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Abstract: - An efficient lossless compression algorithm for 8@unding data is presented. Major phases of the
algorithm are: image band reordering, predictiod eading. Proposed prediction technique allows @iph the
data redundancy in both spectral and spatial dimoessIn order to increase the efficiency of thediction
technique, image bands should be rearranged in swehy, that the bands with higher correlation alecated
together. We examined different band orderingsthadt influence on the final compression ratio dagiven set of
images. This paper emphasizes that the compreafjonithm yields different compression performaiispace
and time ratios) depending on how image bands haea rearranged or, in other words, which metri been
applied to examine interband similarities. We ekpented with a wide variety of metrics, employirack metric
in the algorithm at a time. 10 real 3D soundersehbgen used for the experiments. The results @utashow
significant impact of newly proposed metrics indless compression of hyperspectral data. The radgetithm
has improved JPEG-LS performance on about 10 -I28rims of compression ratios. Computational sudéele
algorithm is also very high.
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1 Introduction data provide much more precise information about

In recent years considerable research has bedactarr aimospheric temperature, moisture, clouds, aerosols
out into the field of remote sensing, aiming toelep ~ @nd surface properties than hyperspectral imaging
and investigate hyperspectral imaging and soundingi@t@, but storage and transition of these images
data. Hyperspectral instruments such as Atmospheri@€mand much more resources. Thus compression
Infrared Sounder (AIRS) [1], Cross-track Infrared @lgorithms must be developed. o
Sounder (CriS) [2], Interferometer Atmospheric Data loss of the hyperspectral imaging data, e.g.
Sounding Instrument (IASI) [3], Geosynchronous AVIRIS can be acceptable by the human_ visual
Imaging Fourier Transform Spectrometer (GIFTS) [4], System. Whereas the hyperspectral sounding data
and Hyperspectral Environmental Suite (HES) [5H an "€quires a much higher accuracy for the useful
Airborne  Visible/Infrared Imaging Spectrometer retrieval of geophysical parameters without sigaifit
(AVIRIS) [6] daily generate large volumes of three- d_egrada'qon, the _aIIowabIe reconstructed error is
dimensional hyperspectral data. The instruments ar&/isually imperceptible by the human eye. Therefore,
designed to meet the Operational Weather Foregastinlossless or near lossless compression algorithms fo
requirements of NOAA [7] and the research needs of3P sounding data are warranted. Lossless compressio
the NASA [8]. aI_gqnthr_ns provide intact _mformgtlo'n abogt the
Main applications of remote sensing relate to the©riginal image, although their benefits in compress
global water and energy cycles, determination ef th 'atio and speed are not as high as they would te wi
distribution and variations of water vapor, thergte 0SSy compression algorithms. _
and weather connection, improvements in the weather Previously — applied lossless predictor-based
prediction, and trace gases. Hyperspectral soundingOmpression algorithms such as JPEG-LS [9] and



CALIC [10] are not efficient enough for the sourglin  bands in such a way, that adjacent bands have the
data compression, since these algorithms have beehighest correlation. Moreover, it may happen tha o
built to work on 2D data and cannot exploit band has good correlation with several other image
redundancy in spectral dimension between disjointbands, or, in other words, this band could be adgoo
bands. Even when their performance has beemredictor for those bands.
improved by involving reordering techniques, sush a  Image interband relationships should be known to
[11] or [12], the results are still not very high. perform efficient reordering. Interband similargtiean
This paper presents an efficient losslessbe very accurate measured by one of the proposed
compression algorithm, which has produced excellentmetrics (1) — (4). These metrics take two vecterama
results being tested on 10 hyperspectral soundingnput and compute the real number in the range
images. Next section introduces the algorithm.i8ect [0.0; 1.0], where 1.0 indicates that input vectars
3 provides overview of the hyperspectral soundingidentical, 0.0 shows that they are totally diffdren
data used in this study. Section 4 details obtainedach metric is presented as functMp(B;, B;), where

compression results and summarizes the paper. B, B; are the hyperspectral image bands, in a form of
1D vectors.
2 Compression Algorithm Measure 1 t
3D image is a specific type of imaging data witle on M, = I:iIIE:Bj l:COS(g)
i i

spectral and two spatial dimensions. The 3D image
Im [M, N, §, whereM is number of rowsN number @
of columns andS is a number of bands can be Measure 2
represented as a set of 2D arrays. A single entry

B[M, N, S] belonging to this set represents one image M, = |8 Cos{6)+ |B, |Cosl6)

band. Then two spatial dimensions of each image ban (B F+1B, F +2|B |IB, |Cos(6))*

can be converted into a 1D array. Hence 3D image @)
hypercube structure has changed to a set of 1[Measure 3

vectors, where each vector h@sM x N pixels and

number of the vectors B _Cos(6) (1B, P +|B, [ +2|8, |IB, |Cos(6))"”
Efficient 3D compression algorithms exploit Ms = B |+|B, |
interpixel redundancy in every image dimension. The J )

proposed algorithm extracts spectral redundancy by

coding each band of the image by making use ofyjeasure 4
another prediction band. Previously coded pixels,

known as a causal set, are involved to estimate the

current pixel value. The least squares (LS) estimation ~ ;IBW “BIB -8

approach, which predicts the current pixel using a M = o 7 "

linear combination of its causal neighborhood, has (Z(B.k—B.)Zj [Z(B,k—B,)ZJ
k=1 =

been adapted for multispectral lossless image
compression.

In order to improve the effectiveness of the B
prediction phase, we propose to apply optimal band Wheres, =
reordering technique before actual prediction.
Originally image bands are presented in order gxen
the spectral wavelengths, which is referred to the
natural band ordering. Some image bands, located in
neighboring  wavelengths, might have weak
correlation. Thus it is reasonable to reorder image
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Each of these metrics can be used to estimate
similarity between every two image bands. All
coefficients are collected in one matrix, whictuged
for further reordering and prediction. The procedof
estimation interband relationships is the firstpsteé
the proposed lossless compression algorithm.



Next step of the algorithm is to reorder image Isand causal set. The causal set in case when two baads a
in such a way that higher correlated bands, areinvolved is shown in Fig.1.
allocated together. The problem of optimal image
band reordering is equivalent to the problem ddifig
Minimum Spanning Tree (MST) in weighted directed
graphs [13]. The computed matrix of interband I 1

similarity coefficients can be considered as a ixaiir

weight coefficients for the graph, where the graph Current pixel -~ -
vertices denote the image bands’ numbers and the Tqp
edges assign if there is a direct connection betwee ) ) I:l_h:
two vertices. Prim’s algorithm [14] is known to be | eft '9
good for constructing MST in weighted directed

graphs.

Actually, we are searching for the maximum Fig 1. An example of causal set when two image baare
weighted tree and desirable output is a set of $and involved.
numbers, corresponding to the path how image bands
should be allocated in oreder to achieve the best Examples of possible neighbourhoods are shown in
compression results. Fig.2.
Each band must be predicted and no one twice.
Although the same band might be used as a predictor
for two or even more bands. No cycles are allowed i H B ||
the MST, therefore decompretion is easily achivable
by reversing the procedure of MST construction. Due H
to prohibiton to have any cycles, sometimes the
predictor for the current band is not the best ibdess ||
Let us denote the band, which is used for predicii®
the predictor, and the band, which is predicting as the Fig 2. Examples of the sample sets used in theitigofor
current band. prediction of the current pixel. The current pixelmarked
When the optimal band ordering is achieved, angdPy the black square
for any image band the predictor is determined, a
linear prediction technique [15] is applied to eipl
interpixel redundancy in the special and spectral
dimensions.
The technique is based on the idea that the currené:L Optimal C sssion Algorith
pixel value can be computed using pixels form its = ptimal Compression Algorithm

) . . . In order to obtain maximal possible compression
causal neighborhood. The predicted pixel vafye, , ratios for a given image, regardless of the longer

Finally error images are computed as a difference
between the original and predicted images and pytro
coded.

can be found using the following equation: computational time, we have improved the prediction
phase of the proposed algorithm in the followingywa
, S T R We still use the linear prediction technique, but a
Prco =22 A i i bk Prai c-j bk this time, a sample set size is not fixed. Thusefach
k=0 J=01=Ly pixel prediction the best sample set has been ohaise
6)  atime.
In (6) & ; is a prediction coefficient of the pixel The whole procedure is a two-pass technique. At

at location(i, j, K), Sis the number of bandg; (top) is first, gach pixel is .predicted using values of pireels

the number of rows that take part in the causalsgt from its cau_sal nglghborhood, known as a sampl(_a set
(Ieft) andR; , (right) are the left and right delimiter as [N the algorithm different sample sets, shown ig. 2
functions of rows and bands that finally specife th 2r€ involved. Then residuals between the origimal a



predicted values are calculated and coded. Then foEarth. Their locations, UTC times, and local time

each special position, a sum of the absolute vadfies adjustments are listed in Table 1.

the residuals over the bands is calculated and the
sample set, which gives a smaller sum, is usethfor
spatial position during the second pass.

Table 1. Ten selected AIRS granules for hyperspectr

Finally error images are computed as a differencesounding data compression studies. [18]

between the original and predicted images. These

images are coded using a range coder [16]. For the J%:a””'e Time L ocation

pixels that do not have a large enough causal

neighborhood of the current pixel, and therefore| 9 00:53:31 UTC -12H Pacific Ocean, DT
cannot be predict_ed, we calcu!ated the d?fference 16 01:35:31 UTC +2 H Europe, NT
between consecutive bands, which along with other| 60 05:59:31 UTC +7 H Asia, DT
compression parameters, are compressed usingg B Ii3LUTCEH North America, NT

general-purpose text compression program, PPMD

[17]. 120 11:59:31 UTC -10H Antarctica, NT
The optimal algorithm results in very high [ 126 12:35:31 UTC -0 H Africa, DT
compression ratios, but slowness of the algoritoesd -5 175331 UTC 21 Arctic. DT
not make it efficient in practice. The obtained .
compression ratios are the maximal possible orres fo | 151 15:05:31UTC +11H  Australia, NT
given prediction scheme. 182 18:11:31 UTC +8 H Asia, NT
193 19:17:31 UTC -7 H North America, DT

3 Hyperspectral Sounding Data
In our experiments hyperspectral sounding images .
have been used. Each image has 2108 spectral bands Conclusion
and it could be generated from either an interfetem  The majority of lossless compression algorithms is
or a grating sounder with extremely high temporal a made up by efficient prediction phase, when pixel
special resolutions (over one thousand infraredvalues are predicted, and error images are codéd. T
channels and with spectral widths on the order.6f 0 paper emphasizes the importance of the reordering
wave number). phase, which is applied before actual prediction in
Global coverage by the instruments is obtainedorder to improve its performance. The proposed
twice daily (day and night) and the data alongdimst lossless compression algorithm results are highly
is processed into 6-minute granules. Each granuledependent on the 3D image reordering. The band
consists of 135 scan lines containing 90 crossktrac ordering is determined by the statistic, which riees
footprints per san line; thus there are a total3% x the interband similarities. Several metrics havenbe
90 = 12,150 footprints per granule. tested and analyzed in this study. These are very
The data is available at the Distributed Active popular for color difference measurement in
Archive Center (DAAC) located at the NASA multispectral data, but most of them have nevenbee
Goddard Earth Sciences Data and Informationused as measures of interband similarity.
Services Center (GES DISC) in Greenbelt, Maryland, The following table reflects compression ratio of
USA. The data, used for this compression study, isthe images, which have been compressed by the
available via anonymous ftp (ftp:/ftp.ssec.wisc.ed proposed algorithm, when each of the statistic has
/pub/bormin/HES) [18]. been employed at a time. The compression ratio is
The algorithm has been tested on ten granules, fivéneasured as the size of the original file dividgdhe
daytime (DT) and five nighttime (NT), which have size of the compressed file.
been chosen from different geographical regiorthef



Table 2. Bit rates for the 10 tested granules cesged by

one of the proposed techniques.

Granule

Natural

Thealg.

Thealg.

Thealg.

The time required for compression of the images
with the natural band ordering, the optimal band
ordering and the orderings implied by M1 and M4

The first column in Table 2 reflects the image

I band ordering  with M1 with M2 with M3 metrics are reported_ in Table '3. Compression
) > 080 51800 2180 _ 2.180 computatlongl 'Flme is much higher than _the'
16 2000 51110 2111 2111 decompressm_n time, since enormous amount pf sme i
60 1.940 20670 2.066 2067 spent on achieving the optimal band reordering. The
82 2008 21030 2.103  2.104 more complicated is the way of the image band
120 1.937 20280 2.028 2028 reordering, the longer is the computational timeus,
126 2.035 21530 2.153 2153 the fastest way of compression is to ignore reamder
129 1.986 20680 2.068 2.068 phase, or to compress an image with the natural ban
151 2.081 21710 2.171 2.171 reordering. But since the purpose of compression in
182 1.906 2.0170 2.018 2.018 achieving a small file size as well as the fast
193 2.035 2.1460 2.146 2.146 computational speed, omitting the reordering phase
could cause poor results in terms of compression
Granule Thealg. Opt. JPEG- ratios. The smallest file size has been achieval wi
N with M4 Comp. LS the optimal band reordering, although the algorithm
9 2.1790 2.205 1.990 with this technique requires the longest compressio
16 2.1110 2.128 1.942 time. Thus aiming to achieve a compromise between a
60 2.0640 2.072 1.895 fast computational speed and a high compression
82 2.1040 2.123 1.950 results, we have proposed in this paper a set of
120 2.0280 2.039 1.900 metrics, which can be used on the reordering phase.
126 2.1570 2.180 1.939 The most efficient of them are M1 and M4. Analyzing
129 2.0690 2.082 1.934 compression results obtained with these metrics and
151 2.1700 2.198 2.015 .
182 > 0150 > 031 1837 shown in Table 2, we can conclude that thgy arg ver
103 51470 5167 19424 close to the results, obtained by the algorithmenvh

the optimal band reordering has been involved.
Nevertheless computational speed is much higher tha
the speed allowable with the optimal band reordgrin

name. The rest of the Table shows compressionsratio
of the images, compressed by the proposed algqgrithm
when each of the metrics has been employed atea tim

Table 3. Compression and decompression time in
seconds for the 10 tested granules compressedebgfdhe

Only the 2° column reflects compression ratios of the proposed techniques.

images, compressed by the same algorithm, but when
no reordering technique has been applied. In other
words, images have had natural band ordering. fhe 3
-6" columns reflect compression ratios of the images
produced by the algorithm when each of the proposed
metrics M1,..., M4 has been involved at a time. Each
metric implies different band reordering, thus
compression results are highly depend on the metric
being used. In the next column compression ratio of
the images compressed by the optimal algorithm are
shown. The results are high, but the algorithm is
extremely time-consuming. The last column shows
results produced by JPEG-LS algorithm for the same
images.

Gr.  Natural Thealg. Thealg. Opt.
Ne band with M1 with M4 Comp.

ordering algorithm

Comp/ Comp/ Comp/ Comp/

Decomp.  Decomp. Decomp. Decomp.
9 25.5/8.1 107.4/7.7 111.2/7.8 20082.06/8|1
16 26.5/9.6 107.8/8.1 111.3/8.1 19600.67/8|5
60 26.6/9.8 108.0/8/2 111.6/8.2 26329.65/9|1
82 26.8/9.9 108.0/8.2 111.6/8.1 18375.97/8|8
120 26.6/9.8 108.1/8.6 111.7/8.5 18939.36/8|9
126 26.2/9.2 107.7/7.8 111.2/7.8 25424.86/8|1
129 25.8/9.3 107.8/8.2 111.3/8.2 17729.78/8|5
151 25.3/8.8 107.4/7.9 111.1/7.8 17161.61/8|1
182 28.6/13.5108.7/8.7 112.3/8.9 23565.38/1(0
193 26.1/9.3 107.7/7.9 111.2/7.9 20587.77/8|3




One of the proposed reordering techniques can bé9] Weinberger M., Seroussi G, Sapiro G., The LOCO-
chosen to accompany the compression algorithmLossless Image Compression Algorithm: Principlesi an
based on the application requirements. Concludieg t Standardization — into  JPEG-LS, Hewlett-Packard
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fastest compression speed is achievable with th 190?9 Wu X. and Memon N.. Context-based. adaptive
algorithm with natural band ordering and the best | occ imaée coding, WEEE Trans. Commun.. vol. 4§ '
compression savings are provided by the optimalpp_ 437-444, Apr. 199'7_ ’ ’

algorithm. The best results in terms of both timél @ [11] Huang B., Alok A, and Hung-Lung H., Improvements

compression ratios have been obtained, when M1 angb Predictor-based Methods in Lossless Compressi@D

M4 statistics have been involved in the reordering Hyperspectral Sounding Data via Higher Moment Stias,

phase of the algorithm. WSEAS Transactions on Electronics, Issue 2, Vol 1, 2004
Moreover the comparison of the results obtained[12] Kubasova O., Toivanen P., Lossless Compression
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