
A Single Chip Efficient FPGA implementation of RSA and DES for
Digital Envelope Scheme

R.SRINIVASAN, Dr.V.VAIDEHI, J.BALAJI, S.HEEMA

Department of Electronics Engineering,
Madras Institute of Technology Campus,

Anna University, Chennai – 600 044
 INDIA

Abstract:-This Paper presents a single chip efficient FPGA implementation of RSA and DES for Digital Envelope
Scheme that targets the Altera Apex 20KE EP20k200EBC356. Implementation of cryptographic algorithms on
programmable devices like FPGAs run much faster than on software while preserving physical security of
hardware solutions. The high throughput in the implementation of cryptographic algorithms for digital envelope
scheme is achieved by means of exploiting the parallelism present in the DES and RSA operations as well as the
features of Altera Apex 20KE device family which best suit for system-on-a-programmable-chip (SOPC)
applications. The parallelized single chip implementation of DES and RSA for performing the
Encryption/Decryption for the Digital envelope scheme offers a throughput of 3.5 Gbits/sec at a system clock rate
of 54.7MHz. This implementation even provides a means for using the DES and RSA separately.

Key-Words: - Encryption, Decryption, Plaintext, Public Key, Private Key, Digital Envelope

1 Introduction
Recently data security is becoming very important as
more information is exchanged through the internet.
One of the advantages of Internet is the open system
architecture. On the other hand, the lack of privacy in
Internet based information exchange is preventing its
application any further for secure communication.
One way of eliminating this weakness is through the
introduction of Cryptography. Cryptography is the
art or science of keeping messages secret. There are
two kinds of cryptosystems symmetric and
asymmetric. Symmetric cryptosystems use the same
key (the secret key) to encrypt and decrypt a
message, whereas the asymmetric cryptosystems use
one key (the public key) to encrypt a message and a
different key (the private key) to decrypt it.
Asymmetric cryptosystems are also called public key
cryptosystems. When using secret key
cryptosystems, users must first agree on a session
key, that is, a secret key to be used for the duration of
one message or communication session. In
completing this task there is a risk the key will be
intercepted during transmission. This is part of the
key management problem. Public key cryptography

offers an attractive solution to this problem within a
framework called a digital envelope.

The digital envelope consists of a message
encrypted using secret key cryptography and a secret
key (encrypted using public key cryptography). Not
only do digital envelopes help solve the key
management problem; they also increase the
performance (relative to using a public key system
for direct encryption of message data) without
sacrificing security. The increase in performance is
obtained by using a secret-key cryptosystem to
encrypt the large and variably sized amount of
message data, reserving public key cryptography for
encryption of short length keys. Since secret key
cryptosystems are much faster than public key
cryptosystems.

The figure 1 shows the digital envelope
scheme. In this scheme the data to be transmitted is
encrypted using secret key algorithm. This ensures
fast processing. Establishment of the session key is
done by transmitting the public key encryption of the
secret key (session key).The symmetric key and
asymmetric key encryption algorithm that is taken
for implementation are DES and RSA respectively.

Where
 y = esecret(x, k)
 y’= epublic(k, public key)
 y’’= concatenation (y, y’)
Hardware implementation of these algorithms is
preferred now days because of their high
performance, physical security and low power
consumption. Though ASIC implementation of
encryption algorithms are performing better, they are
not flexible. FPGA provides the needed flexibility as
well as the high speed of custom hardware
implementations. In this paper the major focus is on
efficient FPGA implementation of both DES and
RSA on a single chip for high performance support
for digital envelope scheme [9].

The following sessions of the paper is
organized as follows: session 2 discusses the Choice
of algorithms for digital envelope and recalls Data
Encryption Standard (DES) and RSA algorithms.
Session 3 is oriented towards the scope for
parallelism in both DES and RSA. Session 4 is
oriented towards the implementation issues. They
focus on the practical issues that should be
considered while implementing in FPGAs. Session 5
describes the results and discussion of the
implementation through resource utilization and
speedup in terms of throughput. Finally, the
concluding remarks are given.

2 Choice of Algorithms for

 Digital Envelope
Because of the wide popularity of the DES in the
symmetric and RSA in the asymmetric crypto
algorithm category, these two algorithms are widely

used for the implementation of digital envelope
scheme.

k Public key

2.1 Data Encryption Standard y’

(DES) Public key
cryptosystem DES is a private key (symmetric) algorithm [3]. It

comes under the category of block cipher operating
on 64-bit blocks of plaintext utilizing a 64-bit key.

y

Every eighth bit of the 64-bit key is used for parity
checking or otherwise ignored. In DES key controls
exactly how this process works. By doing these
operations repeatedly and in a non-linear manner you
end up with a result which can not be used to retrieve
the original without the key. The figure 2 shows the
block diagram of DES, in which each 64 bits of data
is iterated on 16 times. For each iteration a 48 bit
subset of the 56 bit key is fed into the encryption
block represented by the dashed rectangle below.

Decryption is the inverse of the encryption
process. The Function "F” shown in the diagram is
the heart of DES. It actually consists of several
different transforms and non-linear substitutions [5].

 x
Secret key

cryptosystem + Y’’

Fig. 1 Digital Envelope Scheme-Encryption

 Fig. 2 Block Diagram of DES
64 bit cipher text

Key N

48 bits

64 bits

64 bits

Initial Permutation

Final Permutation

XOR Function
“F”

+

64 bit plain text

Repeat this block
N number of times

All lines are 32 bits
wide unless otherwise
mentioned

2.2 RSA Algorithm
The following is the relatively easy to understand
math behind RSA public key algorithm [3].

1. Find P and Q, two large (e.g., 1024-bit)
prime numbers.

2. Choose E such that E is greater than 1, E is
less than N = PQ, and E and (P-1) (Q-1) are
relatively prime, which means they have no
prime factors in common. E does not have to
be prime, but it must be odd. (P-1)(Q-1) can't
be prime because it's an even number.

3. Compute D such that (DE - 1) is evenly
divisible by (P-1) (Q-1). It can be written as
DE = 1 (mod (P-1) (Q-1)), and D is called
the multiplicative inverse of E.

4. The encryption function is C = ME mod N,
where C is the cipher text (a positive
integer), M is the plaintext (a positive
integer).The message being encrypted, M,
must be less than the modulus, N.

5. The decryption function is M = CD mod N,
where C is the cipher text (a positive
integer), M is the plaintext (a positive
integer).

Your public key is the pair (N, E). Your private key
is the number D. The product PQ = N is the modulus.
E is the public exponent. D is the secret exponent.
You can publish your public key freely, because
there are no known easy methods of calculating D, P,
or Q given only (N, E) (your public key).

3 Scope for Parallelism in DES and

RSA
The main purpose of this design is to implement both
DES and RSA on a single FPGA for a high
performance support to the digital envelope scheme
which can be adopted in practical encryptor. The
following sections explain the implementation and
optimization steps taken to improve performance.

The iterative nature of DES makes it more
suitable for partial pipelining. Pipelining usually
replicates the hardware needed for a single round and
introduces data storage between each round. Though
this technique increases the number of data blocks
encrypted concurrently, this design does not go
exactly with partial pipelining because of the speed
limitation of RSA algorithm that is supported in the
same chip. So a fine blend of iterative loops and sub
pipelining inside each round to achieve less hardware

requirement and high speed that will match DES
with RSA on a single chip. Since the DES design has
number of constant S- boxes the system level
memory are configured as ROM to store these S- box
values. This type of ROM implementation of S-
Boxes is the most efficient way [4] of implementing
DES on FPGA. In the implementation of DES, key
scheduling involves carrying out a shift operation
during each round of the 16-round DES to generate
the sub key. Figure 3 show the key processor that is
used in the implementation.
In each round the 56-bit key is divided into two 28-
bit halves and each halve is independently rotated
left either one or two positions, depending on the
round. The 56-bit result is used as the input for the
next round and to select the 48 bits that make up the
key for the current round. These operations are
carried out in parallel to the encryption/decryption
operation. With the DES the same function F is used
forward to encrypt or backwards to decrypt. The only
change is that keys must be taken in reverse order
(k16, k15 …, k1).
 Kin 64 bits

K1 56 bits

Fig. 3 Key Processor

C
28

48
bits

56
bits

D
28

Permutation
PC _ 1

Cyclic
shifter

Comparator

Registers Registers

Cyclic
shifter

Comparator

Permutation
PC_ 2

Output key Ki

To this extent, several algorithms have been
proposed [6], which try to reduce the time needed for
these exponentiations. One of the most widely used
is the square and multiply algorithm. This method
performs modular multiplication and squaring, as
follows:

Y: = 1;
Z: = M;
For i: = 0 to k-1 do {k is the number of bits}
If ei = 1 then
Y:=Y×ZmodN;{Modularmultiplication}
End {If}
Z: = Z2 mod N; {Modular squaring}
End; {For}
Return? ;

Provided that the modular squaring and
multiplication are performed in parallel, only log2k
steps are required to calculate the exponentiation. At
the same time this implementation is based on
Montgomery method for computing both modular
multiplications and modular squaring as
Montgomery scheme is very efficient [12].

4 Implementation issues
The obvious way of improving the performance of
cryptographic algorithms in the digital envelope
scheme is to implement them in hardware. This
implementation has improved the performance of
DES in two ways. The key scheduling part of the
DES scheme is improved by computing the sub keys
needed for each stage in parallel. Then the iterative
looping and sub pipelining inside each round of the
DES has given good performance characteristics for
implementing both DES and RSA on the same
FPGA.

The primary factor that determines the
performance of the public key crypto systems (RSA)
is the implementation efficiency of the modular
multiplication and exponentiation. There are various
algorithms available for implementing modular
multiplications like Barrett’s and Booth’s methods
and Brickell’s algorithm. But this design considers
Montgomery’s algorithm as it is considered the most
popular and more efficient. The implementation of
Montgomery’s algorithm for modular multiplications
in RSA algorithm of the Digital envelope has shown
a better time response [8].

5 Results and Discussion
This design has implemented both DES and RSA
cryptographic algorithms on a single FPGA for a
high speed encryption/decryption support for Digital
envelope scheme of data security. The throughput for
the implementation is calculates as follows

Throughput (Mbits/sec) = 64 bits * clock
frequency (MHz)

This design and implementation of DES for the
digital envelope achieve a very good
encryption/decryption rate of 6.4 Gbit/s, which is
faster [10] than many equivalent implementations. It
also compares promisingly with existing ASIC
implementations. Also the RSA implementation with
the parallel Montgomery scheme achieves a
reasonable encryption/decryption rate of 3.5 Gbit/s
this result is also better than many such
implementations in the literature [12].

When both DES and RSA algorithms are
implemented in a single chip FPGA then the
encryption/decryption rate of DES is limited by the
RSA scheme, but the resultant through put that is
achieved is better than their software versions that is
used in digital envelope scheme at present. So this
hardware accelerator will be a great boon for digital
envelope scheme that is practiced today.

The simulation results for this
implementation are achieved in ALTERA Quartus II
4.0 environment [11]. The synthesis results are
achieved using Mentor Graphics Leonardo Spectrum.
The Table 1 and Table 2 shows the throughput
results achieved in the sequential and parallel
implementation of DES and RSA. The parallel
implementation is approximately twice faster than its
sequential counter part in both the cases.

Table 1 Throughput comparison for DES

DES
Clock

Frequency
(MHz)

Throughput
(Mbits/sec)

Sequential 49.6 3174.4
Parallel 100.5 6432

Table 2 Throughput comparison for RSA
RSA Clock

Frequency
(MHz)

Throughput
(Mbits/sec)

Sequential 25.5 1632
Parallel 54.7 3501

The following session Table 3 and Table 4 compares
the resource utilized in implementing the RSA
algorithm in a sequential and parallel way. The
results show that more resources are occupied by the
sequential implementation.

RSA – Sequential Implementation

Resources Utilization:
Device: Altera Apex20KE
Family: EP20K400EBC652
Clock Frequency: 25.5 MHz

Table 3 RSA - Sequential Implementation

Resources Available Used Percentage
of Usage

IOS 488 72 14.75
LCS 16640 11824 71.06

RSA – Parallel Implementation

Clock Frequency: 54.7 MHz
Table 4 RSA – Parallel Implementation

Resources Available Used Percentage

of Usage

IOS 488 21 4.3

LCS 16640 2198 13.21

Based on all the implementation results achived the
parallel implementation of DES and RSA is
combined for a suitable implementation of the
system for Digital envelope scheme. This
implementation has shown an improvement in both
throughput and resource usage.

Digital Envelope Scheme

Device: Altera Apex20KE
Device Family: EP20K200EBC356
Clock Frequency: 54.7 MHz

Table 5 Digital Envelope Scheme

Resources Availa
ble

Used Percentage
of Usage

IOS 273 213 78.02
LCS 8320 3161 37.99

Memory bits 106496 32768 30.77

Throughput = 3.5 Gbits/sec

The figure 4 shows the simulation result achieved for
this implementation in ALTERA Quartus II 4.0
environment. It shows the encrypted output both for
DES and RSA from the same chip.

6 Conclusion
This reconfigurable single chip design and
implementation of DES and RSA has significantly
increased the throughput of the digital envelope
scheme. In order to achieve best Performance, this
method has exploited the parallelism in the
encryption pipe and key scheduling pipe of DES and
modular squaring and multiplication process in RSA.
The proposed implementation achieves an encryption
rate of 3.5 Gbits/sec at 54.7 MHz. Upon comparison,
this implementation offers better results than
previously reported in literature [1, 12].

 e

Refe
 [1]

Fig. 4 Simulation result of Digital envelop
rences:
M. McLoone and J.V. McCanny, High-
performanceFPGA implementation of DES
using a novel method for implementing the
key schedule, IEE Proc.-Circuits Devices
Syst., Vol. 150, No. 5, October 2003

[2] Patterson, C. (Xilinx Inc.), High performance
DES encryption in virtex FPGAs using Jbits,
Proc. IEEE Symp. on Field-programmable
custom computing machines, FCCM ’00,
Napa Valley, CA, USA,April 2000 (IEEE
Comput. Soc., CA, USA, 2000), pp. 113–121

[3] B. Schneier, Applied Cryptography. John
Wiley & Sons Inc., 2nd ed., 1995

[4] Haskins, G.M., Securing asynchronous
transfer mode networks, Masters Thesis,
Worcester Polytechnic Institute, Worcester,
MA, USA, May 1997

[5] Gael Rouvroy, Francois-Xavier Standaert,
Jean-Jacques Quisquater and Jean-Didier
Legat, Efficient Uses of FPGAs for
Implementations of DES and Its
Experimental Linear Cryptanalysis,
IEEETransactions on Computers, Vol. 52,
No. 4, April 2003

[6] Nadia Nedjah and Luiza de Macedo
Mourelle, Two Hardware Implementations
for the Montgomery Modular Multiplication:
Sequential versus Parallel, IEEE Proceedings
of the 15th Symposium on Integrated
Circuits and Systems Design (SBCCI’02),
2002

[7] Z. Navabi, VHDL - Analysis and Modeling
of Digital Systems, McGraw Hill, Second
Edition, 1998

[8] Thomas Blum and Christof Paar, High-Radix
Montgomery Modular Exponentiation on
Reconfigurable Hardware, IEEE
Transactions on Computers, Vol. 50, No. 7,
July 2001.

[9] http://www.rsasecurity.com
[10] Erich Nahum1, Sean O’Malley2, Hilarie

Orman2, and Richard Schroeppel2, Towards
High Performance Cryptographic Software,
Department of Computer Science, The
University of Arizona, Tucson.

[11] http://www.altera.com
[12] Elena Trichina, FPGA Implementation of

Modular Exponentiation Using Montgomery
Method, Chalmers University of
Technology, Sweden, April 2000.

[13] Magdy Saeb, Samy Salamah, An
Implementation of A Pipelined Encryption
Multi-Processing Unit Utilizing VHDL and
Field Programmable Gate Arrays, WSEAS
Transactions on Computers, Issue 3, Volume
2, July 2003.

[14] Marko Schuba, Konrad Wrona, Security for
Mobile Commerce Applications, WSEAS
SIM-SSIP-MIV-RODLICS 2001, Malta,
Sept.1-6, 2001

	Results and Discussion

