Satellite Data Analysis with FPGA Reconfigurable Computation
Yongxiang Hu1, Yang, Cai2, Sharon Rodier1
1. MS435, NASA LaRC, Hampton, VA, USA;

2. Carnegie Melon University, Piitsburg, PA, USA
Abstract: - An FPGA-based satellite data analysis framework is developed for real-time physical property retrievals of the atmosphere, land and ocean. This system includes radial-basis-function object classifications, back-propagating radiative transfer calculations and generalized nonlinear regression inversions. The data analysis system is trained with radiative transfer simulations and observations for autonomous detection of satellite measurement signatures and retrievals of atmospheric physical properties. The algorithms are designed in order to take advantage of FPGA reconfigurable computation. The FPGA reconfigurable computation is orders of magnitude faster than traditional computing methods. The generalized inversion is able to automatically adapt to multi-platform sensors, eliminate redundant algorithm development and provide a vehicle for autonomous onboard data analysis and physics-based data compressions.

Key-Words: - Remote sensing, satellite data analysis, FPGA reconfigurable computation

1
Introduction

Since the 1970’s, satellites have been making a global sampling of our Earth’s system inherently unobtainable by ground-based systems. These remote-sensing measurements from space are rapidly increasing as satellites are launched with more sophisticated, hyper-spectral sensors. This trend will continue and the resulting high-volume of information collected from these satellite experiments including angular, spectral (UV, visible, IR and microwave) and spatial (both vertical and horizontal) dimensions. Physical properties of atmosphere, ocean, and land are mixed together in these observations. For most retrieval algorithms, adding new information to improve the retrievals of physical properties is not a simple task because of the non-linear nature of the problem as well as the computational difficulties. This study intends to develop a neural network retrieval system that is capable of easily absorbing additional information.

This study identifies the activities and resources planned to develop and verify a neural network inversion system to retrieve physical atmospheric properties. A simple case has been planned first; followed by systematically increasing the number of input parameters after careful analysis and verification. These activities include:

· Development of a database consisting of atmospheric radiative transfer simulated data and physical properties for training the neural network inversion system

· Development and training of the neural network models

· Applying the neural network to actual satellite measurements

· Verifying the neural network results to current retrieval results

· FPGA reconfigurable computation of the neural network algorithms

2
Retrieving physical properties with Neural Networks

2.1
Current Inversion Methods
The current inversion techniques include regression, lookup table searching, and iteration methods. For example, suppose X is a vector from satellite observations and Z is the physical properties to be retrieved. The functional relation, X =f(Z), is obtained by solving the radiative transfer equation. Mathematically, the inversion is to derive Z from X, or solving the inverse relation, Z =f-1(X). If f is a linear function, a simple inversion method such as linear regression can be used to solve this equation. However, for most physical properties, the relationship between Z and X are highly nonlinear. The most popular inversion methods for these nonlinear problems are look-up table searching or iteration. As more and more sensors are added, the dimension of X increases and the inversion becomes a computational burden quickly. Both searching through an enormous lookup table and performing iterations over very many spectral channels are computationally expensive and the results may have difficulty converging. As a result, a small portion of the observations is effectively used in the retrievals.

Let’s use cloud droplet size retrieval as an example here. Cloud particle size is a very important parameter for human-induced climate change studies. Activities such as industrial pollutions may cause changes in cloud particle sizes and thus alter the solar energy entering the Earth’s climate system.

The physics of retrieving cloud particle sizes from satellite remote sensing is as following: cloud particles absorb near-infrared radiation (1-4 microns) from solar illumination, but they do not absorb in visible wavelengths. Larger particles absorb more near-IR radiation than smaller particles. As a result, for the same visible reflection, clouds with larger particles reflect less in near-IR comparing with clouds with smaller particles. At the mean time, we need to correct the thermal emission from clouds at near-IR wavelengths. To do that, we need to know the temperature of the clouds using a mid-IR channel emission at atmospheric window region (8-12 micron). Thus, deriving cloud particle sizes require radiance observations of at least 3 different wavelengths I (Ivisible, Inear-IR and Imid-IR). Theoretical radiative transfer models compute these radiances for various combinations of cloud particle sizes (Re), optical thickness () and temperatures (T). The theoretical radiative transfer models provide a mapping: (Re, , T) ((Ivisible, Inear-IR, Imid-IR). Retrieving cloud particle size is an inversion process of the radiative transfer computations, which is a mapping: (Ivisible, Inear-IR, Imid-IR) ((Re, , T). Currently, such an inverse mapping (the retrievals) is performed either by searching through a huge look-up table of (Re, , T) ((Ivisible, Inear-IR, Imid-IR) derived from radiative transfer computations and finding the closest match, or by iterative processes of radiative transfer calculations for observations at each individual satellite pixel.

2.2 Neural Network Inversion Method
A neural network functional approximation is a significantly different way of handling the inversion, Z=f-1(X). This approximation can be considered as a nonlinear multivariate regression problem with a special nonlinear orthogonal functional basis. If the inversion is well posed it can be accurately approximated by multi-layer neural networks (Funahasi, 1989; Hornik, 1991; Haykin, 1999), such as a feedforward back propagating network with one hidden layer. The function of the hidden layer is to intervene between the external input and the network output in some useful manner. By adding this hidden layer, the network is enabled to extract higher-order statistics particularly valuable when the size of the input layer is large and the mapping is nonlinear. The hidden layer, yj, and the output layer, zk, will use a signoidal activation function.

Generalized regression neural networks (GRNN) are another class of neural networks that are proven very effective functional approximation approaches. Comparing with back propagating (BP) method, GRNN is easier to train but more time consuming to apply with current computer capability.

The focus of this study is to implement neural networks on custom FPGA chips and maximize the computational performance and the utilization of FPGA based computing in the processing of remote sensing scientific algorithms.

3
Speeding up data analysis with FPGA re-configurable computing: A example

Physical inversion is a key component of an Earth observing mission. For example, near sea surface wind-speed (W) can be retrieved from the TRMM Microwave Imager (TMI) brightness temperatures (B). For given wind speed, brightness temperatures can be estimated from physics models [B = f(W)]. The simplest inversion to retrieve wind speed W from observation B [W = f -1(B)] is a linear regression: W = C1B1,h + C2B1,v + C3B2,h + +….
 Most remote sensing related inverse problems are nonlinear in nature. A generalized nonlinear regression (GNR) method is used specifically for high-performance computing implementation. Using GNR, the wind speed W can be derived from microwave measurements B as:

[image: image1.wmf]11

ˆ

()

NN

iii

ii

WBWDD

==

=

åå

r

[image: image2.wmf]2

,

2

1

ˆ

()

]

()

exp[

M

jij

i

j

ii

BB

D

rs

=

-

=

å

-

where
[image: image3.wmf]ˆ

i

W

and
[image: image4.wmf]ˆ

ji

B

are wind speed and microwave brightness temperatures from forward model simulations and previous retrieval results.  is a correlation factor between the brightness temperature of channel j (
[image: image5.wmf]ˆ

j

B

) and the wind speed, and  is measurement error of
[image: image6.wmf]ˆ

j

B

. Based on radial-bases neural networks, GNR is a non-parametric estimation method. Retrievals using GNR are as straightforward as linear regressions but yield more accurate results. With all the existing physics models, we can produce equivalent
[image: image7.wmf]ˆ

i

W

and
[image: image8.wmf]ˆ

ji

B

for all instruments from forward simulation. Comparing with other inverse methods, GNR is more universal since it does not require a priori information. However, GNR is not necessary an ideal candidate for high performance parallel computations. To improve the parallelism of the algorithm, we modify the GNR to its subset, the Radial Basis Function (RBF) model, which is simpler and easy to parallelize.

[image: image9.wmf]2

0

2

1

ˆ

()

()exp[]

2

k

i

i

i

u

BB

WBWW

s

=

-

=+

å

v

v

Where each
[image: image10.wmf]i

B

ˆ

 is a kernel center and where
[image: image11.wmf]()

dist

is a Euclidean distance calculation. The kernel function Dl is defined so that it decreases as the distance between Bu and Bj,i increases. Here k is a user-defined constant that specifies the number of kernel functions to be included. The Gaussian weight function is centered at the point
[image: image12.wmf]i

B

ˆ

with some variance (u2. The function provides a global approximation to the target function, represented by a linear combination of many local kernel functions. The value for any given kernel function is non-negligible only when the input
[image: image13.wmf]B

v

 falls into the region defined by its particular center and width. Thus, the network can be viewed as a smooth linear combination of many local approximations to the target function. The key advantage of RBF networks is that they contain only summation of kernel functions rather than compounded calculation so that RBF networks are easier to be parallelized. In addition, they can be trained much more efficiently with genetic algorithms.
3.1 System Architecture
We used National Instrument’s FPGA module for rapid prototyping. We used a PC processor as a host that transfers data into and out of the FPGA board. The two interface with a PXI bus. Current reconfigurable FPGA boards function like coprocessor cards, which are plugged into desktop or large computer systems, called the host. By attaching a reconfigurable coprocessor to a host computer, the computation intensive tasks can be migrated to the coprocessor forming a more powerful system.

 A prototype of the physical inversion model solver was constructed on the NI PXI-7831R FPGA prototyping board. The FPGA Vertex II 1000 contains 11,520 logic cells, 720 Kbits Block RAM, and 40 embedded 18x18 multipliers. This board is primarily designed for implementation of custom electronic logic probes. It can be programmed using the tools provided by National Instruments. These tools convert LabVIEW VI block-diagram code into VHDL, which is then compiled to a layout for the FPGA using the standard Xilinx toolset. With this system, rapid prototyping of a solution and alteration of the number of parallel channels can be done without significant development time.
 In our design, the computation intensive portion of the multi-spectral image classification algorithm resides on the calculations within the processor. The user interface, data storage and IO, and adaptive coprocessor initialization and operation are performed on the host computer. The inversion algorithm is mapped to the FPGA board. The FPGA has a direct connection to the host through the PCI bus. Eighteen FPGA boards or other instruments can be plugged into the chassis. This architecture allows users to integrate sensors and physical inversion systems in one place. It is possible to bring the system to an airborne craft for onboard experiments.
3.2 Implementation

We have overcome the limitations of the current development tool Labview™ and developed new functions for solving our problems, e.g. exponential functions and memory control functions as well as floating point functions. We have implemented a parallel neural network Generalized Regression Model on FPGA with historical satellite data about wind speed and surface temperature. To increase the capacity and speed, we have also implemented Radial Basis Function, a subset of Generalized Non-linear Regression model. The RBF model increased the capacity in two folders and up. With fixed point computing, the RBF presented ideal parallelism behavior on the FPGA. In addition, we have prototyped a Genetic Algorithm (GA) for training the neural networks on FPGA. The followings are the implementation details:

a. Floating Point Representation

We have implemented both fixed-point and floating-point representations on the FPGA. Due to the limited number of gates available on the FPGA chip, it is desirable to use fixed-point arithmetic in our implementation of the inversion algorithm. However, the sensitivity to small values that was demonstrated during testing of the GNR algorithm necessitated the development of a floating-point solution. The RBF algorithm did not demonstrate such sensitivity and therefore allowed fixed-point representation to be used in all of its aspects. In our floating-point representation, we transform the algorithm into fixed point prior to hardware implementation. The width of the fixed-point data path is determined by simulating variable bit operations in Labview™ and by comparing the results obtained from the original algorithm in floating point.

b. Exponential-Function

Exponential function is the most computing-intensive component of this application. We use a Look-Up Table (LUT) for computing the exponential function. A LUT is used to determine the value of e – a.

c. Saturated 16-Bit Multipliers

Due to limited number of the embedded multipliers on the FPGA chip, we used 16-bit saturated multipliers instead of 32-bit full-length multipliers. We trade the accuracy with computing resources and time.

d. Memory Control

A memory initialization utility has been developed to arbitrate memory address so that the memory blocks can be accessed simultaneously.

e Training Algorithm Implementation

We used Genetic Algorithm (GA) to train the weights in the inversion models. GA is a general purposes optimization algorithm that is inspired by genetics. It normally generates better convergence solutions for neural networks. To make an efficient implementation of the algorithm on FPGA, we focused on gate-based approach rather than matrix-based approach. The gate-based approach takes advantages of FPGA architecture and yields a simpler and more efficient solution for GA implementation. For example, we used bit shifting and XOR to implement the random number generator that used minimal FPGA resources. Also, we used on chip memory to store the chromosome strings instead of the expansive arrays.

f. Parallelism Algorithm Implementation
We have implemented the parallelism algorithms at two levels: First, on-chip parallelism, where we use Labview™ “Parallel While Loop” to execute the parallel modules. Second, we put multiple FPGA boards on the PXI bus where they can run in parallel.

g. Host Software

We use Labview™ to configure the FPGAs and transfer the data in and out from FPGAs. A Graphical User Interface is developed to accommodate user inputs. In addition, the TCP/IP enabled utility allows user to access the FPGA server remotely.

h. Inversion Algorithm Implementation

The example prototype designed used two-dimensional input vectors (M=2 in the GNR equation). One hundred of these inputs were chosen from a set of 5000 input/output pairings and used as the set of known values. The remaining inputs were used as test data to generate results, which were then compared against the expected results paired with the inputs. All values of
[image: image14.wmf]i

r

and
[image: image15.wmf]i

s

were set to produce a
[image: image16.wmf]2

()

ii

rs

value of 0.001. Input values and output results were normalized between 0 and 1; all inputs and outputs are represented using fixed-point notation. Note that fixed-point values will be denoted as x.y, where x is the number of bits representing the integer value of the number and y the number of bits of precision in the number. For example, a 4.1 representation would allow for the numbers 0 through 15.5 to be represented at a resolution of 0.5. The GNR solver algorithm first notes the tick count on the FPGA timer, then acquires the input values from the host computer and stores them in memory. The solver then iterates 100 times to update both the
[image: image17.wmf]i

D

value and the value of
[image: image18.wmf]i

i

D

W

ˆ

. Finally, these values are summed and divided as described by the algorithm, and the result sent to the host computer. Another tick count is taken when the calculation is complete, and the difference between the two tick counts is sent to the host so that the processing time could be calculated. This sub-VI takes two inputs: an index i to determine which known value is being compared at this iteration and an input index that denotes which input is being compared. We first tried multiple inputs, but later on, we realized that due to storage and input-output limitations on the PXI-7831R board, it was more efficient to handle one input at a time. The GNR system sets this input to 0.

 The upper and lower boxed regions are identical sections that compute
[image: image19.wmf]2

,

)

ˆ

(

j

i

j

B

B

-

. These results are then summed, and the lower twelve bits from 2-6 to 2-17 are used as a reference into a lookup table containing solutions to the equation
[image: image20.wmf].001

x

e

-

. If any of the bits besides the reference bits are set, a solution of 0 is returned; this is justified because any solution to
[image: image21.wmf].001

x

e

-

for
[image: image22.wmf]5

2

x

-

³

is less than 2-15 , and therefore cannot be represented at the resolution of 1.15 used as the final output for
[image: image23.wmf]i

D

. Once the lookup table generates a value for
[image: image24.wmf]i

D

, another lookup table is used to retrieve the value of
[image: image25.wmf]i

W

ˆ

. These values are multiplied together, and the SubVI generates two outputs:
[image: image26.wmf]i

D

and
[image: image27.wmf]i

i

D

W

ˆ

.

 The lookup tables used to store the known values and calculate the value of
[image: image28.wmf]i

D

are constructed using the FPGA Memory Extension Utility in the LabVIEW system, which allows for RAM to be initialized during the FPGA design process. Fig. 5 shows the memory initialization code for the
[image: image29.wmf]i

D

lookup table and the set of known values, respectively.

 To convert the fixed-point results to floating-point and to verify the results of the GNR calculation, a host VI was constructed. This is a program that operates in the Windows environment and interacts with the FPGA, sending it input values and retrieving the resulting outputs. It consists of an input converter that translates the floating-point inputs into 4.12 fixed-point notation, an input/output block to communicate with the FPGA, an output converter, and a verifier system that calculates the expected GNR solution in floating-point notation independently of the FPGA. These values can be compared to determine the accuracy of the FPGA results.

 Once the system was constructed, the number of parallel processing channels was changed and the processing time relative to the changes was observed. The calculation of
[image: image30.wmf]i

D

was tested both with the parallel version of the algorithm as described (2 channels) and another version, which calculated the values of
[image: image31.wmf]2

,

)

ˆ

(

j

i

j

B

B

-

using a loop through j=0 and j=1. Also, the 100-iteration loop in the main body of the FPGA design was divided into multiple loops of less iteration: a pair of loops (0-50 and 51-99), four loops (0-24, 25-49, 50-74, 75-99), and five loops (0-19, 20-39, 40-59, 60-79, 80-99). Each of these configurations was compiled and tested, and no variation in output values was detected between them.

[image: image32.jpg]Computation Time (sec)

100.0000

10,0000

10000

.1000

00100

00010

0.0001

TRGA
Pentium

o

2000 4000 6000 8000 10000
‘Number of Retrievels

Figure 1: Computation speed: FPGA vs. Pentium

4 Results

We have the following preliminary results through our benchmark experiments:

 We found that FPGA over-performance Pentium at least two to three orders of magnitude in terms of speed. For example, for RG model, the FPGA uses 39 ns (with 10 MHz clock speed). Pentium uses between 1000 ns and 2000 ns (with 1 GHz clock speed) (See Figure 1).

 We also found that the fixed point Radial Basis Function algorithm demonstrated ideal parallelism as the number of simultaneous basis compares increases.

 One limitation in the design of the GNR equation was the number of multiplier units available on the Xilinx FPGA. On the Xilinx FPGA, multiplication is executed by the use of a pre-constructed 18x18 MULT unit on the chip; This unit is useful because multiplication is an expensive operation in terms of number of gates used. However, with only forty of these units on the chip the amount of multiplication allowed in the GNR calculation was extremely limited. Potential applications of this generalized FPGA-based neural network processor include: multi-platform combined retrievals; universal application of atmospheric remote sensing; real-time data analysis and atmospheric corrections for ocean and land image processing; improvements in data processing capabilities of Atmospheric Science Data Centers (ASDC). An example of accelerating atmospheric retrievals in ASDC: currently ASDC host computer has all the input “neurons”. The I/O of generalized inversion FPGA processor would be linked to ASDC using bi-directional “shared memory”.

5. Conclusions

Neural network inversion methods are major improvement over other retrieval methods because it has an obvious advantage in computational speed when applied to inversion techniques. Unlike the iteration technique, which needs to solve the very time-consuming radiative transfer equation hundreds of times for each sample of satellite measurements, neural networks only need a few simple operations and the inversion can be done in near real-time in comparison.

FPGA re-configurable computation suggested in this study provides the possibility of speeding GRNN up to as fast as BG approaches.

FPGA over-performance Pentium at least two to three orders of magnitude in terms of speed. For example, for RG model, the FPGA uses 39 ns (with 10 MHz clock speed). Pentium uses between 1000 ns and 2000 ns (with 1 GHz clock speed). The fixed point Radial Basis Function algorithm demonstrated ideal parallelism as the number of simultaneous basis increases. The bottlenecks of the FPGA-based computing is the data I/O. How to get data in and out of the FPGA is on a critical path in terms of speed. Currently we use PXI bus that contains only 16-bit parallel channels. It can be saturated when the data exchanges are frequent. For high-speed data exchange, we plan to build our own board with a matrix of inter-connected FPGAs and use the available data I/O lines on FPGA chips for inter-chip data communication.
References:

Funahasi, K.-I., 1989: On the approximate realization of continuous mapping by neural networks. Neural Networks, 2, 183-192.

Hornik, K., 1991: Approximation capabilities of multiplayer feedforward networks. Neural Networks, 4, 251-257.

Haykin, S., 1999: Neural Networks – A Comprehensive Foundation, Prentice Hall, 842.

11

_1115070156.unknown

_1120981858.unknown

_1120984191.unknown

_1120984223.unknown

_1127902608.unknown

_1120984196.unknown

_1120984159.unknown

_1119693709.unknown

_1119693811.unknown

_1120981697.unknown

_1120981765.unknown

_1119693787.unknown

_1119687157.unknown

_1119687203.unknown

_1119687137.unknown

_1119685905.unknown

_1115069442.unknown

_1115070123.unknown

_1115067858.unknown

_1115067905.unknown

_1115067045.unknown

