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Abstract: A comparison between intensity and frequency noise spectra and also the line shapes of gain-
guided, weakly-index-guided, and strongly-index-guided semiconductor lasers are made using numerical 
solution of the field and carrier density rate equations including spontaneous emission noise.  
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1 Introduction 
Usually, for the calculation of noise characteristics 
in semiconductor lasers, the spatially independent 
Langevin rate equations are used. This approach 
offers the advantage of reducing a multi-
dimensional set of partial differential equations to a 
one-dimensional set of ordinary differential 
equations. In such treatments the structural features 
of laser in the lateral direction is usually not 
included. In this paper, the rate equations for the 
optical field and the carrier density are solved 
numerically and the intensity and frequency noise 
spectra and also the line shape of laser are 
calculated from the numerical results. Based on 
these results, a comparison between gain-guided, 
weakly-index-guided, and strongly-index-guided 
semiconductor lasers is made. 
 
 
2 The model Equations 
The starting point for the spatio-temporal analysis of 
noise in semiconductor lasers is use of the rate 
equations for the lateral field distribution ),( txE  
and the carrier density ),( txN  including noise, 
which are given by [1]-[8]: 
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where Γ  is the transverse confinement factor, ω  is 
the optical  frequency, aµ  is the refractive index of 
the active layer, µ  is the effective index, )(xeffµ∆  
is the effective lateral index variation, cβ  is the 
linewidth enhancement factor, A  is the gain 
coefficient, 0N  is the carrier density at 
transparency, γ  is the distributed loss, c  is the 
velocity of light, )(xJ  is the current density 
distribution, e  is the electron charge, d  is the 
active layer thickness, sτ  is the carrier lifetime, and 
D  is the diffusion constant. 

The effective built-in index variation )(xeffµ∆  in 
Eq. (1) is a consequence of different lateral 
environments experienced by the waveguide mode 
inside and outside the emission region. It can be 
approximated by [9]: 
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where Lµ∆  is the index step, W  is the stripe width, 
and σ  is the width of the transition region over 
which the index difference varies from  Lµ∆   to 0 in 
the vicinity of the emitter boundary at 2Wx = . 
For gain-guided, weakly-index-guided, and strongly 
-index-guided semiconductor lasers the value of 



Lµ∆  is assumed to be 0, 0.01, and 0.2, respectively 
[10]-[11]. 

The random spontaneous emission process is 
modeled by a noise term ),( txχ  taken as a complex 
Gaussian white noise of zero mean value and 
correlation given by [12]-[17]: 
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where  N  is the steady state average value of the 
carrier density, B  is the spontaneous recombination 
coefficient, L  is the cavity length, and spβ  is a 
coefficient determined by the lateral guiding 
mechanism of laser. 

The current density )(xJ  that appears in Eq. (2) is 
the distribution of current entering the active region, 
which has therefore undergone some current 
spreading in the cladding layer. The exact 
determination of )(xJ  requires solution of two-
dimensional diffusion equation, but for gain-guided 
and weakly-index-guided lasers we assume that the 

)(xJ  has the form [9], [18]-[19]: 
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where 0J  is a constant value and K  is a parameter 
that determines the shape of the distribution. For 
strongly-index-guided lasers the current is taken to 
be zero outside the stripe [20]. 
 
 
3 Results of Simulation  
For solving the model Eqs. (1) and (2), first we must 
obtain the steady state average values by 
considering 0=∂∂ t . This results in a set of 
ordinary differential equations of x that is solved by 
finite difference method. We assume that the x 
derivatives of the electric field and the carrier 
density are zero at boundaries [21]. 

The typical parameter values used has been given 
in [1], [3], and [5]. 
   The results of the steady state solution for spatial 
variations of the carrier density and field intensity 
are shown in Figs (1) and (2), respectively. 
   Using steady state average values we can include 
noise terms in Eqs. (1) and (2) and solve these 
equations numerically by hopscotch method. In this 
method, after discretization in the x direction, the 
grid points are divided into even and odd points. 
There are four computational cycles to perform in 
order to advance the solution to the next time level.  

 
Fig 1: the carrier density distribution in the lateral 
direction. 

 
Fig 2: field intensity distribution in the lateral 
direction. 
 
   In the first cycle, only the even points are 
advanced by t∆  explicitly, which is trivial. In the 
second cycle, only the odd points are advanced by 

t∆  implicitly. In the next two cycles, the process is 
reversed. In the third cycle all odd points are 
advanced first explicitly, and then in the fourth 
cycle all even points are computed implicitly. 
For numerical simulation of noise source we use the 
following relation: 
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where tG  and xG are Gaussian random variables 
with zero mean and variance equal to1.  

From the numerical results, we calculated the 
relative intensity noise (RIN), Frequency Noise 
Spectra (FNS), and the laser field spectra for the 
three types.  

Figs. 3(a)-3(c) show the RIN for gain-guided, 
weakly-index-guided, and strongly-index-guided 
semiconductor lasers, respectively. It is evident 
from Fig. 3 that as the lateral guiding mechanism is 



changed from gain-guiding to weakly-index-guiding 
and then to strongly-index-guiding, the intensity 
noise behavior is modified. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Relative intensity noise spectra for (a) gain-
guided, (b) weakly-index-guided, and (c) 
strongly-index-guided semiconductor lasers. 

 
The lateral confinement machanism of laser also 

affects the frequency noise characteristics. Figs. 
4(a)-4(c) show the FNS for three types of 
semiconductor lasers.  

 The line width of laser is a manifestation of the 
laser frequency noise. In Figs. 5(a)-5(c) the field 

spectra for the three laser structures are shown. As 
seen in these figures the frequency noise of index-
guided laser is lower and the line width of it is 
narrower than that of gain-guided lasers. This is due 
to the superior confinment of optical mode in these 
structures. The calculations also show that the 
frequency noise spectrum qualitatively has a 
bahavior like the ralative intensity noise spectrum. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Frequency noise spectra for (a) gain-guided, 
(b) weakly-index-guided, and (c) strongly-
index-guided semiconductor lasers. 



 

 
(a) 

 
(b) 

 
(c) 

Fig. 5  Field spectra for (a) gain-guided, (b) weakly-
index-guided, and (c) strongly-index-guided 
semiconductor lasers. 

 

 

4 Conclusion  
Space-time analysis of semiconductor laser noise 
was done in order to consider the structural features 
of laser in the lateral direction. Index-guided lasers 
have better noise characteristics respect to gain-
guided lasers and their intensity noise, frequency 
noise, and line width is lower. Further, by increasing 
the lateral index step, the noise performance will be 
improved.  
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