
Finding Characteristic Polynomials for LFSMs

Used as Test Pattern Generators

Dimitri Kagaris

Electrical and Computer Engineering Department

Southern Illinois University

Carbondale, IL 62901

USA

Abstract: – A built–in Test Pattern Generation (TPG) mechanism that is very popular for pseudorandom
or pseudo–exhaustive TPG is a shift register whose initial portion is configured as a Linear Feedback Shift
Register (LFSR), or some other kind of a Linear Finite State Machine (LFSM). A fundamental problem
that exists in this mechanism is the presence of linear dependencies among the bit sequences produced by
different stages. A formula that relates the linear dependencies with the characteristic polynomial of any kind
of LFSM has been recently found. In this work we show how the computation of this formula can be made
faster. This allows the faster computation of an appropriate characteristic polynomial for the target LFSM
so that linear dependecies are minimized.

Keywords: – Built–in Self–Test, Test Pattern Generation, Linear Finite State Machines.

1 Introduction

In built–in self–test (BIST) test pattern generation

(TPG), test stimuli that are needed to test a chip are pro-

duced by hardware that is added on the same chip. The

test patterns can be produced in a deterministic, pseudo-

random, or pseudoexhaustive manner [1]. For pseudoex-

haustive or pseudorandom TPG, an established approach

is to use a combination of a Type–1 LFSR with a sim-

ple shift register (SR), known as LFSR/SR or Extended

LFSR (Fig. 1). The shift register part is in most cases

identified with the scan chain. When the LFSR part of

the LFSR/SR is initialized by a non–zero vector (seed),

it cycles through p distinct states, where p is the period

of the characteristic polynomial of the LFSR. As the suc-

cessive states of the LFSR are shifted through the SR

part, they provide test patterns for the test–phase in-

puts. Each test–phase input of the circuit under test is

identified by its relative position in the LFSR/SR. The set

of test–phase inputs upon which each test–phase output

depends will be referred to as Aset (Affector set). The

maximum Aset size will be denoted by w. The maximum

Aset size can be optionally reduced by introducing extra

test–phase inputs (see [1, 7, 16, 9, 13]). If w is relatively

small, then pseudoexhaustive testing could be applied to

test the circuit in 2w cycles (or another power close to

2w). Otherwise, pseudorandom testing is done for a pre-

scribed number of R cycles, where R is determined by

the level of fault coverage desired and is in general much

smaller than 2w.

The problem with the generation of patterns by such a

mechanism is that a subset of stages may take on values

that are linearly dependent, so that if this subset is needed

in some Aset A, the corresponding test–phase output is

never going to have all of its 2|A| possible input patterns

for pseudoexhaustive TPG. The problem with such linear

dependencies is also present in pseudorandom TPG, in

the sense that the more linear dependencies occur, the less

random the generated patterns are [5]. In other words,

even if pseudorandom TPG will not apply all possible

test patterns, one does not want to exclude beforehand

that certain patterns will never be applied. (This has

been called the principle of possible exhaustion [2].) The

issue of linear dependencies has been studied by various

researchers (see, e.g., [5, 3, 10, 12]).

...

...

... ...

C-1 d+1 d d-1 1C-2 C-3
cccccccc

... ...

0

Fig. 1. Block diagram of an LFSR/SR with C stages

(first d stages are configured in an LFSR).

A relation between linear dependencies among the

stages of a Type–1 LFSR/SR and the characteristic

polynomial P (x) of the LFSR has been established in

[4, 11, 15]. This formula has been generalized for any

kind of LFSM in [8]. Both of these formulas are analyzed

in Section 3. In this work, we show how the generalized

formula can be computed faster. This allows for the faster

identification of an appropriate characteristic polynomial,

so that the linear dependencies are minimized.

2 Preliminaries

Built–in TPG mechanims use some type of a Linear Finite

State Machine (LFSM), such as Type–1 LFSRs, Type–

2 LFSRs and Cellular Automata (CA), among others.

Different LFSMs have different hardware overheads and

diferrent behavior in terms of the sequence of states that

they generate. We start with the formal definition of an

LFSM.

A finite state machine with n inputs, m outputs, and

f binary memory stages (flip–flops) is called a Linear Fi-

nite State Machine if for the current state vector s, in-

put vector x, and output vector y, the next state vector

snew and the present output vector y can be expressed as

snew = As + Bx and y = Cs + Dx, where A, B, C, D are

matrices of dimension f ×w, f ×n, m×w, m×n, respec-

tively, and the addition is done mod 2 (XOR operation).

When used as test pattern generators the LFSMs, have

no external inputs (they are autonomous), that is, ma-

trices B and D above are 0. Such an LFSM L will be

denoted using the notation L = (A, C). In addition, for

most test pattern generators , matrix C is is in fact equal

to the identity matrix I, that is, the output vector is just

the state vector, but there are also cases where this is not

so.

A =

 Type-1 LFSR

 0 0 0 0 0 0 0 0 0 0 1

 1 0 0 0 0 0 0 0 0 1 1

 2 0 0 0 0 0 0 0 1 1 1

 3 0 0 0 0 0 0 1 1 1 1

 4 0 0 0 0 0 1 1 1 1 0

 5 0 0 0 0 1 1 1 1 0 1

 6 0 0 0 1 1 1 1 0 1 0

 7 0 0 1 1 1 1 0 1 0 1

 8 0 1 1 1 1 0 1 0 1 1

 9 1 1 1 1 0 1 0 1 1 0

 10 1 1 1 0 1 0 1 1 0 0

 11 1 1 0 1 0 1 1 0 0 1

 12 1 0 1 0 1 1 0 0 1 0

 13 0 1 0 1 1 0 0 1 0 0

 14 1 0 1 1 0 0 1 0 0 0

 15 0 1 1 0 0 1 0 0 0 1

 16 1 1 0 0 1 0 0 0 1 1

 17 1 0 0 1 0 0 0 1 1 1

 18 0 0 1 0 0 0 1 1 1 1

 19 0 1 0 0 0 1 1 1 1 0

 20 1 0 0 0 0 1 1 1 0 1

 21 0 0 0 1 1 1 1 0 1 0

 22 0 0 1 1 1 1 0 1 0 1

 23 0 1 1 1 1 0 1 0 1 1

Cyc 9 8 7 6 5 4 3 2 1 0
Stages

c0c1
c3 c2

. . .

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 1

P(x) = x
4

+ x + 1
3

(a)

A =

 0 0 0 0 0 0 0 0 0 0 1

 1 0 0 0 0 0 0 0 0 1 1

 2 0 0 0 0 0 0 0 1 0 0

 3 0 0 0 0 0 0 1 0 1 0

 4 0 0 0 0 0 1 1 0 1 1

 5 0 0 0 0 1 1 1 0 0 0

 6 0 0 0 1 1 1 1 1 0 0

 7 0 0 1 1 1 1 0 1 1 0

 8 0 1 1 1 1 0 1 1 0 1

 9 1 1 1 1 0 1 0 1 0 1

 10 1 1 1 0 1 0 1 0 0 1

 11 1 1 0 1 0 1 1 1 1 1

 12 1 0 1 0 1 1 0 0 1 0

 13 0 1 0 1 1 0 0 1 1 1

 14 1 0 1 1 0 0 1 1 1 0

 15 0 1 1 0 0 1 0 0 0 1

 16 1 1 0 0 1 0 0 0 1 1

 17 1 0 0 1 0 0 0 1 0 0

 18 0 0 1 0 0 0 1 0 1 0

 19 0 1 0 0 0 1 1 0 1 1

 20 1 0 0 0 0 1 1 0 0 0

 21 0 0 0 1 1 1 1 1 0 0

 22 0 0 1 1 1 1 0 1 1 0

 23 0 1 1 1 1 0 1 1 0 1

Cyc 9 8 7 6 5 4 3 2 1 0
Stages

c0c3
c1

. . .
c2

1 1 0 0

1 0 1 0

0 1 1 1

0 0 1 1

 (P(x) = x
4

+ x + 1)
3

CA Rule: [1 0 1 1]

(b)

Fig. 2: LFSM/SRs and observation matrices: (a) Type–1

LFSR. (b) CA.

Fig. 2(a) shows an LFSM/SR based on a Type–1 LFSR

and Fig. 2(b) shows an LFSM/SR based on a Cellular Au-

tomaton (CA). In both cases the LFSM/SR has 10 stages

(c0...c9), where the LFSM part comprises the first four

stages (c0, c1, c2, c3). Matrix A is called the state transi-

tion matrix of the LFSM. The characteristic polynomial

P (x) of this matrix, defined as the determinant of ma-

trix (xI −A), where x denotes the polynomial variable, is

called the characteristic polynomial of the LFSM. If the

characteristic polynomial of an LFSM is primitive (see,

e.g., [14]), then the LFSM goes through the maximum

possible number of states before returning to its initial

state. The sequence of states that each stage goes through

is a periodic one starting from the time the stage receives

its first “1”. The bit sequence of the most significant

stage (stage c3 in this case) is known as the characteris-

tic sequence. The length of the characteristic sequence is

24 − 1 = 15. For each LFSM, the figure shows also the

observation matrix, which gives the overall states of the

LFSM/SR. In the examples shown, after an initialization

phase of 10 cycles (0 through 9), each stage will repeat its

sequence of length 15. Both LFSMs have the same char-

acteristic sequence (as they have the same characteristic

polynomial) but their sequence of overall states differs.

3 The formulas

We present below the formulas that relate the linear de-

pendencies with the characteristic polynomial.

Theorem 3.1 [4, 15, 11]: Given a Type–1 LFSR with

characteristic polynomial P (x) of degree d and its associ-

ated LFSR/SR structure with a total number of C stages,

a subset A of k LFSR/SR stages A = {a1, a2, ..., ak}, 0 ≤

a1, a2, ..., ak ≤ C − 1, has no linear dependencies if and

only if the k polynomials Pi = xai mod P ′(x), 1 ≤ i ≤ k,

are linearly independent (or equivalently, there is no sub-

set A′ ⊆ A such that
∑k

a′∈A′ xa′

6= 0 mod P ′(x)), where

P ′(x) depends on the numbering of the LFSR/SR stages

and is equal to

(i) P ′(x) = P (x), if the LFSR/SR stages are numbered

so that the LFSR/SR stage with index C − 1 coincides

with the 0th stage of the LFSR [4, 11]

(ii) P ′(x) = P̃ (x), if the LFSR/SR stages are numbered

so that the LFSR/SR stage with index 0 coincides with

the 0th stage of the LFSR 1 [15].

Such a formula is important because the check for linear

dependencies among a given set of stages A requires ex-

ponential time if done explicitly (generation of 2k states,

k = |A|), whereas with the above relation, the check can

be done in very fast polynomial time by checking through

1P̃ (x) is the reciprocal polynomial of P (x) defined as P̃ (x) =
xdP (1/x)

Gaussian elimination whether the k×k matrix formed by

the k polynomials Pi(x) = xai mod P ′(x), seen as binary

vectors, has rank k. As an illustration, assume that an

output Y1 of a circuit under test depends on LFSM/SR

stages c8, c6, c3, c0. If the LFSM/SR is based on a Type–1

LFSR with characteristic polynomial P (x) = x4 +x3 +1,

then by examining the corresponding observation matrix

(Fig. 2(a)) and starting from cycle 8, we see that a lin-

ear dependency occurs among the bit sequences in stages

c8, c6, c3, c0, that is, c8 + c6 + c3 + c0 = 0, as predicted by

Theorem 3.1, since x8 + x6 + x3 + 1 mod P̃ (x) = 0.

The formula in Theorem 3.1 has been generalized in

[8] to apply to any arbitrary Linear Finite State Machine

(LFSM). The generalized formula allows also the linear

dependency check to be done in polynomial time. Each

stage cai
, ai ∈ A, is associated with a proper LFSM stage

ck, 0 ≤ k ≤ d − 1, according to the relation

λ(ai) =

{

d − 1 if ai ≥ d

ai if ai ≤ d − 1

In addition, each stage cai
, ai ∈ A, is associated with

the following number:

δ(ai) =

{

amax − ai if ai ≥ d

amax − (d − 1) if ai ≤ d − 1

We define also r(i) to be the set of the stages of the

corresponding Type–1 LFSR that the ith stage of a given

LFSM, 0 ≤ i ≤ d − 1, depends on (starting from an

appropriate state). Let R be a similarity matrix such

that M = RLR−1, where M is the transition matrix of

the given LFSM and L is the transition matrix of the

corresponding Type–1 LFSR with the same characteristic

polynomial. Then set r(i) consists of all numbers j, 0 ≤

j ≤ d− 1, such that the (d − 1− j)th bit of the (d− i)th

row of R (seen as a binary number) is ‘1’.

Theorem 3.2 Given a Linear Finite State Machine with

characteristic polynomial P (x) of degree d and its associ-

ated LFSM/SR structure with a total number of C stages,

a subset A of k LFSR/SR stages A = {a1, a2, ..., ak},

0 ≤ a1, a2, ..., ak ≤ C − 1, has no linear dependencies if

and only if the k polynomials

Pi(x) =
∑

j∈ r(λ(ai))

xd−1−j+δ(ai) mod P (x), 1 ≤ i ≤ k

are linearly independent.

To apply the above formula, we have to find a similarity

matrix R such that M = RLR−1. Such a natrix always

exists because matrices M and L are known to be similar

(see, e.g., [14].) Once a matrix R has been obtained, set

r(i) is formed by taking all numbers j, 0 ≤ j ≤ d− 1, for

which the (d−1− j)th bit of the (d− i)th row of R is ‘1’.

The application of Theorem 3.2 is illustrated by the

following example.

Consider a Cellular Automaton with rule vector . Its

characteristic polynomial is x4+x3+1. The bit sequences

of stages c7, c1, c0 are linearly dependent as can be ver-

ified from the observation matrix (see Fig. 2(b)). The

transition matrix M of this CA along with the transi-

tion matrix L of the corresponding Type–1 LFSR and a

similarity matrix R are shown below:

M =

1 1 0 0
1 0 1 0
0 1 1 1
0 0 1 1

, L =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

, R =

0 0 1 1
1 0 1 1
1 1 1 1
1 0 1 0

We have that λ(7) = 3, λ(1) = 1, λ(0) = 0, δ(7) = 0,

δ(1) = 4, δ(0) = 4, r(3) = {1, 0} (1st row of R), r(1) =

{3, 2, 1, 0} (3rd row of R), r(0) = {3, 1} (4th row of R).

So the double sum in Theorem 3.2 becomes: (x3−1+0 +

x3−0+0)+(x3−3+4+x3−2+4+x3−1+4+x3−0+4)+(x3−3+4+

x3−1+4) = x7+x5+x3+x2, which is divisible by x4+x3+1

(quotient x3 + x2).

The use of the formulas in Theorems 3.1 and 3.2 above

in the case of pseudoexhaustive TPG (see also [4]) is done

as follows: Assume the maximum Aset size is w in a

combinational or fully scanned circuit. To be able to do

the pseudoexhaustive test in 2w cycles (plus some minor

terms for initialization), we have to check for the follow-

ing: The LFSM part of the LFSM/SR must have d = w

stages and its characteristic polynomial must be primi-

tive. Then we go through the list of the primitive poly-

nomials of degree d (such lists have been published or can

be computed again) and we try to find one by applying the

appropriate formula above that satisfies each and every

Aset of the circuit. The number of all primitive polynomi-

als of degree d is given by the formula φ(2d−1)
d

, where φ() is

Euler’s function. For example there are 120032 primitive

polynomials of degree 22. So any improvements in the

time it takes to apply the formula check are significant.

For pseudorandom test, a similar procedure is followed

but we try to maximize the number of Asets that have

rank max(d, |A|), where d the number of stages in the

LFSM part.

4 Finding a similarity matrix

Finding a similarity matrix R that can be used with

Theorem 3.2 requires the following: The equation M =

RLR−1 is equivalent (since we know that R exists) to the

homogeneous linear system MR−RL = 0 with unknowns

the n2 entries of the n × n matrix R, and the additional

requirement that R is invertible. The system can be put

in the form KV = 0 where V is an n2 × 1 vector con-

sisting of the unknowns in R and K is an n2 ×n2 matrix

consisting of the appropriate combinations of coefficients

from L and M . Matrix K has rank less than n2, that is,

there are multiple solutions to the equation M = RLR−1.

One such solution can be found by Gaussian elimination,

in time O((n2)3) = O(n6), as there are n2 unknowns.

We show here that the O(n6) time complexity can be

reduced by obviating the need to solve the linear system

MR = RL, and then having to check for invertibility of

R. A similarity matrix R such that M = RLR−1 can

be found by inversion of an appropriate n×n matrix U ,

which reduces the complexity to O(n3). The computation

of matrix U is done as follows:

We first define the shift register (SR) counterpart of an

LFSM F = (M, I) to be another LFSM FSR = (M, U),

such that F and FSR have the same characteristic se-

quence but the bit sequence produced at output stage i

of FSR is a shift–up–by–1 version of stage i−1, 1 ≤ i ≤ d.

We have proven the following lemmas:

Lemma 4.1 Given an LFSM F = (M, I) of d cells, its

shift register counterpart is FSR = (M, U), where U is

obtained by putting as its ith row, the first row of each

matrix M i−1, 1 ≤ i ≤ d.

Lemma 4.2 For any LFSM F = (M, I), matrix U in

FSR = (M, U) is non–singular.

Since U is non–singular, matrix L = U ·M ·U−1 exists.

Therefore machines F1 = (M, U) and F2 = (L, I) are

similar and thus equivalent. Because of the similarity, we

know that the characteristic polynomial of matrix M is

the same as the characteristic polynomial of matrix L.

Because of the equivalence, we know that when F1 is at

state s, F2 is at state s′ = U · s, and the present output

of F1 is y = U · s which is equal to the present output

y′ = s′ = U · s of F2. So the bit sequence of stage i of F2

is the same as the bit sequence of output stage i of F1 and

thus is also a shift–up–by–1 version of the bit sequence

in stage i − 1, that is, machine F2 = (L, I) is in fact a

Type–1 LFSR.

Now in order to obtain fast the matrix U , we observe

the following:

Let R1(A) denote the first row of matrix A. Then,

R1(M
i) = R1(M

i−1·M) = R1(M
i−1)·M, 1 ≤ i ≤ d−1,

where R1(M
0) = [100...0]. Considering each R1(M

i) as

a 1 × d vector ŝi we have that

ŝi = R1(M
i) = R1(M

i−1) · M = ŝi−1 · M ⇒

(ŝi)
T = MT · (ŝi−1)

T,

(AT mean the transpose of matrix A) that is, the 1 × d

R1(M
i) vectors can be seen as successive states (d × 1

vectors) of an LFSM with transition matrix MT, starting

with state (ŝ0)
T = [100...0]T. So instead of doing the ex-

plicit matrix multiplications to obtain M i, 0 ≤ i ≤ d− 1,

we can simply simulate an LFSM with transition matrix

MT for just d − 1 cycles starting from state [100...0]T.

The resulting states comprise the rows of U .

As an illustration of the approach, consider the follow-

ing examples:

 0 1 0 0 0

 1 1 1 0 0

 2 1 1 1 0

 3 1 1 1 1

 4 0 1 1 1

... ...

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

1 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

(a)

M =

U =

M =
T

 P(x) = x
4

+ x + 1
3

Type-2 LFSR

 0 1 2 3
Stages

Cyc

1 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 1

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

U

 L =U M U
-1

-1
=

 P(x) = x
4

+ x + 1
3

Type-1 LFSR

(b)

 M =R L R

 R =U
-1

-1

Fig. 3: Illustration of the method for computing a

similarity matrix for a Type–2 LFSR.

Example 1 Consider the Type–2 LFSR with charac-

teristic polynomial P (x) = x4 + x3 + 1. Its transition

matrix M is shown in Fig. 3(a). The successive states

starting with [1000] of the LFSM with transition matrix

MT are also shown in Fig. 3(a). The first four succes-

sive states constitute matrix U . As can be verified (Fig.

3(b)), U is indeed a similarity matrix with respect to the

Type–1 LFSR with the same characteristic polynomial

and transition matrix L. The required matrix R such

that M = RLR−1 is then R = U−1.

Example 2 Consider the Cellular automaton in Fig.

4(a), which is the same as that in Fig. 2(b). The transi-

tion matrix MT of the corresponding LFSM is also shown

in Fig. 4(a). (The transition matrix of a CA is symmet-

ric, and so M = MT in this example.) The successive

states starting with [1000] of the LFSM with transition

matrix MT are shown in Fig. 4(a). The first four succes-

sive states constitute matrix U .

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 1

 0 1 0 0 0

 1 1 1 0 0

 2 0 1 1 0

 3 1 1 0 1

 4 0 1 0 1

... ...

1 0 0 0

1 1 0 0

0 1 1 0

1 1 0 1

1 1 0 0

1 0 1 0

0 1 1 1

0 0 1 1

1 1 0 0

1 0 1 0

0 1 1 1

0 0 1 1

 P(x) = x
4

+ x + 1
3

(a)

1 0 0 0

1 1 0 0

1 1 1 0

0 1 0 1

U

 L =U M U
-1

-1
=

M =

Type-1 LFSR

(b)

U =

M =
T

 (P(x) = x
4

+ x + 1)
3

CA Rule [1 0 1 1]

 0 1 2 3
Stages

Cyc

 M =R L R

 R =U
-1

-1

Fig. 4: Illustration of the method for computing a

similarity matrix for a CA.

As can be verified (Fig. 4(b)), U is indeed a similarity

matrix with respect to the Type–1 LFSR with the same

characteristic polynomial and transition matrix L. The

required matrix R such that M = RLR−1 is then R =

U−1.

Indicative timings on a SUN Blade 1000 on the com-

putation of similarity matrices by the old and the new

method for LFSMs (versions of CA) of various sizes are

given in Table 1. All timings are in seconds. The effect

of the reduction from the O(n6) to the O(n3) complexity

is obvious.

Table 1

Timings for computing similarity matrices.
LFSM size Old New

20 0.10 ≈0.0
25 0.31 ≈0.01
30 0.74 ≈0.01
35 1.58 ≈0.01
40 3.05 0.02
50 9.02 0.03

100 290.78 0.24

5 Conclusions

We showed how the computation of a formula for de-

termining linear dependencies in an extended LFSM

structure can be sped up by finding the similarity ma-

trix required in the formula in O(n3) time instead of

O(n6). This allows for faster search of an appropriate

LFSM structure for pseudoexhaustive and/or pseudoran-

dom TPG.

References

[1] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital Systems
Testing and Testable Design, Computer Science Press, New
York, 1990.

[2] P. H. Bardell, W. H. McAnney, J. Savir, Built–in Test for
VLSI, Wiley, New York, 1987.

[3] P.H. Bardell, “Calculating the effects of Linear Dependen-
cies in m–Sequences as Test Stimuli,” IEEE Transactions on
CAD/ICAS, vol. 11, no. 1, pp. 83–85, 1992.

[4] Z. Barzilai, D. Coppersmith, A. L. Rosenberg, “Exhaustive
Bit Generation with Application to VLSI Self–Testing,” IEEE
Transactions on Computers, vol. C-32, pp. 190–194, 1983.

[5] C. L. Chen, “Linear Dependencies in Linear Feedback Shift
Registers”, IEEE Transactions on Computers, vol. 35, pp.
1086–1088, Dec. 1986.

[6] A. Gill, Linear Sequential Circuits, McGraw–Hill, New York,
1966.

[7] W.-B. Jone, C. A. Papachristou, “A Coordinated Approach to
Partitioning and Test Pattern Generation for Pseudoexhaus-
tive Testing”, 26th ACM/IEEE Design Automation Confer-
ence , pp. 525–530, 1989.

[8] D. Kagaris, “Linear Dependencies in Extended LFSMs,” IEEE
Transactions on CAD/ICAS, vol. 21, n. 7, pp. 852–858, July
2002.

[9] D. Kagaris, F. Makedon, S. Tragoudas, “A Method for Pseudo–
Exhaustive Test Pattern Generation,” IEEE Transactions on
CAD/ICAS, vol. 13, no. 9, pp. 1170–1178, 1994.

[10] D. Kagaris, S. Tragoudas, “Avoiding Linear Dependencies in
LFSR Test Pattern Generators,” Journal of Electronic Test-
ing: Theory and Applications, vol. 6, pp. 229–241, 1995.

[11] A. Lempel, M. Cohn, “Design of Universal Test Sequences for
VLSI,” IEEE Trans. on Information Theory, vol. 31, no. 1,
pp. 10–15, 1985.

[12] J. Rajski, P. Tyszer. “On Linear Dependencies in Subspaces
of LFSR–Generated Sequences,” IEEE Transactions on Com-
puters, vol. 45, no. 10, pp. 1212–1221, 1996.

[13] R. Srinivasan, S. K. Gupta, M. A. Breuer. “Novel Test Pattern
Generators for Pseudoexhaustive Testing,” Proc. International
Test Conference, 1993, pp 17-21.

[14] H. S. Stone, Discrete Mathematical Structures and Their Ap-
plications, Science Research Associates, Chicago, IL, 1973.

[15] D. T. Tang, C. L. Chen, “Logic Test Pattern Generation Using
Linear Codes,” IEEE Trans. on Computers, vol. 33, no 9, pp.
845–850, 1984.

[16] H.-J. Wunderlich, S. Hellebrand, “Tools and devices support-
ing the pseudo-exhaustive test”, Proc. of the European Design
Automation Conference, pp. 13–17, 1990.

