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Abstract: Even if micropipette experiment is a quite widely used micromanipulation technique, the derived Young’s 
modulus of the probe tissue can be overestimated if thin samples are used. In this paper finite element models were 
used to examine the influence of sample thickness h on the mechanical response. Considering the assumptions of 
quasi-incompressible elastic material undergoing small strains, our numerical results show that below a critical value 
of h, the thickness of the sample becomes a relevant parameter and must be taken into account for accurately 
determining the mechanical properties of the tissue. This study provides a framework in which finite element 
modeling of biological tissue rheology would help to decrease the bias and thus the dispersion of elastic modulus 
estimated from micropipette experiments. 
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1 Introduction 
Understanding how a biological material interacts with 
its environment requires the knowledge of its 
mechanical properties. The micropipette aspiration 
technique is a widely used experimental method which 
has been extensively applied in recent years to 
measure the elasticity of cell cytoskeleton [1, 2, 3, 4], 
cell nucleus [5] as well as aortic tissue [6]. The effects 
of the internal pipette radius and its thickness on the 
mechanical sample response have been largely studied 
[3]. More recently, it has been shown that the initial 
curvature of the aspirated surface sample affects 
significantly the mechanical response [4]. 
Nevertheless, while quantification of the tissue elastic 
modulus is a central issue of this experimental 
approach, the proposed relationships between imposed 
suction pressure and measured aspirated length can not 
be used for thin biological samples. In the present 
work, we extend the work of Theret et al. [3] in order 
to - (i) correct previous analytical expression obtained 
for a semi-infinite homogeneous medium (or half-
space model) by including a geometrical function 
which account for the thickness of the sample, and to - 
(ii) establish critical values of the sample height below 
which such correcting coefficient are necessary. 
 
 
2 Finite Element Model 
Computations of the aspirated length induced by 
increasing the value of the micropipette negative 
pressure were performed using Ansys 8.0 software 

(Ansys 8.0 software, Ansys Inc., Connonsburg, 
Pennsylvania, USA). 
 
2.1 Geometry 
The tissue is represented by a thick circular slice of 
radius a and thickness h. The pipette is modeled by a 
rigid hollow cylinder of internal and external radii Ri 
and Re, respectively. Taking advantage of the 
axisymmetry conditions of revolution, we simplify the 
mechanical study to a two-dimensional structural 
analysis (Fig. 1). 
 
2.2 Material properties and mathematical 
formulation 
The tissue is assumed to be an isotropic and 
incompressible elastic medium, with Young’s modulus 
E. Considering only small deformation of the 
homogeneous tissue sample, the governing equations 
in the absence of body force are given by 
 
divσ=0, σ=-pI+2Gε, 2ε=gradu+(gradu)T, divu=0    (1) 
 
where σ and ε are the stress and strain tensors, I is the 
identity matrix, u is the displacement vector, p is the 
Lagrange multiplier resulting from material 
incompressibility, and G is the material shear modulus 
(related to the Young’s modulus E by the relationship 
G=E/3). 
 
2.3 Boundary and contact Conditions 
We meshed the tissue with approximately 4,500 high-
order eight nodes elements and we especially 



concentrated the number of elements in the 
neighborhood of the aspirated region (Fig.1). 
The contact lines between the pipette and the tissue are 
particularly finely meshed with specific contact 
elements in order to allow sliding of the aspirated 
tissue on the tip of the micropipette.  
The following displacement conditions were imposed 
on the tissue boundaries: (i) Zero displacement, 
modeling full tissue attachment to the base, was 
imposed to the tissue side in contact with the rigid 
substrate, (ii) zero normal displacement condition was 
imposed on the tissue section belonging to the axis of 
symmetry, (iii) free boundary conditions were 
assumed for all the other sample sides, (iv) zero 
displacement was imposed to all the surface of the 
micropipette. 
 

Fig.1: Finite element mesh, boundary conditions 
and geometrical parameters. 
 
 

3 Results 
 
3.1 Background for the calculation of tissue 
Young’s modulus 
In the case of a semi-infinite sample (i.e. when a and h 
tend to infinity) and under the assumptions of linear 
elasticity and incompressible medium, the 
displacement field solution of Eqs.(1) has been found 
by Theret et al. [3]. The resulting relationship between 
the applied negative pressure ∆P and the associated 
aspirated length Uy, depends on tissue Young’s 
modulus E, pipette inner diameter Ri and wall function 
Φ(η) [3]: 

                  
(2)

  
 
where η = (Re-Ri)/Ri and Φ(η) ≈ 2 for realistic values 
of η ranging from 0.4 to 0.6. In real micropipette 

experiments, variations of sample thickness can 
significantly modify its mechanical response. It is thus 
of importance to study the sensitivity of the aspirated 
tissue length Uy to modifications of the geometrical 
parameters h relatively to the pipette inner radius Ri. 
 
3.2 Model validation 
An estimation of the numerical error is performed by 
comparison of the computed solution with the 
previous analytical solution derived by Theret et al. 
[3]. We checked that the computed values (obtained 
with = 40 µm and = 40 µm) agreed within 4 % 
with the corresponding theoretical values. 
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3.3 Spatial distribution of effective strains with 
variation of sample thickness 
Figure 2 highlights the effect of decreasing tissue 
thickness on the spatial distributions of the effective 
strain within the medium when h varies (h=1µm and 
h= 4 µm). The effective strain is defined as εeff = 
(2eijeji/3)0.5, where eij are the components of the 
deviatoric strain tensor.  In these two cases, for given 
micropipette geometries, mechanical properties of the 
tissue and imposed internal pressure ( Ri = 1 µm, Re = 
1.4 µm, E = 1 kPa, and ∆P = 40 Pa), the resulting 
computed aspirated tissue length are Uy = 1.92x10-2 
µm and Uy = 3.92x10-2 µm, respectively. 
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PU Fig.2: 3D color maps showing the tissue deformed 

shapes and the spatial distributions of the effective 
strain εeff. A) h = 1 µm - B) h = 4 µm. Displacement 
scale has been multiplied by 20 to highlight the 
simulation results. 



3.4 Nonlinear corrections of the half-space 
model 
In order to introduce the thickness effect and to correct 
the Theret et al.’s solution given by Eq.(2), we used a 
finite element model to extensively compute and 
analyze the tissue response to applied negative 
pressure ∆P for a large set (200 cases) of pipettes and 
sample thicknesses in the range: 1µm ≤ Ri ≤ 10 µm , 2 
µm ≤ h ≤ 60 µm and 0.4 ≤ η ≤ 0.6. To avoid edge 
effects, the tissue width a is approximately 5 times 
larger than the inner radius of the pipette.  
On Fig. 3 we compare the simulated results with the 
analytical half-space model solution given by Eq.(2). 
Interestingly, our computations allow us to correct the 
previous solution  by introducing a new 
geometrical function β which depends only of the 
normalized thickness sample h/R

∞=h
yU

i: 
 

∞== h
yiy URhU  )/(β       (3) 

 
 
As expected, the values of the geometrical function β 
satisfy the following limits (Fig.3): 
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Fig.3: Comparison between half-space model of 
Theret & al. [3] and the corrected model. These 
simulations have been performed with E = 1kPa, ν = 
0.49, ∆P = 1Pa and η = 0.4. Notice that β is a 
constant equal to 1 for the half-space model. 
 
3.5 Critical values of the sample thickness h 
From the numerical results presented on Fig. 3, we 
derived the critical values of the ratio h/Ri ,(h/Ri)*, for 
which the relative error between the predictions of the 
half-space model and our corrected model (i.e.(1-β)/β) 
becomes smaller than 10%. We conclude that the 
influence of the tissue thickness must be considered as 
soon as the ratio h/Ri becomes smaller than 2.5. 

Indeed, the relative error becomes larger than 20% for 
a sample thickness h smaller than the micropipette 
diameter 2Ri (Fig.3). 
 
 
4 Conclusion 
Estimation of the medium stiffness is a key issue for 
understanding how tissue reacts to an imposed stress. 
Considering the assumptions of quasi-incompressible 
elastic material undergoing small strains, our finite 
element computation indicates that below a critical 
value of h/Ri, the thickness of the sample becomes a 
relevant parameter and must be taken into account for 
accurately determining the mechanical properties of 
the tissue. If we use for experimental data analysis the 
Eq.(2) for thin tissue samples, the sample stiffness is 
overestimated. Therefore, this study provides a 
framework in which finite element modeling of 
biological tissue rheology would help to decrease the 
bias and thus the dispersion of elastic modulus 
estimated from micropipette experiments. 
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