, IEEE Transactions on Robotics and Automation, Vol. 18, No. 5, October 2002, pp.655-661.

[2] M. Fisher and M. Wooldridge, On the formal specification and verification of multi-agent systems, International Journal of Cooperative Information Systems, 6(1), 1997.
[3] Bonabeau E., Dorigo M. and Theraulaz G., Swarm Intelligence, From Natural to Artificial Systems, Oxford University Press, Oxford, 1999.
[4] M. Dorigo， G. Di Caro and L. Gambardella, Ant Colony Optimization: New Meta-Heuristic, Proceedings of the Congress on Evolutionary Computation, 1999, pp. 1470-1477.
[5] Dornhaus A, Klugl F, Puppe F, Tautz J, Task selection in honeybees - experiments using multi-agent simulation, The 3rd German Workshop on Artificial Life, 1998, pp. 171-183.
[6] D. M. Gordon. The organization of Work in Social Insect Colonies, Nature 380, 1996, pp. 121-124.
[7] Denebourg, J.L., Pasteels, J.M., and Verhaeghe, J.C., Probabilistic Behaviour in Ants: a Strategy of Errors? Journal of Theoretical Biology, 1983, pp. 105.

 The average total task amount

 The average total task amount

11

_1139771965.unknown

_1139860252.unknown

_1140028286.unknown

_1140028467.unknown

_1139860286.unknown

_1139814508.unknown

_1139814559.unknown

_1139814684.unknown

_1139814435.unknown

_1139771504.unknown

_1139771800.unknown

_1139771372.unknown

