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Abstract: - Given two or more prescribed volumes of homogeneous insulation material, how should one best deploy these in separate layers around a body so as to minimize the heat loss from the body? The answer to this question is to bring the calculus of variations to bear on a functional representing the heat loss, applying the governing heat flow equations and physical boundary conditions as constraints. The author has addressed the problem of a single layer previously. However, the extension to multiple layers offers up some interesting new analytical features and extends the capability to situations where it is desirable to use more than one layer. A general variational principle is derived for the case of two layers and a particular special solution is then presented.
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1   Introduction

The problem of finding the shape of a body to optimize some property associated with it while keeping its volume fixed is an example of a so-called isoperimetric problem. The most famous such example is probably that of minimizing the surface area of a body while keeping the volume fixed. The solution, of course, is the sphere of the prescribed volume. Other problems address diverse applications, such as e.g. the minimization of the drag on a body in viscous flow [1], the maximization of the torsional rigidity of a prism of given length [2], and the maximization of the capacity of a capacitor [3]. The author [4] has recently provided a brief review of the literature and the interested reader is referred to that.
     Here the focus is on a substantial development of earlier work by the author [5], in which the problem of minimizing the heat loss from a body, while keeping the volume of a single layer of insulation at a fixed value, was addressed. The treatment is extended to consider two layers of material for the particular case where the temperature is prescribed on the inner and outer surfaces of the dual layer. The new variational formulation results in a new optimal boundary condition on the outer surface of the outer layer and three additional optimal boundary conditions at the interface between the two layers.
     The simple example of the minimization of the rate of heat loss from a sphere surrounded by two layers of insulation is solved.
2   Problem Formulation

Consider the following coupled-domain boundary-value problem as shown in Figure 1, representing the heat flow in the layers of insulation represented by domains 
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Similarly in 
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The boundary conditions are: 
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Fig.1. The body 
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, the two surrounding insulation layers occupying domains 
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There is an additional boundary condition on 
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, namely that the heat loss from the inner layer of insulation equals the heat gained by the outer layer. Expressed in terms of the respective heat fluxes this is
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where 
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In the next section the minimization of this integral is addressed by application of a suitably constructed variational principle.

3   Variational Principle
In this section we construct a functional based on the integral (7) that incorporates the constraint (6) and governing partial differential equations (1) and (2) by introducing two new variables 
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     The functional we consider is 
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The constraint (8) and boundary condition (6) ensure that this functional always equals the rate of heat loss (7). With the aid of the Divergence Theorem, equation (9) can readily be manipulated into the form: 
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     Since the role of the variables 
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Equation (10) reduces to the simpler form
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which represents the rate of heat loss given by equation (7), provided equations (1)-(6) inclusive, (8), (11) and (12) are satisfied.

     Suppose there is an optimal (minimal) value of 
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     Thus we consider the variations
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Here the subscript ‘o’ again denotes optimal.  To the first order in 
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Therefore the variation in the functional is given by
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     Here the Divergence Theorem has been used several times to eliminate derivatives of the variations. Certain relationships between the variations are implied by the imposed boundary conditions. On 
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Using analytic continuation about the optimal solution, to first order in 
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Thus 
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Similarly from condition (12) 
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To the zero-th order the heat flux continuity condition (6) is given by
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Again using analytical continuation about the optimal solutions, the Dirichlet conditions (4) and (8) become to first order: 


[image: image77.wmf]2

20

1

21

1

10

1

11

n

T

f

T

n

T

f

T

¶

¶

-

=

¶

¶

+

  on 
[image: image78.wmf]10

S

,
 (23)

[image: image79.wmf]2

20

1

21

1

10

1

11

n

v

f

v

n

v

f

v

¶

¶

-

=

¶

¶

+

  on 
[image: image80.wmf]10

S

.
 (24)
     The Euler equations
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follow from the arbitrariness of the variations 
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in the sixth and tenth integrals of equation (16), respectively. Equations (1) and (2) are recovered as Euler equations from the fourth and eighth integrals. Then use of equations (1) and (2) at zero-th order and of conditions (17), (18), (20), and (21) yields
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Use of conditions (23) and (24) yields
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The arbitrariness of 
[image: image89.wmf]11

T

 on 
[image: image90.wmf]10

S

 implies that

[image: image91.wmf]2

20

2

1

10

1

n

v

n

v

¶

¶

-

=

¶

¶

k

k

  on 
[image: image92.wmf]10

S

.

(29)
Thus the remaining terms of the first variation are: 
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Use of conditions (6) and (29) enables equation (30) to be written in the simplified form
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     The variation (31) is to vanish for all functions 
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Thus the following optimal boundary conditions result
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holding on 
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     All of the equations and boundary conditions for the optimal boundary–value problem are now derived and for the reader’s convenience are listed in the table below by number. 

	Domain Or Boundary
	Equations Or Boundary Conditions Holding
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   Inner surface of inside layer
	(3), (11)
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 Interior of inner insulation layer
	(1), (25)
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  Interface between insulation layers
	(4), (22), (8), (29), (33)
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 Interior of outer insulation layer
	(2), (26)
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  Outer surface of outside layer
	(5), (12), (34)


Table 1. The coupled optimal boundary-value problem

Equations (1) –(5) inclusive, (8), (11), (12) are now all satisfied by the optimal solution, remaining of identical form but with the optimal subscript added, just as e.g. (6) became (22). 

     The extension to greater numbers of layers is quite straightforward, the third and subsequent layers satisfying boundary conditions and governing equations analogous to those given in the last three rows of the above table, the equations of the fifth row applying only on the outer surface of the outermost layer. 

4 A Particular Solution
It is straightforward to show that, in the case of two layers of prescribed volumes 
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surrounding a sphere 
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of radius 
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, one possible solution is that the interface between the layers is given by 
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r

=

, and the outer surface of the outer layer by 
[image: image113.wmf]c

r

=

. Here 
[image: image114.wmf]r

 is the radial co-ordinate of the spherical co-ordinate system based at the centre of the sphere 
[image: image115.wmf]B

. Thus the spherically symmetric solutions in each domain satisfy the coupled optimal boundary-value problem. We do not give full details of the derivation here, because of space considerations, but just state the solution of the boundary-value problem, which is as follows: 
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The corresponding rate of heat loss from 
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 is
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5 Discussion
The total rate of heat loss from a body 
[image: image122.wmf]B

 surrounded by a two layers of insulation, as given by equation (7), has been minimized, subject to the constraints of the prescribed volumes of each layer. This has been accomplished by the development of a variational principle that not only recovers the governing physical boundary-value problem as depicted in Figure 1, but also yields the additional equations and boundary conditions to be satisfied by the optimal solution. A full listing of these is given in the table presented. 

     The interface heat flow condition (6) has been treated with the aid of two Lagrange multiplier functions, which have been analytically continued into the two domains modelling the insulation. The treatment is quite similar to that of the mixed boundary condition representing Newton’s Law of Cooling in the earlier work of the author [5]. The variational principle gives natural boundary conditions and Euler equations for these multiplier functions that appear to represent ‘adjoint’ temperature flows in each layer in the opposite direction to the actual temperature flow. The details of the derivation of the extremal principle have been given in some detail in view of their complexity. This has precluded the discussion of more than the simplest, but nonetheless important, problem of the minimisation of the heat loss from a sphere surrounded by a dual insulation layer. 
     A limitation of the scope of the present work is that so far only Dirichlet boundary conditions on the innermost and outermost surfaces have been considered, since they represent the simplest case mathematically. Other boundary conditions, such as Newton’s Law of Cooling, or Stefan’s Radiation Law, have not yet been addressed. Moreover, space precludes the presentation of the thin-layer perturbation solution analogous to that given by the author [5] for a single layer, but it can be confirmed that this analysis appears to be successful. It is planned to report on these topics later.
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