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Abstract: - People have put more emphasis on stream-scheduling policies to build high performance video 
servers. But the most important aim of these traditional stream-scheduling schemes is to improve the resource 
utilization, such as memory, network bandwidth and CPU, to maximize the number of concurrent streams. 
These schemes did not consider the QoS needs of video streaming or described the QoS parameter weakly, so 
the media streams average qualities have no guarantees when the number of media streams is very large. 
Traditional schemes put little consideration on cluster video servers. In this paper, we will propose a new two-
layer stream-scheduling scheme with QoS control for cluster video servers. We first proposed new definitions 
for video streams with the consideration of QoS and then described the scheme of how to schedule video 
streams from two layers. The target of this scheme is to improve the average QoS of all streaming tasks and to 
obtain large number of scheduled video streams. 
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1. Introduction and Related Works 
Design towards process to structure is a trend of 
systems engineering. The characteristics of 
continuous media are different from traditional text-
based or image-based files. Typically, video-on-
demand technology imposes high bandwidth and 
real-time requirements. This technology should be 
capable of delivering concurrent video and audio 
streams to numerous client users. There are several 
challenges for designing the servers, such as the high 
storage-capacity and throughput in the video server 
and the high bandwidth in the network to deliver 
large number of video streams. In order to solve 
these problems, the video server must be a high 
performance computing system. While most systems 
are built on a single high performance computer, 
more and more people tend to run this service on a 
cluster system composed of off-the-shelf 
commodities for their cost-effectiveness and fault-
tolerant capability, and this area has attracted 
increasing attention of the researchers. 

Researchers have many achievements in media 
stream-scheduling field [1], but few people have put 
their emphasis on stream-scheduling policy for 
cluster video servers, which are featured with 
distributed stream control [2]. Another reason is that 
traditional researchers do not consider the QoS of 

streaming tasks and the features of media streaming 
when they designed the stream-scheduling scheme. 

Traditional schemes do not consider these 
characteristics and they are very effective to non-
media tasks. For example, EDF scheme and time-
sharing scheme [4] are very adaptive for real-time 
tasks and some non-real-time tasks. We should first 
take the characteristics of media into account. 
Cluster video servers distribute all tasks onto many 
data servers or processing nodes. We should also 
design a stream-scheduling scheme to satisfy the 
distributed architecture. 

In this paper, we propose a new-layered stream 
scheme for cluster video servers. With the help of 
the new stream-scheduling scheme, the cluster video 
servers can accept more streaming tasks and 
schedule them with good average QoS compared 
with traditional stream-scheduling schemes, such as 
EDF scheme and time-sharing scheme. 

The paper is organized as follows. In section 2, 
we discuss the architecture of cluster video server. 
Then we present our stream-scheduling scheme with 
QoS control in Section 3. In Section 4, we give some 
performance analysis through simulations. Finally, 
section 5 closes with conclusions. 

2. Typical Video Server Architecture 
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Architecture of the video server is illustrated in 
Figure 1. The video server system consists of three 
major components: a virtual server, several control 
servers and some data servers. In this system, all 
media files are cut into many clips and all clips 
should be stored on all distributed data servers. 
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A control server has several tasks. One is to make 
admission control for requests from the clients. 
Second task is to parse requests from clients. 
According to the RTSP request types, the control 
server executes the “describe”, “setup”. When it 
receives “play” command, it translates the “play” 
command into a sub-“play” task list according to 
clip files information of the requested movie. The 
last task of a control server is to notify 
corresponding data servers to send media data to 
clients directly according to sub-task lists. 

A storage node works in a semi-independent way. 
It performs orders from control servers, and decides 
its own sub-stream scheduling scheme to manage 
media data and sends them out. 

From above, we find out that one integrated 
media stream should get a permission from a control 
server and be parsed into several sub-streams 
according to its clips information. All sub-streams 
are scheduled by corresponding data servers. 

3. Layered Stream Scheduling Scheme 

An integrated stream-scheduling scheme for 
cluster video server has two layers, showed as Fig.2. 
The first layer is located on control servers and its 
main mission is to schedule streams with the coarse 
granularity. In this layer, the system selects 
permitted streams, creates all sub-tasks and transmits 
the sub-tasks to the second layer with some specified 
parameters. The second layer is located on data 
servers. Considering the QoS necessaries, this layer 
will adapt a new scheme to schedule the sub-streams 
and send media data to clients directly. 

In the following of the section, we first describe 
the two stream-scheduling layers and the QoS 
parameters in detail. 

3.1. Layer 1:  Stream-Scheduling  
There are many requests from clients to the control 
servers. When they pass admission control check-up, 
they become new tasks, waiting for being scheduled. 
One task is divided into several sub-tasks according 
to its clips information. We can define the task I as 
below:   
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In formula (1), TLength(I) defines the time length 
of the task I, representing the corresponding playing 
time length in task I. ClipNum(I) defines the number 
of the clips, belonging to the requested media file in 
task I. FirstStart(I) defines the first start time of the 
task scheduled. BasePriority(I) defines the basic 
priority of media file in task I. In this system, we 
give high priorities to media files with hot spot. 
With this scheme, hot media files get high operation 
priorities while being scheduled. In our system, we 
define three level priorities: high, middle and low 
with values 10, 20, 30, respectively. MaxPriority 
defines the maximal priority with value 100. 
ClipTable(I) is a very important parameters in the 
task definitions, defined below: 

ClipTable(I)={j=1,ClipNum(I) | (SubTask(I, j), 
SubTaskAddr(I, j) ) }                               

(2) 
Where j represents the sequence number of the 

media file in task I with values from 1 to ClipNum(I). 
(SubTask(I, j), SubTaskAddr(I, j)) defines a clip 
description item in clip tables. In this component, 
SubTask(I, j) represents a sub-task j in task I. 
SubTaskAddr(I, j) defines the data server which 
should receive and schedule this sub-task. 

3.2. Layer 2:  Stream-Scheduling 

For task I, the first scheduling layer dispatches all 
sub-tasks of this task to predefined data servers 
according to SubTaskAddr(I, j). For the second 
scheduling layer, data servers start up threads to deal 
with the received sub-tasks. 

In continuous media applications, the operations 
on multimedia objects can be described as periodic 
tasks. Every periodic task has its own start time, 
execution time and deadline. Multimedia files are 
made up of large numbers of frames, such as P frame, 
B frame and I frame. Most of media files are 
compressed with constant frame rates. Media files 
with variable frame rates also have stable average 
frame rates. For example, in a media file with 
average frame rate 25, we use 40ms to deal with a 
frame. The definition of SubTask(I, j) is listed below: 
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There are seven parameters in this definition 
SubTask(I, j). Start(I, j) defines the time when the 
sub-task j in task I is scheduled. MaxT(I, j) 
represents the execution time length of the sub-task j 
in task I. Cycle(I, j) defines the time length of 
internal cycle. 

In the second scheduling layer, we divide 
execution of a sub-task into many cycles. A sub-task 
is also partitioned into many routines with maximal 
execution time Cycle(I, j). A routine represents a 
frame in multimedia file. Num(I, j) defines the 
number of routines in this SubTask(I, j). MF(I, j) 
represents the maximal number of routines failed. 
CF(I, j) represents the maximal number of routines 
failed continuously. Priority(I, j) defines the priority 
of a sub-task. The sub-task of task I SubTask(I,0) has 
the same priority of BasePriority(I) of Task(I). The 
following sub-tasks have dynamic priorities 
according to the previous sub-task execution results. 

From the definition in Eq.(3), we have the 
following conclusions: 

First, the deadline of the sub-task j in task I can 
be calculated as: 

Deadline(I, j)= Num(I, j)*Cycle(I, j)+Start(I, j)
                                                                  (4) 

Second, we can define every routine first start 
point and deadline below: 

RoutineStart(I, j, m)=Start(I, j)+ (m-1)*Cycle(I, j)
                            

(5) 
RoutineDeadline(I ,j, m)= Start(I, j)+ m*Cycle(I, j)
                                                        (6) 

If one routine starts later than RoutineStart(I, j, m) 
or finishes later than RoutineDeadline(I, j, m), we 
can say that this routine has failed. 
At last, if we define the number of all failed routines 
in task j of task I as FailedNum(I, j) and the number 
of continuous failed routines as 
ContinousFailedNum(I,j), we have following claim: 

If           FailedNum(I, j) > MF(I, j)                or  
ContinousFailedNum(I, j) > CF(I, j) 

    
Then            SubTask(I, j)  Failed  

                                                                             
(7) 

In our stream-scheduling scheme, we assume that 
every sub-task of one task would succeed in 
operations. One sub-task succeeds completely means 
that all routines of this sub-task succeed. But in real 
environments, some media data can not be sent out 



normally, such as resources of servers, including 
bandwidth, CPU and disks, are very busy, and there 
are some media frames lost. Since we cannot reach 
this target, we assume every sub-task can succeed 
when we take into account the requirements of QoS. 
Therefore, we have: 
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From above, QoS changes only in a little scope. 
We cannot make sure that there are no media lost 
and we can ensure that it is not very obvious for 
streaming qualities to lose media data in a controlled 
range. 

3.3. Sub-Task Scheduling 

The transmitting probability P(I, j) of a sub-task 
is given in Eq.(9) below. Data servers choose a sub-
task whose probability is the largest from the 
scheduling list. 

The priority of every sub-task is dynamic and 
depends on its former sub-task transmitting 
probability.  represents the average 
probability of all sub-tasks, waiting in the 
scheduling list on one data server at the time t. 
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a1, a2, and a3 are coefficients and their values 

should be adjusted during experiments. In Eq.(9), we 
consider the influence of QoS, such as all failed 
routines number and continuous failed routines 
number when the data servers make decisions about 
how to select a sub-task to schedule. 

When two sub-tasks have the same transmitting 
probabilities, we compare their routines priorities. In 

general, I frame have a high priority, B frame middle 
and P frame low. If current routines of sub-tasks all 
have the same frames, we choose one sub-task using 
the traditional EDF arithmetic. 

4. Performance Evaluation 

4.1. Simulation Model 
When system load on one data server is very low, 
there are almost no failed routines and failed sub-
tasks, and there are no need to consider QoS. At this 
time, our scheme has the same effect as traditional 
scheme, such as EDF and time-sharing scheme. But 
when the video server provides massive concurrent 
stream services and workload of every data server is 
very high, our scheme is more effective than other 
schemes.  

Without loss of generality, we make some 
assumptions and parameterize the simulation model. 
First, if any sub-task SubTask(I, j) fails, its parent 
Task(I) can be regarded as failed task and the other 
sub-tasks will be cut off and the stream request will 
be discarded at last. We define the ratio of failed 
tasks amount to the number of all tasks FailedRatio. 
At the same time, we also have the ratio of succeed 
tasks amount to the number of all tasks 
SucceedRatio. 

Second, the admission control procedure adopts a 
network bandwidth threshold-based policy. The 
threshold for one autonomous storage node is 

90Mbps,  <= 90Mbps. )( newTA
Third, we have 100 movies compressed in 

MPEG-1 and every movie has 2 clips, which are 
distributed onto two different data servers. Every 
clip file with 30fps has the average bandwidth 
1.5Mbps and its time length is about 600 seconds. 
The movie selection pattern is conform to Zipf 
distribution (α = 1) [8] and 100 clients requests 
arrive as a steady Poisson stream with the arrival 
rate λ=0.25. 

We also assume that EDF scheme and time-
sharing scheme obey the same rules: MF(I,j)=500 
and CF(I,j)=10. Because very movie is about 600 
seconds and has about 18000 frames or routines, the 
maximal ratio of failed routines to total routines is 
about 2.7%. That is, when FailedNum >= 500 or 
ContinousFailedNum >=10, EDF scheme, time-
sharing scheme or our scheme all regard that current 
sub-task fails. Here, a1=0.5, a2=0.4, a3=0.1 and the 
time slot in time-sharing scheme is 1 second. 



At last, in the following cluster simulation 
environments, there are 2 storage nodes and one 
control server node with hardware configurations 
PIII800, SDRAM 256M. 

4.2. Simulation Results 

We first reveal relationship between the timeline and 
FailedRatio on one data server when using our 
scheme, EDF scheme, and time-sharing scheme, 
shown in Figure 3 and Figure 4. In this environment, 
we find out that maximal number of admitted 
streams is no more than 60 because of the admission 
control policy and average bandwidth of every 
MPEG-1 stream. From these two figures, we find 
out that double-layer stream control scheme with 
QoS can schedule more streams than the traditional 
EDF scheme and time-sharing scheme. 

 

Figure 3 Failed Ratios between Our Scheme and 
EDF Scheme 

According to our simulation environment, there is 
a feature that system workload is increasing with the 
elapsing of the time before all clients request have 
arrived, which has the reason that the clients 
requests are increasing according to Poisson stream 
policy. Because the data server workload is harder, it 
cannot schedule all sub-tasks on this server. Because 
we have considered the streams QoS, double-layer 
stream control scheme with QoS has better average 
QoS than EDF scheme and time-sharing scheme. 

We then study the relationship between total 
failed routines (frames) and timeline in our scheme 
and traditional schemes, shown in Figure 5 and 
Figure 6. We find out that failed frames in 
traditional schemes are more than those in our 
scheme. There are several reasons to have the results. 

One is that our new scheme has taken account of the 
priorities of different frames and different sub-tasks, 
the other reason is that we stop the decreasing trend 
of some sub-tasks QoS and make a reasonable 
adjustment. 

 
Figure 4 Failed Ratios between Our Scheme and 

Time-Sharing Scheme 

 

Figure 5 Failed Routines between Our Scheme and 
EDF Scheme 

5. Conclusions 

This paper presents an application with layered 
streaming control scheme to cluster video servers. It 
is testified by simulation that this scheme improves 
the average QoS for all streaming tasks on one video 
server compared with traditional ones. This scheme 
will also be generalize to be a pattern of random 
optimization of multi-layered time series in the 
fields of soft science on the base of systems theory, 
which will be applied to managements engineering 
and evaluation engineering such as evaluation of 
enterprise technology innovation ability etc. 



 

Figure 6 Failed Routines between Our Scheme and 
Time-Sharing Scheme 
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