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Abstract: - A spectral linear prediction compression scheme for lossless compression of hyperspectral images is 

proposed in this paper. Since hyperspectral images have a great deal of correlation from band to band, spectral 

linear prediction algorithm, which utilizes information from several bands, is very efficient for compression 

purposes. The proposed algorithm is compared to JPEG-LS and CALIC encoding schemes. All algorithms 

have been tested on 10 real 3D sounding images and their results in term of compression ratios are shown. 

Amount of compression obtained by the new algorithm is significantly higher compared to the previously 

proposed lossless compression methods for hyperspectral images.  
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1 Introduction 
Lossless compression techniques, as their name 

implies, involve no loss of information [1]. Lossless 

compression is used for applications that cannot 

tolerate any differences between the original and 

reconstructed data, such as medical imaging, global 

water and energy cycle, the Earth and other planets 

observations, climate weather connection, 

improvements in weather prediction, trace gases, etc. 

 

Recently hyperspectral images have been widely used 

in these applications in order to provide more precise 

and accurate information. National Ocean and 

Atmospheric Administration (NOAA) [2] and 

National Aeronautics and Space Administration 

(NASA) [3] involve 3D hyperspectral imaging data as 

well as 3D sounding data in their research. 

Hyperspectral instruments such as Atmospheric 

Infrared Sounder (AIRS) [4], Cross-track Infrared 

Sounder (CrIS) [5], Interferometer Atmospheric 

Sounding Instrument (IASI) [6], Geosynchronous 

Imaging Fourier Transform Spectrometer (GIFTS) [7], 

and Hyperspectral Environmental Suite (HES) [8], and 

Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) [9] daily generate large volumes of three-

dimensional hyperspectral data.  

Hyperspectral sounding data provides much more 

precise information about atmospheric temperature, 

moisture, clouds, aerosols and surface properties than 

hyperspectral imaging data, but storage and transition 

of these images demand much more resources. That is 

why compression algorithms must be developed.  

 

Lossless compression algorithms, such as JPEG-LS 

[10], context-based adaptive lossless image coding 

(CALIC) [11] and specific gray scale satellite image 

compression methods [12], and which effectively 

compress 2D data, are not suitable for 3D data 

compression. They do not utilize the high correlation 

between disjoint bands in 3D image spectra. Recently 

their performance has been improved by involving 

reordering techniques, such as [13] and [14]. In 

Section 2 3D sounding data, which has been used in 

our experiments, is presented. Section 3 of the paper 



provides brief overview of JPEG-LS and CALIC 

techniques improved by fast nearest neighbor 

reordering technique [13], and detail the proposed 

compression scheme. Section 4 discusses the results in 

terms of compression ratios obtained by each of the 

algorithms, which have been tested on the same 

dataset.  Section 5 summarizes the paper.   

 

 

2 Data 
We have experimented with 3D sounding data, 

captured by AIRS. Each image has 2108 spectral 

bands, 135 scan lines containing 90 cross-track 

footprints per san line [4]; temporal and spectral 

resolutions is over one thousand infrared channels and 

with spectral widths on the order of 0.5 wave number.  

The algorithm has been tested on ten granules, five 

daytime (DT) and five nighttime (NT), which have 

been chosen from different geographical regions of the 

Earth. Their locations, UTC times, and local time 

adjustments are listed in Table 1. 

 
Table 1. Ten selected AIRS granules for hyperspectral 

sounding data compression studies. [15] 
Granule 

№ 

Time Location 

9 00:53:31 UTC -12H Pacific Ocean, DT 

16 01:35:31 UTC +2 H Europe, NT 

60 05:59:31 UTC +7 H Asia, DT 

82 08:11:31 UTC -5 H North America, NT 

120 11:59:31 UTC -10H Antarctica, NT 

126 12:35:31 UTC -0 H Africa, DT 

129 12:53:31 UTC -2 H Arctic, DT 

151 15:05:31 UTC +11 H Australia, NT 

182 18:11:31 UTC +8 H Asia, NT 

193 19:17:31 UTC -7 H North America, DT 

 

The data is available at the Distributed Active 

Archive Center (DAAC) located at the NASA 

Goddard Earth Sciences Data and Information 

Services Center (GES DISC) in Greenbelt, Maryland, 

USA and at [15].  

 

 

3 Compression Schemes  
Efficient 3D compression algorithms exploit interpixel 

redundancy in every image dimension. Hyperspectral 

images have a great deal of correlation in spectral 

direction caused by the image properties. This fact is 

successfully used to predict each band based on the 

previous bands. Different encoding schemes are built 

under the assumption that it takes fewer bits to encode 

differences between the predicted and the current band 

value, instead of encoding the original band.  

 

3.1   Improved JPEG-LS and CALIC 

The following two algorithms have been adapted for 

3D image compression by involving fast nearest 

neighbor reordering (FNNR) scheme [13]. Context-

adaptive predictor-based encoders CALIC and JPEG-

LS gain advantages of the prediction technique, which 

allows obtaining the current pixel value utilizing 

pixels from its causal neighborhood. Detailed 

description of the CALIC can be found in [11]. JPEG-

LS is also based on the predictive coding technique, 

where main compression phases are: prediction, 

context modeling, error encoding, and run mode [10]. 

The algorithms performance has been improved by the 

data preprocessing FFNR technique. Main idea of the 

dimension-reduced FNNR scheme is to rearrange the 

more spectrally correlated channels in 3D images 

together.  

 
3.1 Spectral linear prediction 

Linear prediction predicts the value for the next sample 

and computes the difference between predicted value 

and the original value. This difference is usually small, 

so it can be encoded with less its than the original 

value.  

The technique implies prediction of each image band 

by involving number of bands along the image spectra. 

Each pixel is predicted using information provided by 

pixels in the previous bands in the same spatial 

position. An estimate for each pixel value is computed 

in the following way: 
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where zyxp ,, is the value of the pixel at band z in 

spatial location (x, y), iza , , i = 1…M denote 

prediction coefficients, M is a number of the image 

bands involved in prediction.  

For each band the linear prediction is computed in 

such a way that the prediction coefficients minimize 

the expected value of the squared error. In other 

words, we are optimizing (1) by minimizing 

2
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The linear prediction procedure is illustrated in 

figure 1. Pz is a column vector than containts all the 

pixels in the band z and Az=[az,1 az,2 … az,M]. The 

prediction coefficients (Az) are quantized to the 16-bit 

values using uniform quantization (Q1). The predicted 

pixel values (Pz’) are quantized (Q2) to the nearest 

integer values. After linear prediction the resulting 

residual band (Dz) is entropy coded with a range coder 

[18]. Compared to an arithmetic coder the files are 

less than 0.01 larger in most cases, but the range coder 

is 2-4 times faster than the arithmetic coder [19]. Each 

band is also entropy coded without prediction, and if 

its size is smaller than it is with prediction, the band is 

stored without prediction. The residual bands are 

obtained as pixelwise difference between the original 

and the predicted bands.    
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Fig 1. Spectral linear prediction. 

 

4 Experimental Results 
Figure 2 shows a stacked area plot of the overall 

contributions of the residual and side information as 

the function of the prediction length (M). In figure 3 a 

similar area plot shows compression ratios. The 

optimal value for M was determined to be 32. Figure 4 

depicts the compression and decompression times for 

different values of M. 
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Fig. 2. Compressed file size as a function of the coefficients 

of linear prediction. 
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Fig. 3. Compression ratio as a function of the coefficients of 

linear prediction. 
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Fig. 4. Compression and decompression times as functions 

of the coefficients of linear prediction. 

 

The compression ratios for proposed linear prediction 

method has been compared to compression ratios 

obtained with CALIC and JPEG-LS algorithms with 

FNNR [13] in Table 1 and adaptive linear prediction 

using optimal band ordering [20]. The band ordering 

is unnecessary for our method, since we are using so 

many bands in our spectral prediction scheme. 

 
Table 1.  Compression ratios for various compression 

schemes for the 10 tested granules. 

 

Gran. 

№. 

CALIC  

+ 

FNNR 

JPEG-

LS  

    + 

FFNR 

 

Adaptive 

Lin. Pred. 

+ opt.  

Band 

ordering 

Spectral 

linear 

pred. 

9 1.952 2.032 2.205 2.266 

16 1.864 1.962 2.128 2.208 

60 1.831 1.954 2.072 2.160 

82 1.877 1.962 2.123 2.195 

120 1.843 1.934 2.039 2.092 

126 1.867 1.978 2.180 2.265 

129 1.898 1.971 2.082 2.130 

151 1.972 2.033 2.198 2.264 

182 1.815 1.935 2.031 2.120 

193 1.868 1.979 2.167 2.232 

average 1.879 1.974 2.123 2.193 

 

Judging from the results, it is obvious that the 

proposed spectral linear prediction method works 

better than CALIC and JPEG-LS. Our method 

produced 17 % and 11 % higher compression ratios 

than CALIC and JPEG-LS with FNNR, respectively.  

Compared to adaptive linear prediction method the 

improvement is 3 %. 

 

Figure 5 compares entropies of the original and 

residual bands for granule 9. The entropy of the 

original bands is lower for 127 bands between bands 

230 and 540. That justifies the use of the entropy 

coding without prediction for the selected bands. 
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Fig. 5. Entropies of the original and residual bands for 

granule 9. 

 

5 Conclusions 
Spectral linear prediction method for lossless 

compression of 3D sounding images is proposed in 

this paper. On the whole, we based our prediction 

method on the assumption that since spectral 

correlation is much stronger than spatial correlation; 

prediction should be done only in the spectral 

direction. Otherwise, by adding a spatial predictor, we 

would combine a weaker predictor with a much better 

one. The results from that would be a much lower 

compression ratio. Since our prediction method 

outperforms the previous methods, our assumption 

seems to be correct. 

 

The spectral linear prediction method is responsible 

for the best compression ratios known today for 

hyperspectral sounder images. The spectral prediction 

procedure is rather time consuming and for this 

reason, future research will concentrate on a research 

to achieve the same compression ratios at lower 

computational cost. 
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