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Abstract: - To deal with the large data volume of hyperspectral sensors the Canadian Space Agency 
(CSA) developed two near lossless compression algorithms. This paper analyzes compression errors 
introduced by the two compression algorithms and assesses their near lossless feature. Experimental 
results show that errors introduced by the two compression algorithms are smaller than the intrinsic noise 
of the original data caused by the instrument noise and other noise sources such as calibration and 
atmospheric correction errors. This level of compression errors is expected to have small to negligible 
impact on remote sensing applications compared to the intrinsic noise of the original data. 
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1  Introduction 
In the development of a spaceborne hyperspectral 
imager, one of the challenges is the large volume 
of data generated by the imager on-board the 
satellite, which exceeds the downlink capacity, and 
may quickly exhaust the on-board storage capacity. 
To deal with this problem, the Canadian Space 
Agency has been developing data compression 
technology for hyperspectral data for a number of 
years. Compression techniques for operational use 
of multi-dimensional data have been developed [1-
9]. Recently, two data compression techniques for 
multi-dimensional sensor data on-board satellites 
have been developed and patented. They are the 
Successive Approximation Multi-stage Vector 
Quantization (SAMVQ) [10, 11] and the 
Hierarchical Self-Organizing Cluster Vector 
Quantization (HSOCVQ) [12, 13]. These 
techniques were designed specially for the near 
lossless compression of hyperspectral imagery. 
They are simple, fast and near lossless even at high 
compression ratio. Both of them can be used for 
on-board and on-ground data compression of 
multi-dimensional data and are optimized for 
hyperspectral data. The CSA is planning to place a 
near lossless data compressor on-board a proposed 
Canadian hyperspectral satellite using these 
techniques to reduce the requirement for on-board 
storage and to better match the available 

downlinking capacity. 
One of the unique features of SAMVQ and 

HSOCVQ is that they allow control of the errors 
(noise) introduced during the compression process. 
For remote sensing applications, compression is 
considered near lossless provided the errors 
introduced by the compression are no larger than 
the intrinsic noise in the original data caused by the 
instrument noise and other noise sources from pre-
processing such as calibration and atmospheric 
correction. This is critical and highly valuable for 
data compression of satellite hyperspectral data, 
where compression error is expected to have a 
small or negligible impact on remote sensing 
applications. Since an original datacube is not 
exempt from instrument noise and other noise 
sources, these errors propagate into the remote 
sensing products derived from the original data. 

In order to evaluate the impact of the 
compression techniques on remote sensing 
applications a multi-disciplinary user acceptability 
study has been carried out [14]. Eleven 
hyperspectral data users, covering a wide range of 
application areas and a variety of hyperspectral 
sensors, assessed the acceptability of the 
compressed data qualitatively and quantitatively 
using their well-understood hyperspectral 
datacubes and predefined evaluation criteria. For 
their applications, the users accepted most of the 
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compressed datacubes as they provided the same 
amount of information as the original datacube.  

In this paper, we analyze the error introduced 
by the two compression algorithms and evaluate 
their near lossless feature. The errors introduced by 
the compression algorithms will be evaluated by 
comparing them with the intrinsic noise of the 
original data that is caused by the instrument noise 
and other noise resources.  
 
 
2  Test Hyperspectral Data Set 
A low altitude data set acquired using the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) 
in the Greater Victoria Watershed District, Canada 
on August 12, 2002 (the information on the data set 
is available at http://aviris.jpl.nasa.gov/ql/list02.html) 
was used. The spatial resolution of the data set is 
4m x 4m with a peak SNR of 1000:1 in the visible 
and near infrared (VNIR) region. A spectral subset 
was selected to remove redundant and bad bands. 
This reduced the data from 224 bands to 204 
bands, including the original bands 6-31 (423.04 
nm - 664.79 nm, VNIR), bands 35-96 (673.64 nm - 
1258.39 nm) and bands 98-213 (1263.72 nm - 
2399.48 nm) for short wavelength infrared 
(SWIR). A 28m x 28m spatial resolution data set 
was derived by spatially averaging the 4m x 4m 
data set. The signal-to-noise ratio (SNR) of the 
derived data set is 491000? =7000:1. Figure 1 
(a) shows the derived datacube. The spatial size of 
the datacube is 292 lines with 121 pixels per line. 
The datacube is stored in 16-bit digital numbers 
(DN). This datacube is viewed as a noise free 
datacube in this paper, as the noise is too small to 
have a significant impact on the evaluation.  

Figure 1 (b) shows a datacube the same as (a) 
except that its SNR is 600:1 generated by adding 
simulated instrument noise and other possible noise 
sources to (a). An additive noise model was used. 
This noise-added datacube was used as an original 
datacube for compression and evaluation of the 
near lossless feature of the compression algorithms 
in this paper. It is considered to be representative 
of a real satellite hyperspectral data set, since SNR 
for such an instrument is likely to be around that 
level. The noise of the original datacube caused by 
the instrument noise and other noise sources is 
referred to as intrinsic noise in this paper. Figure 1 
(c)  shows  an   intrinsic  noise   image  at  band  38  

   
             (a)                     (b)                     (c) 

  
                          (d)                     (e) 
Figure 1 AVIRIS Greater Victoria Watershed 
District datacube, intrinsic noise and compression 
error images 
(a) AVIRIS Greater Victoria Watershed District 

datacube with SNR of 7000:1 after 
aggregation, which is viewed as noise free 
(signal only), displayed band 38 (702.2 nm) 
as Red, band 20 (557.9 nm) as Green and 
band 2 (432.6 nm) as Blue; 

(b) Noise added datacube from (a) with SNR of 
600:1, which is used as an original datacube 
for compression; 

(c) Intrinsic noise image of the original datacube 
(with SNR 600:1) displayed at band 38; 

(d) Reconstructed datacube compressed using 
SAMVQ at compression ratio of 20:1; 

(e) Difference image (compression error) 
between the original datacube and the 
reconstructed datacube compressed using 
SAMVQ at compression ratio of 20:1 
displayed at band 38. 
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(702.2 nm) of the noise datacube, which was 
obtained by subtracting the datacube of SNR 600:1 
from the noise free datacube. 
 
 
3  Near Lossless Feature of SAMVQ 
The original datacube was compressed using the 
SAMVQ algorithm at compression ratio 20:1. Then 
the compressed data was decompressed to obtain 
the reconstructed version for evaluation. Figure 1 
(d) shows the reconstructed datacube. It is difficult 
to visually distinguish the difference between the 
original and the reconstructed datacubes. Figure 1 
(e) shows the difference (compression error) 
between the original datacube and the 
reconstructed datacube at band 38. The pattern of 
the compression error image looks similar to that 
of the intrinsic noise image. There are no apparent 
structures to the error image. 

The intrinsic noise of the original datacube was 
analyzed band-by-band and pixel-by-pixel. Figure 
2 (a) shows the worst-case noise profile at location 
(49, 174) of the intrinsic noise datacube as a 
function of spectral band number. The noise 
magnitudes for the VNIR bands and the beginning 
of SWIR bands are large. The maximum value of 
the noise is 204 DN at band 66, and minimum 
value of the noise is -196 DN at band 71. The noise 
values are between -15 DN and 15 DN for the 
bands between 100 and 204. 

Figure 2 (b) shows the compression error (or 
noise) profile of the reconstructed datacube with a 
compression ratio of 20:1 at the same location as 
Figure 2 (a). It can be seen that the error introduced 
due to the compression is smaller than the intrinsic 
noise of the original datacube across the spectral 
bands. The maximum value of the compression 
error is 85 DN at band 71, and minimum value of 
the compression error is -127 DN at band 63. The 
compression error values for bands between 100 
and 204 are in the same range as the intrinsic noise 
of the original datacube. They are between -15 DN 
and 15 DN.  

After compression/decompression, the recon-
structed data contains both the intrinsic noise of the 
original datacube and the compression error (or 
compression noise). In this paper the combination 
of the intrinsic noise and compression error is 
referred to as overall noise. This is the final noise 
budget of the datacube,  if  the reconstructed data is  

Worst Case Intrinsic Noise Profile at Location (49,174) 
(SNR7000-SNR600)
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                                           (a) 
Compression Error Spectrum at Location (49,174)

(SNR600-Reconstructed) 
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                                           (b) 
Intrinsic Noise + Compression Error at Location (49,174) 

(SNR7000-Reconstructed)
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                                           (c) 
Figure 2 Profiles of (a) intrinsic noise of the 
original data, (b) compression error introduced by 
SAMVQ at compression ratio 20:1, and (c) overall 
noise (i.e. intrinsic noise + compression error) at 
location (49,174). 
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sent to a hyperspectral data user for use. Figure 2 
(c) shows the overall noise profile at the same 
location (49, 174). It was obtained by subtracting 
the spectrum of the reconstructed datacube from 
the spectrum of the noise   free    datacube    at    
the    same     location. Interestedly, the overall 
noise profile shows that the maximum value of the 
noise is reduced to 77 DN at band 63, and the 
minimum value of the noise is reduced -111 DN at 
band 71. The overall noise value for bands between 
100 and 204 is reduced to between –5 DN and 5 
DN rather than between –15 DN and 15 DN as in 
the original datacube. The range of the overall 
noise in VNIR bands is also smaller than in the 
intrinsic noise of original datacube.  

In order to assess the compression error of the 
entire reconstructed datacube, the standard 
deviation of the compression error datacube at each 
band was calculated and plotted as a function of 
spectral band number. These standard deviations 
were used to estimate the noise level of the 
compressed data. The standard deviations of the 
intrinsic noise and of the overall noise at each band 
were also calculated for the purpose of comparison. 
They are shown in Figure 3. It is observed that the 
standard deviations of compression error images 
(solid line) are much smaller than those of intrinsic 
noise images (doted line) for the bands with high 
magnitude noise (bands between 35 and 75). For 
the rest of the bands they are very close. It is also 
observed that the standard deviations of the overall 
noise images that include both the intrinsic noise 
and the compression error (thick broken line) are 
smaller than those of intrinsic  noise  images (doted  
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Figure 3 Standard deviations of single band images 
for intrinsic noise, compression error (using 
SAMVQ at compression ratio 20:1) and overall 
noise (intrinsic noise + compression error). 

line) for all the bands. This observation indicates 
that the overall noise level of the compressed 
datacube is even lower than the noise level of the 
original datacube. This is probably due to the 
random error (or noise) introduced by the 
compression algorithm which cancelled the 
intrinsic noise in the original data. This result 
shows that the vector quantization based 
compression algorithm evaluated here can act as a 
low-pass filter, suppressing the high frequency 
noise during the compression [3]. 
 
 
4 Near Lossless Feature of HSOCVQ   
The original datacube was compressed using 
HSOCVQ algorithm at compression ratio 10:1. The 
compression error and the overall noise profiles of 
a single spatial sample are shown in Figure 4. It 
can be seen that the compression error introduced 
by the HSOCVQ is smaller than the intrinsic noise 
of the original datacube across the spectral bands. 
The maximum value of the compression error is 
143 DN at band 32, and the minimum value of the 
compression error is -128 DN at band 68. The error 
value for bands between 100 and 204 is between    
-15 DN and 15 DN, the same level as for the 
intrinsic noise. 

The overall noise profile of the reconstructed 
datacube at location (49, 174), which takes into 
account both the intrinsic noise and the 
compression error, shows that the maximum value 
of the noise is reduced to 107 DN at band 34, and 
the minimum value of the noise is reduced -92 DN 
at band 69. The noise range for bands between 100 
and 204 is reduced to between –5 DN and 5 DN 
rather than between –15 DN and 15 DN as in the 
original datacube. 

Figure 5 shows standard deviations of band 
images for compression error datacube (solid line) 
and for the overall noise datacube that includes 
both the intrinsic noise and the compression error 
(thick broken line) as a function of spectral band 
number. The standard deviations of band images 
for compression error (solid line) are about 5 to 10 
DN larger than those for intrinsic noise (doted line) 
for most bands, but they are close to or smaller for 
the bands with high magnitude noise (bands 
between 35 and 75). The standard deviations of 
band images for the overall noise (thick broken 
line) are smaller than those for intrinsic noise 
(doted line) for the bands between 35 and 105. 
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Compression Error Spectrum at Location (49,174)
(SNR600-Reconstructed) 
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                                        (a) 
Intrinsic Noise + Compression Error at Location (49,174) 

(SNR7000-Reconstructed)
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                                            (b) 
Figure 4 Profiles of (a) compression error 
introduced by HSOCVQ at ratio 10:1, and (b) 
overall noise (i.e. intrinsic noise + compression 
error) at location (49,174). 
 
 
5  Conclusion 
In summary, the experimental results show that the 
compression errors introduced by SAMVQ and 
HSOCVQ are similar to the level of intrinsic noise 
caused by the instrument noise and other noise 
sources contained in the original datacube. The 
compression errors are smaller than the intrinsic 
noise in bands with high magnitude noise. 

The reconstructed data after compression 
contains both the intrinsic noise of the original 
datacube and the compression error. They are the 
final noise budget of the datacube, if the 
reconstructed data is sent to a hyperspectral data 

user for derivation of his applications. The noise 
contained in the reconstructed data is the overall 
noise. The overall noise of the compressed 
datacube is even smaller than the intrinsic noise for 
all the bands when the data is compressed using 
SAMVQ and for most of the bands when the data 
is compressed using HSOCVQ. This is because the 
compression algorithms act like a low-pass filter, 
suppressing the high frequency noise during the 
compression. 

The experimental results justify the claim that 
SAMVQ and HSOCVQ algorithms are near 
lossless for remote sensing applications, compared 
to the intrinsic noise of the original datacube 
caused by the instrument noise and other noise 
sources. Statistically, the SAMVQ algorithm shows 
better near lossless performance than the HSOCVQ 
algorithm. 

An additive noise model was used to simulate 
the intrinsic noise in this paper. Other noise modes 
such as multiplicative or shot noise will be 
investigated in a future evaluation study. 
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Figure 5 Standard deviations of single band images 
for intrinsic noise, compression error (using 
HSOCVQ at compression ratio 10:1) and overall 
noise (i.e. intrinsic noise + compression error). 
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