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Abstract:-This Paper presents a single chip efficient FPGA implementation of RSA and DES for Digital Envelope 
Scheme that targets the Altera Apex 20KE EP20k200EBC356. Implementation of cryptographic algorithms on 
programmable devices like FPGAs run much faster than on software while preserving physical security of 
hardware solutions. The high throughput in the implementation of cryptographic algorithms for digital envelope 
scheme is achieved by means of exploiting the parallelism present in the DES and RSA operations as well as the 
features of Altera Apex 20KE device family which best suit for system-on-a-programmable-chip (SOPC) 
applications. The parallelized single chip implementation of DES and RSA for performing the 
Encryption/Decryption for the Digital envelope scheme offers a throughput of 3.5 Gbits/sec at a system clock rate 
of 54.7MHz. This implementation even provides a means for using the DES and RSA separately. 
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1      Introduction 
Recently data security is becoming very important as 
more information is exchanged through the internet. 
One of the advantages of Internet is the open system 
architecture. On the other hand, the lack of privacy in 
Internet based information exchange is preventing its 
application any further for secure communication. 
One way of eliminating this weakness is through the 
introduction of Cryptography. Cryptography is the 
art or science of keeping messages secret. There are 
two kinds of cryptosystems symmetric and 
asymmetric. Symmetric cryptosystems use the same 
key (the secret key) to encrypt and decrypt a 
message, whereas the asymmetric cryptosystems use 
one key (the public key) to encrypt a message and a 
different key (the private key) to decrypt it. 
Asymmetric cryptosystems are also called public key 
cryptosystems. When using secret key 
cryptosystems, users must first agree on a session 
key, that is, a secret key to be used for the duration of 
one message or communication session. In 
completing this task there is a risk the key will be 
intercepted during transmission. This is part of the 
key management problem. Public key cryptography 

offers an attractive solution to this problem within a 
framework called a digital envelope.  

The digital envelope consists of a message 
encrypted using secret key cryptography and a secret 
key (encrypted using public key cryptography).  Not 
only do digital envelopes help solve the key 
management problem; they also increase the 
performance (relative to using a public key system 
for direct encryption of message data) without 
sacrificing security. The increase in performance is 
obtained by using a secret-key cryptosystem to 
encrypt the large and variably sized amount of 
message data, reserving public key cryptography for 
encryption of short length keys. Since secret key 
cryptosystems are much faster than public key 
cryptosystems.  

The figure 1 shows the digital envelope 
scheme. In this scheme the data to be transmitted is 
encrypted using secret key algorithm.  This ensures 
fast processing.  Establishment of the session key is 
done by transmitting the public key encryption of the 
secret key (session key).The symmetric key and 
asymmetric key encryption algorithm that is taken 
for implementation are DES and RSA respectively. 

 



  
   
 
 
 
 
 
 
 
 
 
 
 
 
Where 
                      y = esecret(x, k) 
                      y’=  epublic(k, public key) 
                      y’’= concatenation (y, y’) 
Hardware implementation of these algorithms is 
preferred now days because of their high 
performance, physical security and low power 
consumption. Though ASIC implementation of 
encryption algorithms are performing better, they are 
not flexible.  FPGA provides the needed flexibility as 
well as the high speed of custom hardware 
implementations. In this paper the major focus is on 
efficient FPGA implementation of both DES and 
RSA on a single chip for high performance support 
for digital envelope scheme [9].   

The following sessions of the paper is 
organized as follows: session 2 discusses the Choice 
of algorithms for digital envelope and recalls Data 
Encryption Standard (DES) and RSA algorithms. 
Session 3 is oriented towards the scope for 
parallelism in both DES and RSA. Session 4 is 
oriented towards the implementation issues. They 
focus on the practical issues that should be 
considered while implementing in FPGAs. Session 5 
describes the results and discussion of the 
implementation through resource utilization and 
speedup in terms of throughput. Finally, the 
concluding remarks are given. 
 
 
2 Choice of Algorithms for   

     Digital Envelope 
Because of the wide popularity of the DES in the 
symmetric and RSA in the asymmetric crypto 
algorithm category, these two algorithms are widely 

used for the implementation of digital envelope 
scheme. 

k Public key 

 
2.1 Data Encryption Standard y’ 

(DES) Public key 
cryptosystem DES is a private key (symmetric) algorithm [3]. It 

comes under the category of block cipher operating 
on 64-bit blocks of plaintext utilizing a 64-bit key.  
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Every eighth bit of the 64-bit key is used for parity 
checking or otherwise ignored. In DES key controls 
exactly how this process works. By doing these 
operations repeatedly and in a non-linear manner you 
end up with a result which can not be used to retrieve 
the original without the key. The figure 2 shows the 
block diagram of DES, in which each 64 bits of data 
is iterated on 16 times. For each iteration a 48 bit 
subset of the 56 bit key is fed into the encryption 
block represented by the dashed rectangle below. 

Decryption is the inverse of the encryption 
process. The Function "F” shown in the diagram is 
the heart of DES. It actually consists of several 
different transforms and non-linear substitutions [5]. 
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Fig. 1 Digital Envelope Scheme-Encryption 
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2.2 RSA Algorithm 
The following is the relatively easy to understand 
math behind RSA public key algorithm [3]. 

1. Find P and Q, two large (e.g., 1024-bit) 
prime numbers.  

2. Choose E such that E is greater than 1, E is 
less than N = PQ, and E and (P-1) (Q-1) are 
relatively prime, which means they have no 
prime factors in common. E does not have to 
be prime, but it must be odd. (P-1)(Q-1) can't 
be prime because it's an even number.  

3. Compute D such that (DE - 1) is evenly 
divisible by (P-1) (Q-1). It can be written as 
DE = 1 (mod (P-1) (Q-1)), and D is called 
the multiplicative inverse of E.   

4. The encryption function is C = ME mod N, 
where C is the cipher text (a positive 
integer), M is the plaintext (a positive 
integer).The message being encrypted, M, 
must be less than the modulus, N.  

5. The decryption function is M = CD mod N, 
where C is the cipher text (a positive 
integer), M is the plaintext (a positive 
integer). 

Your public key is the pair (N, E). Your private key 
is the number D. The product PQ = N is the modulus. 
E is the public exponent. D is the secret exponent. 
You can publish your public key freely, because 
there are no known easy methods of calculating D, P, 
or Q given only (N, E) (your public key).  
 
 
3 Scope for Parallelism in DES and 

RSA 
The main purpose of this design is to implement both 
DES and RSA on a single FPGA for a high 
performance support to the digital envelope scheme 
which can be adopted in practical encryptor. The 
following sections explain the implementation and 
optimization steps taken to improve performance. 

The iterative nature of DES makes it more 
suitable for partial pipelining. Pipelining usually 
replicates the hardware needed for a single round and 
introduces data storage between each round. Though 
this technique increases the number of data blocks 
encrypted concurrently, this design does not go 
exactly with partial pipelining because of the speed 
limitation of RSA algorithm that is supported in the 
same chip. So a fine blend of iterative loops and sub 
pipelining inside each round to achieve less hardware 

requirement and high speed that will match DES 
with RSA on a single chip. Since the DES design has 
number of constant S- boxes the system level 
memory are configured as ROM to store these S- box 
values. This type of ROM implementation of S- 
Boxes is the most efficient way [4] of implementing 
DES on FPGA.  In the implementation of DES, key 
scheduling involves carrying out a shift operation 
during each round of the 16-round DES to generate 
the sub key. Figure 3 show the key processor that is 
used in the implementation. 
In each round the 56-bit key is divided into two 28-
bit halves and each halve is independently rotated 
left either one or two positions, depending on the 
round. The 56-bit result is used as the input for the 
next round and to select the 48 bits that make up the 
key for the current round. These operations are 
carried out in parallel to the encryption/decryption 
operation. With the DES the same function F is used 
forward to encrypt or backwards to decrypt. The only 
change is that keys must be taken in reverse order 
(k16, k15 …, k1). 
 Kin 64 bits 
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Fig. 3 Key Processor 
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To this extent, several algorithms have been 
proposed [6], which try to reduce the time needed for 
these exponentiations. One of the most widely used 
is the square and multiply algorithm. This method 
performs modular multiplication and squaring, as 
follows: 
 

Y: = 1; 
Z: = M;    
For i: = 0 to k-1 do {k is the number of bits} 
If ei = 1 then 
Y:=Y×ZmodN;{Modularmultiplication} 
End {If} 
Z: = Z2 mod N; {Modular squaring} 
End; {For} 
Return? ; 
 

Provided that the modular squaring and 
multiplication are performed in parallel, only log2k 
steps are required to calculate the exponentiation. At 
the same time this implementation is based on 
Montgomery method for computing both modular 
multiplications and modular squaring as 
Montgomery scheme is very efficient [12].               
    
                                                                   
4 Implementation issues 
The obvious way of improving the performance of 
cryptographic algorithms in the digital envelope 
scheme is to implement them in hardware. This 
implementation has improved the performance of 
DES in two ways. The key scheduling part of the 
DES scheme is improved by computing the sub keys 
needed for each stage in parallel. Then the iterative 
looping and sub pipelining inside each round of the 
DES has given good performance characteristics for 
implementing both DES and RSA on the same 
FPGA. 

The primary factor that determines the 
performance of the public key crypto systems (RSA) 
is the implementation efficiency of the modular 
multiplication and exponentiation. There are various 
algorithms available for implementing modular 
multiplications like Barrett’s and Booth’s methods 
and Brickell’s algorithm. But this design considers 
Montgomery’s algorithm as it is considered the most 
popular and more efficient. The implementation of 
Montgomery’s algorithm for modular multiplications 
in RSA algorithm of the Digital envelope has shown 
a better time response [8]. 
 

5 Results and Discussion  
This design has implemented both DES and RSA 
cryptographic algorithms on a single FPGA for a 
high speed encryption/decryption support for Digital 
envelope scheme of data security. The throughput for 
the implementation is calculates as follows 
 

Throughput (Mbits/sec) = 64 bits *      clock 
frequency (MHz) 

 

This design and implementation of DES for the 
digital envelope achieve a very good 
encryption/decryption rate of 6.4 Gbit/s, which is 
faster [10] than many equivalent implementations. It 
also compares promisingly with existing ASIC 
implementations. Also the RSA implementation with 
the parallel Montgomery scheme achieves a 
reasonable encryption/decryption rate of 3.5 Gbit/s 
this result is also better than many such 
implementations in the literature [12]. 

When both DES and RSA algorithms are 
implemented in a single chip FPGA then the 
encryption/decryption rate of DES is limited by the 
RSA scheme, but the resultant through put that is 
achieved is better than their software versions that is 
used in digital envelope scheme at present. So this 
hardware accelerator will be a great boon for digital 
envelope scheme that is practiced today.   

The simulation results for this 
implementation are achieved in ALTERA Quartus II 
4.0 environment [11]. The synthesis results are 
achieved using Mentor Graphics Leonardo Spectrum. 
The Table 1 and Table 2 shows the throughput 
results achieved in the sequential and parallel 
implementation of DES and RSA. The parallel 
implementation is approximately twice faster than its 
sequential counter part in both the cases. 

 

Table 1 Throughput comparison for DES 

DES 
Clock 

Frequency   
(MHz) 

Throughput      
(Mbits/sec) 

Sequential 49.6 3174.4 
Parallel 100.5 6432 

 

Table 2 Throughput comparison for RSA 
RSA Clock 

Frequency 
(MHz) 

Throughput 
(Mbits/sec) 

Sequential 25.5 1632 
Parallel 54.7 3501 

 



The following session Table 3 and Table 4 compares 
the resource utilized in implementing the RSA 
algorithm in a sequential and parallel way.  The 
results show that more resources are occupied by the 
sequential implementation. 
 

RSA – Sequential Implementation 
 

Resources Utilization: 
Device: Altera Apex20KE 
Family: EP20K400EBC652 
Clock Frequency: 25.5 MHz 

Table 3 RSA - Sequential Implementation 
 

Resources Available Used Percentage 
of  Usage 

IOS 488 72 14.75 
LCS 16640 11824 71.06 

RSA – Parallel Implementation 
 

Clock Frequency: 54.7 MHz 
Table 4 RSA – Parallel Implementation 

 

Resources Available Used Percentage 

of Usage 

IOS 488 21 4.3 

LCS 16640 2198 13.21 

 
Based on all the implementation results achived the 
parallel implementation  of DES and RSA is 
combined for a suitable implementation of the 
system for Digital envelope scheme. This 
implementation has shown an improvement in both 
throughput and  resource usage. 
 
Digital Envelope Scheme 
 

Device: Altera Apex20KE 
Device Family: EP20K200EBC356   
Clock Frequency: 54.7 MHz 

 
 

Table 5 Digital Envelope Scheme 

Resources Availa
ble 

Used Percentage 
of Usage 

IOS 273 213 78.02 
LCS 8320 3161 37.99 

Memory bits 106496 32768 30.77 

Throughput = 3.5 Gbits/sec 
 
The figure 4 shows the simulation result achieved for 
this implementation in ALTERA Quartus II 4.0 
environment. It shows the encrypted output both for 
DES and RSA from the same chip. 
 
6     Conclusion  
This reconfigurable single chip design and 
implementation of DES and RSA has significantly 
increased the throughput of the digital envelope 
scheme.  In order to achieve best Performance, this 
method has exploited the parallelism in the 
encryption pipe and key scheduling pipe of DES and 
modular squaring and multiplication process in RSA. 
The proposed implementation achieves an encryption 
rate of 3.5 Gbits/sec at 54.7 MHz. Upon comparison, 
this implementation offers better results than 
previously reported in literature [1, 12]. 
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