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Abstract: - An efficient lossless compression algorithm for 3D sounding data is presented. Major phases of the 
algorithm are: image band reordering, prediction and coding. Proposed prediction technique allows exploiting the 
data redundancy in both spectral and spatial dimensions. In order to increase the efficiency of the prediction 
technique, image bands should be rearranged in such a way, that the bands with higher correlation are allocated 
together. We examined different band orderings and their influence on the final compression ratio for a given set of 
images. This paper emphasizes that the compression algorithm yields different compression performance (space 
and time ratios) depending on how image bands have been rearranged or, in other words, which metric has been 
applied to examine interband similarities. We experimented with a wide variety of metrics, employing each metric 
in the algorithm at a time. 10 real 3D sounders have been used for the experiments. The results obtained show 
significant impact of newly proposed metrics in lossless compression of hyperspectral data. The novel algorithm 
has improved JPEG-LS performance on about 10 -12% in terms of compression ratios. Computational speed of the 
algorithm is also very high.  
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1 Introduction 
In recent years considerable research has been carried 
out into the field of remote sensing, aiming to develop 
and investigate hyperspectral imaging and sounding 
data. Hyperspectral instruments such as Atmospheric 
Infrared Sounder (AIRS) [1], Cross-track Infrared 
Sounder (CrIS) [2], Interferometer Atmospheric 
Sounding Instrument (IASI) [3], Geosynchronous 
Imaging Fourier Transform Spectrometer (GIFTS) [4], 
and Hyperspectral Environmental Suite (HES) [5], and 
Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) [6] daily generate large volumes of three-
dimensional hyperspectral data. The instruments are 
designed to meet the Operational Weather Forecasting 
requirements of NOAA [7] and the research needs of 
the NASA [8].  

Main applications of remote sensing relate to the 
global water and energy cycles, determination of the 
distribution and variations of water vapor, the climate 
and weather connection, improvements in the weather 
prediction, and trace gases. Hyperspectral sounding 

data provide much more precise information about 
atmospheric temperature, moisture, clouds, aerosols 
and surface properties than hyperspectral imaging 
data, but storage and transition of these images 
demand much more resources. Thus compression 
algorithms must be developed.  

Data loss of the hyperspectral imaging data, e.g. 
AVIRIS can be acceptable by the human visual 
system. Whereas the hyperspectral sounding data 
requires a much higher accuracy for the useful 
retrieval of geophysical parameters without significant 
degradation, the allowable reconstructed error is 
visually imperceptible by the human eye. Therefore, 
lossless or near lossless compression algorithms for 
3D sounding data are warranted. Lossless compression 
algorithms provide intact information about the 
original image, although their benefits in compression 
ratio and speed are not as high as they would be with 
lossy compression algorithms.  

Previously applied lossless predictor-based 
compression algorithms such as JPEG-LS [9] and 



CALIC [10] are not efficient enough for the sounding 
data compression, since these algorithms have been 
built to work on 2D data and cannot exploit 
redundancy in spectral dimension between disjoint 
bands. Even when their performance has been 
improved by involving reordering techniques, such as 
[11] or [12], the results are still not very high.  

This paper presents an efficient lossless 
compression algorithm, which has produced excellent 
results being tested on 10 hyperspectral sounding 
images. Next section introduces the algorithm. Section 
3 provides overview of the hyperspectral sounding 
data used in this study. Section 4 details obtained 
compression results and summarizes the paper.  

 
 

2 Compression Algorithm 
3D image is a specific type of imaging data with one 
spectral and two spatial dimensions. The 3D image   
Im  [M, N, S], where M is number of rows, N number 
of columns and S is a number of bands can be 
represented as a set of 2D arrays. A single entry         
B [M, N, Si] belonging to this set represents one image 
band. Then two spatial dimensions of each image band 
can be converted into a 1D array. Hence 3D image 
hypercube structure has changed to a set of 1D 
vectors, where each vector has Q=M x N pixels and 
number of the vectors is S.   

Efficient 3D compression algorithms exploit 
interpixel redundancy in every image dimension. The 
proposed algorithm extracts spectral redundancy by 
coding each band of the image by making use of 
another prediction band. Previously coded pixels, 
known as a causal set, are involved to estimate the 
current pixel value. The least squares (LS) estimation 
approach, which predicts the current pixel using a 
linear combination of its causal neighborhood, has 
been adapted for multispectral lossless image 
compression.    

In order to improve the effectiveness of the 
prediction phase, we propose to apply optimal band 
reordering technique before actual prediction. 
Originally image bands are presented in order given by 
the spectral wavelengths, which is referred to the 
natural band ordering. Some image bands, located in 
neighboring wavelengths, might have weak 
correlation. Thus it is reasonable to reorder image 

bands in such a way, that adjacent bands have the 
highest correlation. Moreover, it may happen that one 
band has good correlation with several other image 
bands, or, in other words, this band could be a good 
predictor for those bands.   

Image interband relationships should be known to 
perform efficient reordering. Interband similarities can 
be very accurate measured by one of the proposed 
metrics (1) – (4). These metrics take two vectors as an 
input and compute the real number in the range     
[0.0; 1.0], where 1.0 indicates that input vectors are 
identical, 0.0 shows that they are totally different. 
Each metric is presented as function Mk (Bi, Bj), where 
Bi, Bj   are the hyperspectral image bands, in a form of 
1D vectors. 
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Each of these metrics can be used to estimate 
similarity between every two image bands. All 
coefficients are collected in one matrix, which is used 
for further reordering and prediction. The procedure of 
estimation interband relationships is the first step of 
the proposed lossless compression algorithm.  



Next step of the algorithm is to reorder image bands 
in such a way that higher correlated bands, are 
allocated together. The problem of optimal image 
band reordering is equivalent to the problem of finding 
Minimum Spanning Tree (MST) in weighted directed 
graphs [13]. The computed matrix of interband 
similarity coefficients can be considered as a matrix of 
weight coefficients for the graph, where the graph 
vertices denote the image bands’ numbers and the 
edges assign if there is a direct connection between 
two vertices. Prim’s algorithm [14] is known to be 
good for constructing MST in weighted directed 
graphs.  

Actually, we are searching for the maximum 
weighted tree and desirable output is a set of bands’ 
numbers, corresponding to the path how image bands 
should be allocated in oreder to achieve the best 
compression results.  

Each band must be predicted and no one twice. 
Although the same band might be used as a predictor 
for two or even more bands. No cycles are allowed in 
the MST, therefore decompretion is easily achivable 
by reversing the procedure of MST construction. Due 
to prohibiton to have any cycles, sometimes the 
predictor for the current band is not the best possible. 
Let us denote the band, which is used for prediction as 
the predictor, and the band, which is predicting as the 
current band.  

When the optimal band ordering is achieved, and 
for any image band the predictor is determined, a 
linear prediction technique [15] is applied to exploit 
interpixel redundancy in the special and spectral 
dimensions.  

The technique is based on the idea that the current 
pixel value can be computed using pixels form its 

causal neighborhood. The predicted pixel value '
,, bcrp  

can be found using the following equation: 
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 In (6) kjia ,,  is a prediction coefficient of the pixel 

at location (i, j, k), S is the number of bands; T (top) is 
the number of rows that take part in the causal set. L j, k  
(left) and R j, k (right) are the left and right delimiter as 
functions of rows and bands that finally specify the 

causal set. The causal set in case when two bands are 
involved is shown in Fig.1. 

 

 
 

Fig 1. An example of causal set when two image bands are 
involved. 

 
Examples of possible neighbourhoods are shown in 

Fig.2.  
 
 
 
 
 
 
 
 

Fig 2. Examples of the sample sets used in the algorithm for 
prediction of the current pixel. The current pixel is marked 
by the black square. 

 
Finally error images are computed as a difference 

between the original and predicted images and entropy 
coded.  

 
2.1   Optimal Compression Algorithm 

In order to obtain maximal possible compression 
ratios for a given image, regardless of the longer 
computational time, we have improved the prediction 
phase of the proposed algorithm in the following way. 

We still use the linear prediction technique, but at 
this time, a sample set size is not fixed. Thus for each 
pixel prediction the best sample set has been chosen at 
a time.  

The whole procedure is a two-pass technique. At 
first, each pixel is predicted using values of the pixels 
from its causal neighborhood, known as a sample set. 
In the algorithm different sample sets, shown in Fig. 2 
are involved. Then residuals between the original and 
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predicted values are calculated and coded. Then for 
each special position, a sum of the absolute values of 
the residuals over the bands is calculated and the 
sample set, which gives a smaller sum, is used for the 
spatial position during the second pass.  

Finally error images are computed as a difference 
between the original and predicted images. These 
images are coded using a range coder [16]. For the 
pixels that do not have a large enough causal 
neighborhood of the current pixel, and therefore 
cannot be predicted, we calculated the difference 
between consecutive bands, which along with other 
compression parameters, are compressed using 
general-purpose text compression program, PPMD 
[17].  

The optimal algorithm results in very high 
compression ratios, but slowness of the algorithm does 
not make it efficient in practice. The obtained 
compression ratios are the maximal possible ones for a 
given prediction scheme. 

 
 

3 Hyperspectral Sounding Data 
In our experiments hyperspectral sounding images 
have been used. Each image has 2108 spectral bands 
and it could be generated from either an interferometer 
or a grating sounder with extremely high temporal and 
special resolutions (over one thousand infrared 
channels and with spectral widths on the order of 0.5 
wave number). 

Global coverage by the instruments is obtained 
twice daily (day and night) and the data along the orbit 
is processed into 6-minute granules. Each granule 
consists of 135 scan lines containing 90 cross-track 
footprints per san line; thus there are a total of 135 x 
90 = 12,150 footprints per granule. 

The data is available at the Distributed Active 
Archive Center (DAAC) located at the NASA 
Goddard Earth Sciences Data and Information 
Services Center (GES DISC) in Greenbelt, Maryland, 
USA. The data, used for this compression study, is 
available via anonymous ftp (ftp://ftp.ssec.wisc.edu 
/pub/bormin/HES) [18].  

The algorithm has been tested on ten granules, five 
daytime (DT) and five nighttime (NT), which have 
been chosen from different geographical regions of the 

Earth. Their locations, UTC times, and local time 
adjustments are listed in Table 1.  

 
 

Table 1. Ten selected AIRS granules for hyperspectral 
sounding data compression studies. [18] 
 

Granule 
� 

Time Location 

9 00:53:31 UTC -12H Pacific Ocean, DT 

16 01:35:31 UTC +2 H Europe, NT 
60 05:59:31 UTC +7 H Asia, DT 

82 08:11:31 UTC -5 H North America, NT 

120 11:59:31 UTC -10H Antarctica, NT 

126 12:35:31 UTC -0 H Africa, DT 

129 12:53:31 UTC -2 H Arctic, DT 

151 15:05:31 UTC +11 H Australia, NT 

182 18:11:31 UTC +8 H Asia, NT 

193 19:17:31 UTC -7 H North America, DT 

 
 

4 Conclusion 
The majority of lossless compression algorithms is 
made up by efficient prediction phase, when pixel 
values are predicted, and error images are coded. This 
paper emphasizes the importance of the reordering 
phase, which is applied before actual prediction in 
order to improve its performance. The proposed 
lossless compression algorithm results are highly 
dependent on the 3D image reordering. The band 
ordering is determined by the statistic, which measures 
the interband similarities. Several metrics have been 
tested and analyzed in this study. These are very 
popular for color difference measurement in 
multispectral data, but most of them have never been 
used as measures of interband similarity.  

The following table reflects compression ratio of 
the images, which have been compressed by the 
proposed algorithm, when each of the statistic has 
been employed at a time. The compression ratio is 
measured as the size of the original file divided by the 
size of the compressed file. 

 
 



Table 2. Bit rates for the 10 tested granules compressed by 
one of the proposed techniques.  

 

Granule 
 � 

Natural  
band ordering 

The alg. 
with M1 

The alg. 
with M2 

The alg. 
with M3 

9 2.080 2.1800 2.180 2.180 
16 2.000 2.1110 2.111 2.111 
60 1.940 2.0670 2.066 2.067 
82 2.008 2.1030 2.103 2.104 
120 1.937 2.0280 2.028 2.028 
126 2.035 2.1530 2.153 2.153 
129 1.986 2.0680 2.068 2.068 
151 2.081 2.1710 2.171 2.171 
182 1.906 2.0170 2.018 2.018 
193 2.035 2.1460 2.146 2.146 

 
Granule  
� 

The alg. 
with M4 

Opt. 
Comp. 

JPEG- 
LS 

9 2.1790 2.205 1.990 
16 2.1110 2.128 1.942 
60 2.0640 2.072 1.895 
82 2.1040 2.123 1.950 
120 2.0280 2.039 1.900 
126 2.1570 2.180 1.939 
129 2.0690 2.082 1.934 
151 2.1700 2.198 2.015 
182 2.0150 2.031 1.887 
193 2.1470 2.167 1.944 

 
The first column in Table 2 reflects the image 

name. The rest of the Table shows compression ratios 
of the images, compressed by the proposed algorithm, 
when each of the metrics has been employed at a time. 
Only the 2nd column reflects compression ratios of the 
images, compressed by the same algorithm, but when 
no reordering technique has been applied. In other 
words, images have had natural band ordering. The 3rd 
-6th columns reflect compression ratios of the images 
produced by the algorithm when each of the proposed 
metrics M1,…, M4 has been involved at a time. Each 
metric implies different band reordering, thus 
compression results are highly depend on the metric 
being used. In the next column compression ratio of 
the images compressed by the optimal algorithm are 
shown. The results are high, but the algorithm is 
extremely time-consuming.  The last column shows 
results produced by JPEG-LS algorithm for the same 
images.  

The time required for compression of the images 
with the natural band ordering, the optimal band 
ordering and the orderings implied by M1 and M4 
metrics are reported in Table 3. Compression 
computational time is much higher than the 
decompression time, since enormous amount of time is 
spent on achieving the optimal band reordering. The 
more complicated is the way of the image band 
reordering, the longer is the computational time. Thus, 
the fastest way of compression is to ignore reordering 
phase, or to compress an image with the natural band 
reordering. But since the purpose of compression in 
achieving a small file size as well as the fast 
computational speed, omitting the reordering phase 
could cause poor results in terms of compression 
ratios. The smallest file size has been achieved with 
the optimal band reordering, although the algorithm 
with this technique requires the longest compression 
time. Thus aiming to achieve a compromise between a 
fast computational speed and a high compression 
results, we have proposed in this paper a set of 
metrics, which can be used on the reordering phase. 
The most efficient of them are M1 and M4. Analyzing 
compression results obtained with these metrics and 
shown in Table 2, we can conclude that they are very 
close to the results, obtained by the algorithm, when 
the optimal band reordering has been involved. 
Nevertheless computational speed is much higher than 
the speed allowable with the optimal band reordering.  

 
Table 3. Compression and decompression time in 

seconds for the 10 tested granules compressed by one of the 
proposed techniques.  

  
Gr. 
 � 

Natural  
band  
ordering 

The alg. 
with M1 

The alg. 
with M4 

Opt. 
Comp.  
algorithm 

 Comp/ 
Decomp. 

Comp/ 
Decomp. 

Comp/ 
Decomp. 

Comp/ 
Decomp. 

9 25.5/8.1 107.4/7.7 111.2/7.8 20082.06/8.1 
16 26.5/9.6 107.8/8.1 111.3/8.1 19600.67/8.5 
60 26.6/9.8 108.0/8/2 111.6/8.2 26329.65/9.1 
82 26.8/9.9 108.0/8.2 111.6/8.1 18375.97/8.8 
120 26.6/9.8 108.1/8.6 111.7/8.5 18939.36/8.9 
126 26.2/9.2 107.7/7.8 111.2/7.8 25424.86/8.1 
129 25.8/9.3 107.8/8.2 111.3/8.2 17729.78/8.5 
151 25.3/8.8 107.4/7.9 111.1/7.8 17161.61/8.1 
182 28.6/13.5 108.7/8.7 112.3/8.9 23565.38/10 
193 26.1/9.3 107.7/7.9 111.2/7.9 20587.77/8.3 



One of the proposed reordering techniques can be 
chosen to accompany the compression algorithm, 
based on the application requirements. Concluding the 
discussion above, it should be mentioned that the 
fastest compression speed is achievable with the 
algorithm with natural band ordering and the best 
compression savings are provided by the optimal 
algorithm. The best results in terms of both time and 
compression ratios have been obtained, when M1 and 
M4 statistics have been involved in the reordering 
phase of the algorithm.  

Moreover the comparison of the results obtained 
with the proposed algorithm and JPEG-LS has been 
made. Since JPEG-LS has been developed to compress 
2D images, it is not sufficient in working on 3D data. 
The results obtained clearly show the advantages of 
the novel technique.  
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