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Abstract: - In this paper, the VH® control theory on an infinite dimensional algebra to itself is investigated.
In order to establish the VH® control theory, the concept of a meromorphic mapping on an infinite
dimensional algebra to itself and the theory of V HP spaces are presented.
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1 Introduction

The theory of HP-spaces and the H* control theory
on one-dimensional space with range in finite dimen-
sional spaces have been summarized by C. G. Hu and
C. C. Yang, and B. A. Francis and J. C. Doyle in [§]
and [2,3] respectively. In 1993, B. V. Keulen [9] ex-
tended the classical H*® control theory to its range
in the infinite dimensional Hilbert space. In 2002, C.
G. Hu and L. X. Ma [7] extended the result of Keulen
[9] to the locally convex space containing the Hilbert
space. In this article, new VH® control theory on
infinite dimensional algebras is established. For this
aim, a meromorphic mapping on an infinite dimen-
sional algebra without appearance in [1,10] is defined
firstly, and the theory of V HP-spaces on an infinite
dimensional Fréchet algebra to itself is obtained. It
follows that the V H control theory on an infinite
dimensional algebra to itself is presented by using
the above concepts and theory.

The paper is organized as follows. In Section 2
meromorphic mappings and properties on the infi-
nite dimensional Fréchet algebra to itself are intro-
duced. Section 3 contains the concept and properties
of V. HP-spaces on the infinite dimensional Fréchet
algebra. In Section 4 the optimal solutions and the
infimal model-matching error of the VH* control
theory are presented.

2 Meromorphic mappings

Let S be the sequence space of all complex vari-
ables. Here s = (s1,82,...,8i,...) € S and s; €
C;(complex plane) for any i. If s = (s1,82,...,8,...) €

S, then the quasinorm over § is defined by

oo

2\" sl
=3 ()

i=1

The multiplication of s and w in S can be defined
by

sw = (S1W1, SaWa, . .., S Wi, .. .),

where w = (wy,...,w;,...) €S.
Obviously from the definition of the multiplica-
tion we may derive

llswll < lisllwll,

st =(s§,...,s88,...)

for any x > 0. Thus S is a Fréchet algebra.
Assume for convenience sake, that L = [[ L; is
i=1
a manifold over S, where each L; C C; is a simple
path, and that f(¢t) = (f1(¢),..., fi(t),...): L — S,
and t = (t1,t2,...,t;,...) €S. Let D5 = [[2, Dy
be a domain over S. Here ®,; is a domain over C;.

LEmmaA 2.1. A mapping f: Ds — S is holomor-
phic if and only if f can be denoted by

f(s) = (fi(s1), fa(s2),- -5 fi(si),...) €S,

where s = (81,82,...,8;,...) € S and fi(s;) : C; —
C; is a holomorphic function.

Proof. If f is a holomorphic mapping in ®, then

for any fixed so = (S01,802, - - S0i,--) € Ds, there



exists a neighborhood U(sg) C D5 such that

fls) = XloBr(s —s0)*
= Z;io(ﬁk17ﬁk2,...7ﬁki,...)
((s1 = so1)k, ..., (si — s00)¥,...))
= (Zzioﬁm(&—sm)k,.--,
>ore o Bri(si — s0i)", .. .)
= (for(s1 — so1), foa(s2 — 502), - - -,

fOi(Si_SOi)a“-)

for s € U(sp), where B = (B, Bxo, - -
...) €S and 0

foi(si = s0i) = Y Bri(si — s0:)".

Analytic continuation and the Uniqueness Theorem
of holomorphic mappings in complex analysis yield
that f(s) can be written as

f(s) = (fi(s1), fa(s2),-- -, fi(si), .

This is just required conclusion.

Conversely, because the above each step is invert-
ible, f is holomorphic in ®s. This proof is ended.
O

'7Bki7

) €8.

A meromorphic mapping on § without appear-
ance in [1,10] may be defined as follows:

DerFintTION 2.1. A mapping f on S is called
meromorphic if its each component f;(s;) is a mero-
morphic mapping of s; over C; for each i.

Remark. Using the similar method to Definition
2.1 we may define a meromorphic mapping on a do-
main D, = Hf; D4, where Dg; is a domain over C;
for each 1.

Let
{s(z)(o)} :{(551),...,s£i),...)}
=1 1=1
(2.1)
be an increasing sequence of distinct complex ele-
ments tending to the infinity co = (co,...,00,...).

From the above definition for convenience sake, with-
out loss generality we may assume that every f; is a
meromorphic function of s; which can be written for
any % as

i i szi(si_sq(,?))k7
1=1 k= —m,;

where the following conditions are satisfied:
(04){85?)} for any 4,4 has no any finite limit point;
(B8)—o0 < inf{—my;}.
Under the preceding conditions s(z)(®) is called a

pole of f.
On a meromorphic mapping f(s) on S there is
the following conclusion.

LEMMA 2.2. Let {s(z)(o)}zl satisfy (a)—(08), and
let
{h(s =5}~

= {(fm(s1 — 8OV hui(ss — s, .)}

be a sequence. Here

o

oo

1=1

-1

hai(si —s5)) = Z Buri(si — sty )"

k=—m,;

and B,(—y,,)i # 0. Then there exists a meromorphic
mapping
o0 o0

fl&)=3"

Bu (s — s(2) (@),
1=1 k=—m,

such that its poles coincide with (2.1), and its prin-
cipal part at the pole s(2)°) equals ey, for each v =
O, 1, 2, ... and sz = (Blkla

~-~7szi7---) €Ss.

Proof. In the proof of Lemma 2.1 we replace the
power series ZZO:O B1:(s:—50:)* by the Laurent series
5o Buki(si — s,
Mittag-

-Leffler’s theorem in complex analysis for each com-
ponent we may obtain required result. This proof is
finished. a

And wusing the famous

Next, integrals can be defined on a manifold L in
S as follows.

DEeFINITION 2.2. Let L; be any closed rectifiable
Jordan curve contained in a simply connected subdo-
main of a domain &; in C; and L = ]2, L;. The
positive direction of L can be defined by the positive
direction of L; for each i. Let @;" be the interior of L;
and Dt =[[;2, D}. Then D is called the interior

of L. Let D = Hfilﬁj

/L F(s)ds

= ( L fl(Sl)dsl,...,Ki fi(Si)dSl’,...> S S,
where f = (f1,..., fi,...) €S.

It follows that the most main theorems can be de-
rived from the definition of integral and correspond-
ing to classical theorems in complex analysis respec-
tively. For examples, Cauchy’s integral theorem and



Cauchy’s integral formula on S are as follows.

LEMMA 2.3. Let f(s) be a single S-valued holo-
morphic mapping on &. Then
(A)(Cauchy’s integral theorem).

/L f(s)ds =0,

where & = [[2, &;;
(B)(Cauchy’s integral formula).

1
21y

Kf@@—@*ﬁzf@)
where s € DT C &, and (t — s)~! exists.

DerFiNiTION 2.3. A subset Eg of E is called a
base-real subspace of E and u is called the conjugate
element of u if following conditions hold:

a) E is a vector space on C.
b) Ey is a vector subspace of E on R.

c) For every u € E, there exists an u(€ E) such
that u+u € Ey and j(u—1u) € Ey satisfying a
unique decomposition u = & + jn for €,n € Ey.

d) EonNjEy = {0}, where 0 is the zero element.

LEMMA 2.4. If E is a complex vector space, then
there exists a base-real subspace Ey such that E =
FEy + jEy, i.e. a complex vector space can be repre-
sented by a direct sum of two spaces which are gen-
erated by some real vector space.

Proof. For any xo(#£ 0) € E, let My = Ry =
{sx0 : ¢ € R}. Then 9y is a vector subspace of E on
the restricted number field R, and 9y N j9M, = {0}.
Setting CMy = {somyp : sg € C,mg € My}, we have
that C9Ny is a complex vector subspace of E. For
any 7 € E\CIMy we know that My = My + Ry is
also a vector subspace on a restricted number field
R of E and My N jM; = {0}. By induction we
obtain a sequence {9M1,} of vector subspaces with
M, N M, = {0}. Assume that 9 is the family
of all vector subspaces on R, that I = {9 € M :
MMM = {0}} (clearly, M’ is nonempty), and that
{9,},cs is the family of totally ordered subsets of
M’ where J is an indexing set. Consequently, Foy =
U,esIM, is a vector subspace on R and a supremum
of {M,},cs. Further we have

U, ng U m,
1€J g€J

UfmyﬂjUiml

1€J leJ

U U, n o).
JETIES

EgpNjEyw =

Since {9, },cs is a family of totally ordered subsets
with 9t, N j9, = {0} for any j € J and M, N jN; =
{0} for any 3,1 € J, we get Eoy N jEym = {0}. Now
Zorn’s lemma yields that 9 has a maximum element
Ey.
’ Next we shall show that Fj is the required sub-
space. Firstly, CEy = FE, here CEj is the smallest
complex subspace containing Fy. In fact, if CEy #
E, then there exists an x € E\CEy. It follows that
E} = Ey + Rz is a vector subspace on R containing
Ey with EjNjE} = {0}. This is in contradiction with
the maximality of Ey. Obviously, CEy = Ey + jEy.
Since EgNjEy = {0}, E = Eg+jEy, i.e. Eyisabase
real subspace of E. This proof is finished. O

Suppose that e is an idempotent element in S.
Theorem 5.3.2 in [5] may be extended to the Fréchet
algebra S containing the Banach algebra. Then us-
ing the result after extending we can get

exp (Log s) = s,
exp(s + 2mje) = exps for s € S,
exp(s + 2mjne) = exp s,
for n=0,4+1,4£2,..., where

o0

exp s = Zsi/z'!7

and i=1

Loglexp s|] = s+2mjne = s'+j(s"+2mne)  (2.2)
for any integer n and s € S, where § =S¢ + jSo,
Sy is a base-real Fréchet algebra, and s’,s” € Sy.

From (2.2) we can define the argument of exp s being
s" 4 2mjne. It follows that

Logs = (log|s1], ..., log |si], --.)
+j(Argsy, ..., Args;,...),  (2.3)
and that the argument Args of s is
(Argsy, ..., Args;, ...).

3 The V HP-space

Let |f(5)| = (|f1(81)‘7 B |fl(81) s ) be the vector
modulus of f. For any a,b € S, a < (<)bis a; <
(<)b; for each i. Let Cf = {s; € C; : Rs; > 0}
and ST = [[;2, C/. The set VHP(ST) consists of
all holomorphic mappings f : ST — S satisfying

sup { / |f(£+jw)pdw}p < o0,

Rs>0

where J = [[72,{(~00,00)}, s = { + jw € S*, and
0 < p < co. The set VH>(S") consists of all holo-
morphic mappings f : ST — S satisfying

sup {|f(§ + jw)|} < oo.
RNs>0



LemMma 3.1. If f € VHP(ST), then there exists a
constant element ¢ such that

1f(s)| <€ v, s=¢+jwe ST

Proof. Let
£ = [J{(0.2n)}
i=1
and

R = H{(O7T1)}

Let X = [[2{(& —ri,&i+7i)} and Y = T2, {(wi—

r;,w; +1;)}. Because | f(s)[P is a subharmonic map-
ping (see [4]),
[f ()"

1 .
<5 [ s+ pePds0 < p<gex.
2m Ja

Product the two sides of the above formula by p and
integrate on R with respect to p. It follows that there
exists a constant element m € ST using hypothesis
such that

,’,,2

— p

1)
< g | ot asds
<;A4ﬂﬁwme

1
< —/md&:ﬂ.
2m Jx s

Therefore | f(s)[P < < where ¢” = 2%, Lemma 3.1 is

proved as 7 — £. a

Lemma 3.2, If f € VHP(ST)(p > 1) and As €
ST, then
f(s+ As)

1 ) _
== [ ertt+ Ase + - an
s=E&4jweST.
Proof. Take L, = [[;2,L,,. Here L,, C C; is a
closed lune path consisting of a line & = As;(> 0)
and a circular arc with the center at the origin and

radius 7; sufficiently large in the right-half plane C;'.
Let r; cos 8p; = As;. Since

., exp by, ...),

-;002','-')-

exp jO = (exp jbn,..

cos 0y = (cos b1, ..

So rcosfy = As € ST. From Lemma 2.3 we derive
1 _
fs o+ 89) = 5 [ snin = (s + 29
T L,

where s + As is in the interior of L,. Because As —3
lies the exterior of L,, Lemma 2.3 yields
1
— — (=54 As)]tdnp =0.
i | 0= (5 89
It follows that

/(s + As)]

L TG

2mi L,

—(s+As)] 7' = [n— (=5 + As)] ' }dn

_ 1 A N2 211
= Lrﬁf(n)[(n As — jw)” = &7 dn

=?/ﬁw+Aﬂé+w—Nrw
T Jz

1 39 £ (1030 {030
—I—W/ﬁfre f(re?”){[re

—As — jw]? — €217t

= Il + 127
where -
T = H(—ri sin 6y;, ; sin by;),
i=1
and -
H= H(*eou 00:).
i=1
Obviously

1
lim I, = ;/gf(jt—k AS)[E + (w— )7 Ldt.
r—00 j
Next we show limp_,o 1o = 0.

Lemma 3.1 implies
|f(re??)| < c(rcos@)fi.
It follows that
|§rej‘9[(rej9 — As — jw)? — 52]_1|
= ¢rlre’? — As — ju + &7t

lred® — As — jw — €71
&r(lr — As —w—¢7")?

IN

for r sufficiently large. Thus

1
|Io| < f/ c(rcos@)_%
T™Jo



Er(lr — As —w — & 71)2%d0,
where O = [[{(—75, )} Because the integral

/ (cos 9)_%d0
fa)

converges and

lim frlfi(r —As—w—§& =

7—00

lim Ib =0if p > 1.

r—00
Combining the above, letting r — oo we obtain
required conclusion. a

Lemma 3.3. It f € VHP(ST) with 1 < p, then f
1s written as

— = [ernle + -0
where s € 8T, f(jt) € VLP(J).

Proof The following two cases are discussed.

a)p>1

Since f € VHP(S"), there is an b > 0 such
that [5[f(jt + As)|Pdt < b, where As > 0 is any
element in S. It follows that f(j¢ + As) is weak
convergence to f(jt) € VLP(J). Lemma 3.2 yields
fs+As) =21 [LEf(jt+As)[E% 4 (w—1)?] dt. Set-
ting As — 0 in the above formula we get the result
of Lemma 3.3.

Blp=1

From Lemma 2.3 we derive [; f(jt + As)(jt +
5)7ldt = 0 for any As € S*. The mapping f(jt +
As)dt is weak* convergence to du(t), where p(t) is a
measure satisfying [, |du(t)| < oo if As — 0. Tt fol-
lows that for any 0 < & € S, [5(jt+£&—jw) Hdu(t) =
0. Letting w = 0 in the above formula we have [, (jt+
¢)7'du(t) = 0. Finding the Fréchet derivatives of
each order we obtain [, (jt 4+ &) "du(t) = 0 for n =
0,1,.... Specially there are [5(jt + I)""du(t) = 0
forn=0,1,... as £ = I, where I is the unit element
in S. Let dv(r) = (jt — I)"'du(t). The conformal
mapping w = (s — I)(s + I)~! implies

/2 " du(T)

/j (jt — DGt + I) " du(t)

= /j[(jt + 1) = 21" (jt + I)""dp(t)

n

= 3o [+ D7tauto]| <o

k=1

where ap € S is a constant element for each k. From
Riesz’s theorem (see [6]) and the absolute continuity

of v(7) we derive that p(t) is also absolutely contin-

uous and f(jt) € VLY(J) and that du(t) = f(jt)dt.
Hence Lemma 3.2 yields
1 . _
— - [l + - o) e
mJ3
This proof is finished. O

LemMA 3.4. Assume that F(s) € VHP(ST), and
that f(w) = F(s), then f(w) € VHP(D;), where
w= -+ D= Ds1,...,Dsis--.) and
D is a unit disk in C; for each i.

Proof. The following two cases are discussed.
a)p>1

From Lemma 3.3 we derive
/ EFGHIE + (w— D) \dt, s € S*,

where F(jt) € VLP(3J). Usmg F(jt) =
get

f(e’t), we can

F(s) = 51 =1%) [ el 02

—2rcos(p — 7)) dr.

So .
/ F@T)Pdr = / 2AF(jt) P (I +12)dt
£ J

< 2/ \F(jt)Pdt < oo.
J

Hence f(w) € VHP(Dy).

B)0<p<l.

Lemma 3.1 yields |F(s)| < €~ 7. Particularly
|F'(s)] and |F(s)|P are bounded on the half space
[12,{si : Rs; > As; > 0}. Thus |F(s + As)P is
a subharmonic mapping on ST. It follows that

|F(s+ As)P
1 . 2 2|1
g;/ﬁle(JHAs)IpI& +(w— )2t

Since [ [F(jt + As)|Pdt <w’ for any As > 0, there
is a measure p such that [5 [du(t)]

< oo and
s)IF < — /«SIaf + (w

—2(I +t*)~Ydu(t). Then

t)?[~ du(t).
Let dv(r) =

feel < 5o [ 1=+

—2rcos(p — 7)| " Ldv (7).

Fubini’s theorem yields

/ Fred®)Pdp < 2 / T+ 2 dpu(t)] < oo
£ J



for any r > I, so f(w) € VH?(D;). ad

Let &(t, s) = (jts — I)[(jt — s)({ +t?)] L.

LemMmA 3.5. If F(s) € VHP(ST), then
F(s) = Fy;)(s)Flg(s),
where

Fly(s) = ¢ B(s) exp {i /j e(t, S)da(t)} eies

is called the inner mapping of F', v € J, B(s) is the
the Blaschke product of F,o(t) is a singular measure,
J5I +%)"'do(t) > —o0, (€ S) > 0 and the map-
ping

(o) =exp{ £ [ wt. 9 tog g0}

18 called the outer mapping of F'.

Proof. By using the transform w = (s — I)(s +
I)7! and Lemma 3.4 we obtain f(w) € VHP(D,),
where f(w) = F(s). Theorem 2.2.8 in [8] implies
f(w) = fii(w) flo(w), where

o) = Bywyexp (-5 [ Brwanm).

By(w) = [] cepm(w),
n

@) (W) = (| (W) — W) W (I = Thyw)]
1 .

fatw) = exw (5= [ (ol seiar).
TJe

v € J and v > 0 is a singular measure on £,
O(r,w) = (77 + w)(e?™ —w)~h

It follows that

fri(w) = €77 By (w) exp (i /3 a(t, S)dff(t)) e,

fatw) = exp (£ [ ity tog G0,

where € = L [v(0) + v(27)], and dv(7) = —2(I +
t2)~ldo(t).

Let B(s) = By(w), Fjj(s) = frij(w), and Fip)(s) =
fro)(w) via w = (s — I)(s + I)~*. Then F(s) =
Fi;)(s)Flg)(s). By using Theorem 2.2.8 in [8] we can
check that F;(s) and Fi,(s) are an inner mapping
and an outer mapping respectively.

This ends the proof. o

LemMA 3.6. A mapping f € VH®™(ST) is outer
if and only if fVH? is dense in VH?

Proof. Let £ is a shift operator on VH?, i.e.
£(f) = sf(s). Assume that T is a closure of fV H?
in VH?. Obviously, T is an invariant subspace with
respect to £. By using Beurling’s Theorem in [4],
we know that there is an inner mapping ¢ such that
T = gV H?. Since f € T, the mapping f can be rep-
resented as f = gh, where h € VH?2.

Necessity. If f is an outer mapping, then g =
const by f = gh. It follows that T = V H?, namely,
fVH? is dense in VH?.

Sufficiency. Use proof by contradiction. Suppose
that f is not outer, and that f = f;f[o, then fj; #
const. We can check that fj; VH 2 is an invariant sub-
space with respect to £ and f; VH? > fVH?. Thus
fV H? is not dense in V H?. This is in contradiction
with the hypothesis. This contradiction shows the
sufficiency.

Therefore the result of this lemma holds. ]

4 The V H*°-control theory

In this section, we replace S by the bounded sequence
space [*°. The subset of VH™ consisting of all ele-
ments with every component being real-rational func-
tion, is denoted by VRH™.

The space ({°°)™"*™ counsists of all n x m complex
matrices with each element being in [*°. If f(s) €
(I%°)™*™ then f can be written as

fir o fin
for 0 fon

;o= - :
fml f'rrm

= (fi,e-,fiy--)s

where

firi oo fine

fori oo fons

fi = S :

fmli fmni

Let g; be the maximal singular value of f;. Then
(01,---,0i,-..) is called the maximal singular value-
vector of f. Let VL* be a space consisting of all
mapping matrices f(jw) with

supa[f(jw)] < 0.
w
Here & f(jw)] is its maximal singular value-vector

for any fixed w. The vector norm of f € VL™ is
defined by

|£loe = sup{f (i)

The space V RL* consists of all real-rational map-
ping matrices in V L°°.



The space VL2 consists of all mapping matrices
{z(jw)} which are in (I°°)™ and satisfy

/z*(jw)m(jw)dw < 00,
3

where z* is the complex-conjugate transpose of .
The space V H®® consists of all holomorphic map-
ping matrices {f(s)} satisfying
sup{a[f(s)] : s > 0} < 0. (4.1)
The space V RH®° consists of all real-rational map-
ping matrices in VH*. Define

[fllee = Cfallocs - - - Ifillocs - - )

if f € VH®. It is the vector norm of f. Here [|f;||oo is
in the sense of the norm of the classical H*® control.
Obviously || fllec < oo if and only if formula (4.1)
holds.

We call f to be strong proper if f(o0) < oo, and
strictly strong proper if f(oo) = 0. We call f to be
stable if f € VRH® and f has no poles in the do-
main S*(=[[;2; S;"), where S;" = {s; : Rs; > 0}.

From the above definitions and the corresponding
conclusion in [7] we derive f € VRH® if and only if
f is strong proper and stable.

Three transfer matrices

T =l .7 ) 0=123

are controllers. Similar to the classical me-
thod in [2], we define the transfer mapping matrix

TM(s) TRI(s
K(s) = —Q(s),

where T) € VH®™ for £ = 1,2,3 are given. Let
T — [ Ty - Ty - ]

for £ =1,2,3. Then G can be written as

Tvw Ton | | T To |
T50 0 T3 0 '
In VH® control theory, the model ma-
tching problem is to find a strong proper element
Q € VRH® or a matrix Q € VRH* to mini-

mize HT“] —TRQTB HOO under the constraint that
K stabilize G, @ is the controller to be designed. Let

Q= inf{HT“] . T[Q]QT[B]HOO}

be the infimal model-matching error.
The following linear time invariant system in
VRH® is defined by

#(t) = Ax(t) + Bul(t)

y(t) = Cx(t).

Completely controllable (c.c.) and completely ob-
servable (c.0.) concepts and symbols (A, B) and
(A, C) are similar to Definition 2.3 in [7]. The con-
cept of the minimal realization is similar to Defini-
tion 2.4 (see [7]). A matrix A € VRH® is said to
be antistable if all the generalized eigenvalue vectors
consisting of its all eigenvalues, of A, are in ST.

From the classical H*°-control theory we derive
the following result.

LEMMA 4.1.

(1) A realization [A, B,C,0] of a given transfer
matriz G(s) € VRH®™ is minimal if (A, B) is com-
pletely controllable and (A,C) is completely observ-
able respectively.

(2) If A is antistable, then the Lyapunov equa-
tions

AL+ L. AT = BBT

ATr, + L, A=CTC

have the unique solutions respectively, where

Lo = / e~ AtBBT A"t
L

L, = / e~ ATtOT e At gy,
L

where L = [[;2, Li, L; = (0, 00).

Lemma 3.5 implies that a mapping T in (I°°)" N
VRH® is inner if and only if T(—s)T'(s) = I, and
outer if it has no zeros in S*, that T(—s)T'(s) = I
if and only if each component Tj(—s;)T;(s;) = 1 for
any i, that every mapping T in (I°°)" N VRH® has
a factorization T = T[i]T[o] with TM inner and T[O]
outer, and HT[%‘] (jw)”oo = I, and that if T(jw) # 0
for all w € L = [[;2, L;, where L; = [0, oc] for any i,

then T[gll exists and T[Z]I € VRH®™.

Returning to the model-matching problem, for
simplicity, we may assume T3 = I and bring in an
inner-outer factorization of 712 : T = T[[j]T [[02]]. It
follows that for @ in VRH® we have

2]~ 1 2
17 = TEQlIoe = 175 T ~ T7Qlloe
= IR~ X[,

-1
where R = T[[j] TH, X = T[OQ]]Q.

Let A2 be a generalized eigenvalue vector of £.L,
and w the correspondent generalized eigenvector ma-

trix respectively. Define

f(s) =[A,w,C,0],



g(s) = [-AT, X1 L,w, BT, 0]

and
X(s) = R(s) = Af(s)[g(s)] .
Let F € VL™ and g € VL?. Then the operator

Ap:Apg=Fg

is called the Laurent operator. For F' in VL*°, the
Hankel operator with symbol F', denoted by I' », maps
VH? to VH?" and is defined as

FF = HlAF|VH2,

where II; is the projection from V L? onto VH? .
Let {s; : Rs; = 0,Fs; > 0} =5, and [[2, E; =

—
—.

Basing on previous results we may obtain the fol-
lowing conclusions.

THEOREM 4.1.

(a) If the ranks of T and TP are constant on
=, then the optimal () exists.

(b) There exists a closest VRH® -mapping X (s)
to a given VRL>®-mapping R(s), and ||R—X||cc =
ITll, where

ITel = (g -5 [Ti ] - )

(¢) The infimal model-matching error « equals
ITr| and the unique optimal X equals

R(s) = AMf(s)lg(s)] "

The optimal controller

Q: (Qla"'aQia-“) = (T[[Oz]])il)(e VRH™

is found via this theorem. Therefore the V H°-control
theory is solved.

Remark. In this article, all corresponding conclu-
sions hold for arbitrary Fréchet algebras and Banach
algebras being isometric isomorphism to S and [*°
respectively.

5 Conclusions

e The concept and properties of meromorphic
mappings on an infinite dimensional algebra to
itself are obtained. These are breakthrough in
infinite dimensional complex analysis without
appearing in [1,10].

e The concept (2.3) of an argument on infinite di-
mensional algebras is defined. This is a break-
through in infinite dimensional geometry.

e The theory of VHP spaces on infinite dimen-

sional algebras to infinite dimensional algebras
is presented.

The infimal model-matching error and the uni-
que optimal solution of VH* control theory
on infinite dimensional algebras to infinite di-
mensional algebras are established.

All control theory on finite dimensional spaces
can be extended that on infinite dimensional
spaces to infinite dimensional spaces by using
methods in this paper.
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