
Layered Stream Scheduling Scheme for Cluster Video Servers

Limin Zhu
Information Management Center, College of Management

Huazhong University of Science and Technology

Abstract: - People have put more emphasis on stream-scheduling policies to build high performance video
servers. But the most important aim of these traditional stream-scheduling schemes is to improve the resource
utilization, such as memory, network bandwidth and CPU, to maximize the number of concurrent streams.
These schemes did not consider the QoS needs of video streaming or described the QoS parameter weakly, so
the media streams average qualities have no guarantees when the number of media streams is very large.
Traditional schemes put little consideration on cluster video servers. In this paper, we will propose a new two-
layer stream-scheduling scheme with QoS control for cluster video servers. We first proposed new definitions
for video streams with the consideration of QoS and then described the scheme of how to schedule video
streams from two layers. The target of this scheme is to improve the average QoS of all streaming tasks and to
obtain large number of scheduled video streams.

Key-Words: - Stream; Scheduling; Multimedia; Cluster; Qos; VOD

1. Introduction and Related Works
Design towards process to structure is a trend of
systems engineering. The characteristics of
continuous media are different from traditional text-
based or image-based files. Typically, video-on-
demand technology imposes high bandwidth and
real-time requirements. This technology should be
capable of delivering concurrent video and audio
streams to numerous client users. There are several
challenges for designing the servers, such as the high
storage-capacity and throughput in the video server
and the high bandwidth in the network to deliver
large number of video streams. In order to solve
these problems, the video server must be a high
performance computing system. While most systems
are built on a single high performance computer,
more and more people tend to run this service on a
cluster system composed of off-the-shelf
commodities for their cost-effectiveness and fault-
tolerant capability, and this area has attracted
increasing attention of the researchers.

Researchers have many achievements in media
stream-scheduling field [1], but few people have put
their emphasis on stream-scheduling policy for
cluster video servers, which are featured with
distributed stream control [2]. Another reason is that
traditional researchers do not consider the QoS of

streaming tasks and the features of media streaming
when they designed the stream-scheduling scheme.

Traditional schemes do not consider these
characteristics and they are very effective to non-
media tasks. For example, EDF scheme and time-
sharing scheme [4] are very adaptive for real-time
tasks and some non-real-time tasks. We should first
take the characteristics of media into account.
Cluster video servers distribute all tasks onto many
data servers or processing nodes. We should also
design a stream-scheduling scheme to satisfy the
distributed architecture.

In this paper, we propose a new-layered stream
scheme for cluster video servers. With the help of
the new stream-scheduling scheme, the cluster video
servers can accept more streaming tasks and
schedule them with good average QoS compared
with traditional stream-scheduling schemes, such as
EDF scheme and time-sharing scheme.

The paper is organized as follows. In section 2,
we discuss the architecture of cluster video server.
Then we present our stream-scheduling scheme with
QoS control in Section 3. In Section 4, we give some
performance analysis through simulations. Finally,
section 5 closes with conclusions.

2. Typical Video Server Architecture

mailto:lmzhu@mail.hbpa.cn

Architecture of the video server is illustrated in
Figure 1. The video server system consists of three
major components: a virtual server, several control
servers and some data servers. In this system, all
media files are cut into many clips and all clips
should be stored on all distributed data servers.

Internet

Control Server

Switch

Data Server Data Server

ClientClientViewing Client

Control Server

Virtule ServerLayer 1:

Layer 2:

Layer 3:

Record
Server

Record
Devices

analog signals

 Data Flow of
Record Function;

Multi-Data
Flow

Command Flow of
Record Function;
Figure 1 Scalable Cluster Video Server

A control server has several tasks. One is to make
admission control for requests from the clients.
Second task is to parse requests from clients.
According to the RTSP request types, the control
server executes the “describe”, “setup”. When it
receives “play” command, it translates the “play”
command into a sub-“play” task list according to
clip files information of the requested movie. The
last task of a control server is to notify
corresponding data servers to send media data to
clients directly according to sub-task lists.

A storage node works in a semi-independent way.
It performs orders from control servers, and decides
its own sub-stream scheduling scheme to manage
media data and sends them out.

From above, we find out that one integrated
media stream should get a permission from a control
server and be parsed into several sub-streams
according to its clips information. All sub-streams
are scheduled by corresponding data servers.

3. Layered Stream Scheduling Scheme

An integrated stream-scheduling scheme for
cluster video server has two layers, showed as Fig.2.
The first layer is located on control servers and its
main mission is to schedule streams with the coarse
granularity. In this layer, the system selects
permitted streams, creates all sub-tasks and transmits
the sub-tasks to the second layer with some specified
parameters. The second layer is located on data
servers. Considering the QoS necessaries, this layer
will adapt a new scheme to schedule the sub-streams
and send media data to clients directly.

In the following of the section, we first describe
the two stream-scheduling layers and the QoS
parameters in detail.

3.1. Layer 1: Stream-Scheduling
There are many requests from clients to the control
servers. When they pass admission control check-up,
they become new tasks, waiting for being scheduled.
One task is divided into several sub-tasks according
to its clips information. We can define the task I as
below:

() () () ()
() () 








=

IiorityBaseIFirstStart
IClipTableIClipNumITLength

ITask
Pr,

,,,

 (1)

Admission Control
First Layer Stream Scheduling

Task A

Clip#1

Clip#2

Clip#k

Task B

Clip#1

Clip#2

Clip#m

Task C

Clip#1

Clip#2

Clip#n

Second Layer
Stream Scheduling

Sub-Task List
Sub-Task(A,1)

Sub-Task(B,1)

Sub-Task(C,2)

Sub-Task List
Sub-Task(A,k)

Sub-Task(B,m)

Sub-Task(C,n)

Figure 2 Double-Layer Stream Scheduling Graph

In formula (1), TLength(I) defines the time length
of the task I, representing the corresponding playing
time length in task I. ClipNum(I) defines the number
of the clips, belonging to the requested media file in
task I. FirstStart(I) defines the first start time of the
task scheduled. BasePriority(I) defines the basic
priority of media file in task I. In this system, we
give high priorities to media files with hot spot.
With this scheme, hot media files get high operation
priorities while being scheduled. In our system, we
define three level priorities: high, middle and low
with values 10, 20, 30, respectively. MaxPriority
defines the maximal priority with value 100.
ClipTable(I) is a very important parameters in the
task definitions, defined below:

ClipTable(I)={j=1,ClipNum(I) | (SubTask(I, j),
SubTaskAddr(I, j)) }

(2)
Where j represents the sequence number of the

media file in task I with values from 1 to ClipNum(I).
(SubTask(I, j), SubTaskAddr(I, j)) defines a clip
description item in clip tables. In this component,
SubTask(I, j) represents a sub-task j in task I.
SubTaskAddr(I, j) defines the data server which
should receive and schedule this sub-task.

3.2. Layer 2: Stream-Scheduling

For task I, the first scheduling layer dispatches all
sub-tasks of this task to predefined data servers
according to SubTaskAddr(I, j). For the second
scheduling layer, data servers start up threads to deal
with the received sub-tasks.

In continuous media applications, the operations
on multimedia objects can be described as periodic
tasks. Every periodic task has its own start time,
execution time and deadline. Multimedia files are
made up of large numbers of frames, such as P frame,
B frame and I frame. Most of media files are
compressed with constant frame rates. Media files
with variable frame rates also have stable average
frame rates. For example, in a media file with
average frame rate 25, we use 40ms to deal with a
frame. The definition of SubTask(I, j) is listed below:

()
() ()
() ()

() () ()














=

jIiorityjICFjIMF
jINumjICycle
jIMaxTjIStart

jISubTask
,Pr,,,,

,,,,
,,,,

,

 (3)

There are seven parameters in this definition
SubTask(I, j). Start(I, j) defines the time when the
sub-task j in task I is scheduled. MaxT(I, j)
represents the execution time length of the sub-task j
in task I. Cycle(I, j) defines the time length of
internal cycle.

In the second scheduling layer, we divide
execution of a sub-task into many cycles. A sub-task
is also partitioned into many routines with maximal
execution time Cycle(I, j). A routine represents a
frame in multimedia file. Num(I, j) defines the
number of routines in this SubTask(I, j). MF(I, j)
represents the maximal number of routines failed.
CF(I, j) represents the maximal number of routines
failed continuously. Priority(I, j) defines the priority
of a sub-task. The sub-task of task I SubTask(I,0) has
the same priority of BasePriority(I) of Task(I). The
following sub-tasks have dynamic priorities
according to the previous sub-task execution results.

From the definition in Eq.(3), we have the
following conclusions:

First, the deadline of the sub-task j in task I can
be calculated as:

Deadline(I, j)= Num(I, j)*Cycle(I, j)+Start(I, j)
 (4)

Second, we can define every routine first start
point and deadline below:

RoutineStart(I, j, m)=Start(I, j)+ (m-1)*Cycle(I, j)

(5)
RoutineDeadline(I ,j, m)= Start(I, j)+ m*Cycle(I, j)
 (6)

If one routine starts later than RoutineStart(I, j, m)
or finishes later than RoutineDeadline(I, j, m), we
can say that this routine has failed.
At last, if we define the number of all failed routines
in task j of task I as FailedNum(I, j) and the number
of continuous failed routines as
ContinousFailedNum(I,j), we have following claim:

If FailedNum(I, j) > MF(I, j) or
ContinousFailedNum(I, j) > CF(I, j)

Then SubTask(I, j) Failed

(7)

In our stream-scheduling scheme, we assume that
every sub-task of one task would succeed in
operations. One sub-task succeeds completely means
that all routines of this sub-task succeed. But in real
environments, some media data can not be sent out

normally, such as resources of servers, including
bandwidth, CPU and disks, are very busy, and there
are some media frames lost. Since we cannot reach
this target, we assume every sub-task can succeed
when we take into account the requirements of QoS.
Therefore, we have:

() ()jIMFjIFailedNum ,, ≤
()jIailedNumContinousF , ≤

and

 (8)
()jICF ,

From above, QoS changes only in a little scope.
We cannot make sure that there are no media lost
and we can ensure that it is not very obvious for
streaming qualities to lose media data in a controlled
range.

3.3. Sub-Task Scheduling

The transmitting probability P(I, j) of a sub-task
is given in Eq.(9) below. Data servers choose a sub-
task whose probability is the largest from the
scheduling list.

The priority of every sub-task is dynamic and
depends on its former sub-task transmitting
probability. represents the average
probability of all sub-tasks, waiting in the
scheduling list on one data server at the time t.

()′jIP ,

() ()
()

()
()

()
iorityMax

jIioritya

jICF
ailedNumContinousFa

MF
FailedNumajIP

Pr
,Pr*3

,
jI,*2

jI,
jI,*1,

+

+=

 (9)
1321 =++ aaa

 (10)
() (IiorityBaseIiority Pr0,Pr =)

 (11)
() ()

() () ()jIiorityjIPjIP

jIiorityiority

,Pr*,,

,Pr1jI,Pr






 ′−

+=+

 (12)
a1, a2, and a3 are coefficients and their values

should be adjusted during experiments. In Eq.(9), we
consider the influence of QoS, such as all failed
routines number and continuous failed routines
number when the data servers make decisions about
how to select a sub-task to schedule.

When two sub-tasks have the same transmitting
probabilities, we compare their routines priorities. In

general, I frame have a high priority, B frame middle
and P frame low. If current routines of sub-tasks all
have the same frames, we choose one sub-task using
the traditional EDF arithmetic.

4. Performance Evaluation

4.1. Simulation Model
When system load on one data server is very low,
there are almost no failed routines and failed sub-
tasks, and there are no need to consider QoS. At this
time, our scheme has the same effect as traditional
scheme, such as EDF and time-sharing scheme. But
when the video server provides massive concurrent
stream services and workload of every data server is
very high, our scheme is more effective than other
schemes.

Without loss of generality, we make some
assumptions and parameterize the simulation model.
First, if any sub-task SubTask(I, j) fails, its parent
Task(I) can be regarded as failed task and the other
sub-tasks will be cut off and the stream request will
be discarded at last. We define the ratio of failed
tasks amount to the number of all tasks FailedRatio.
At the same time, we also have the ratio of succeed
tasks amount to the number of all tasks
SucceedRatio.

Second, the admission control procedure adopts a
network bandwidth threshold-based policy. The
threshold for one autonomous storage node is

90Mbps, <= 90Mbps.)(newTA
Third, we have 100 movies compressed in

MPEG-1 and every movie has 2 clips, which are
distributed onto two different data servers. Every
clip file with 30fps has the average bandwidth
1.5Mbps and its time length is about 600 seconds.
The movie selection pattern is conform to Zipf
distribution (α = 1) [8] and 100 clients requests
arrive as a steady Poisson stream with the arrival
rate λ=0.25.

We also assume that EDF scheme and time-
sharing scheme obey the same rules: MF(I,j)=500
and CF(I,j)=10. Because very movie is about 600
seconds and has about 18000 frames or routines, the
maximal ratio of failed routines to total routines is
about 2.7%. That is, when FailedNum >= 500 or
ContinousFailedNum >=10, EDF scheme, time-
sharing scheme or our scheme all regard that current
sub-task fails. Here, a1=0.5, a2=0.4, a3=0.1 and the
time slot in time-sharing scheme is 1 second.

At last, in the following cluster simulation
environments, there are 2 storage nodes and one
control server node with hardware configurations
PIII800, SDRAM 256M.

4.2. Simulation Results

We first reveal relationship between the timeline and
FailedRatio on one data server when using our
scheme, EDF scheme, and time-sharing scheme,
shown in Figure 3 and Figure 4. In this environment,
we find out that maximal number of admitted
streams is no more than 60 because of the admission
control policy and average bandwidth of every
MPEG-1 stream. From these two figures, we find
out that double-layer stream control scheme with
QoS can schedule more streams than the traditional
EDF scheme and time-sharing scheme.

Figure 3 Failed Ratios between Our Scheme and
EDF Scheme

According to our simulation environment, there is
a feature that system workload is increasing with the
elapsing of the time before all clients request have
arrived, which has the reason that the clients
requests are increasing according to Poisson stream
policy. Because the data server workload is harder, it
cannot schedule all sub-tasks on this server. Because
we have considered the streams QoS, double-layer
stream control scheme with QoS has better average
QoS than EDF scheme and time-sharing scheme.

We then study the relationship between total
failed routines (frames) and timeline in our scheme
and traditional schemes, shown in Figure 5 and
Figure 6. We find out that failed frames in
traditional schemes are more than those in our
scheme. There are several reasons to have the results.

One is that our new scheme has taken account of the
priorities of different frames and different sub-tasks,
the other reason is that we stop the decreasing trend
of some sub-tasks QoS and make a reasonable
adjustment.

Figure 4 Failed Ratios between Our Scheme and

Time-Sharing Scheme

Figure 5 Failed Routines between Our Scheme and
EDF Scheme

5. Conclusions

This paper presents an application with layered
streaming control scheme to cluster video servers. It
is testified by simulation that this scheme improves
the average QoS for all streaming tasks on one video
server compared with traditional ones. This scheme
will also be generalize to be a pattern of random
optimization of multi-layered time series in the
fields of soft science on the base of systems theory,
which will be applied to managements engineering
and evaluation engineering such as evaluation of
enterprise technology innovation ability etc.

Figure 6 Failed Routines between Our Scheme and
Time-Sharing Scheme

6. References

[1]. C.-W. Hsueh, K.-J. Lin, and N. Fan, “Distributed
pinwheel scheduling with end-to-end timing
constraints”, Proc IEEE Real-Time System
Symposium, Pisa,1995, pp.172-181.

[2]. L. Amini, J. Lepre, and M. Kienzle, “Distributed
stream control for self-managing media processing
graphs”, Proceedings of the seventh ACM

international conference on Multimedia (Part 2),
October 1999.

[3]. Tin- Yu Wu, Kun-Chang Chen, Han-Chieh Chao
and Tak-Goa Tsuei, “IP Home Network Multimedia
Application over IEEE 1394”, 4th WSEAS
Internantional Conference on Information Science,
Communication and Applications (ISA 2004), 2004.

[4]. Eung-Nam Ko, “Performance Analysis of Error
Detection System for Distributed Multimedia
Environment”, 4th WSEAS Internantional
Conference on Information Science, Communication
and Applications (ISA 2004), 2004.

[5]. L. Georgiadis, R. Guerin, V. Peris, and K. N.
Sivarajan, “Efficient network QoS provisioning
based on per node traffic shaping”, IEEE/ACM
Trans. Networking, 4(4): 482-501, August. 1996.

[6]. J. Y. B. Lee and P. C. Wong, “A Server Array
Approach for Video-on-Demand Service on Local
Area Networks”, Proc. IEEE INFOCOM '96, Mar.
1996.

[7]. E. W. Knightly and N. B. Shroff. “Admission
Control for Statistical QoS: Theory and Practice”,
IEEE Network, March 1999.

[8]. R. L. Axtell, “Zipf Distribution of U.S. Firm Sizes”,
Science. Sept. 7, 2001, Vol. 293.

