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Abstract: - In this paper, the V H∞ control theory on an infinite dimensional algebra to itself is investigated.
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dimensional algebra to itself and the theory of V Hp spaces are presented.
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1 Introduction
The theory of Hp-spaces and the H∞ control theory
on one-dimensional space with range in finite dimen-
sional spaces have been summarized by C. G. Hu and
C. C. Yang, and B. A. Francis and J. C. Doyle in [8]
and [2,3] respectively. In 1993, B. V. Keulen [9] ex-
tended the classical H∞ control theory to its range
in the infinite dimensional Hilbert space. In 2002, C.
G. Hu and L. X. Ma [7] extended the result of Keulen
[9] to the locally convex space containing the Hilbert
space. In this article, new V H∞ control theory on
infinite dimensional algebras is established. For this
aim, a meromorphic mapping on an infinite dimen-
sional algebra without appearance in [1,10] is defined
firstly, and the theory of V Hp-spaces on an infinite
dimensional Fréchet algebra to itself is obtained. It
follows that the V H∞ control theory on an infinite
dimensional algebra to itself is presented by using
the above concepts and theory.

The paper is organized as follows. In Section 2
meromorphic mappings and properties on the infi-
nite dimensional Fréchet algebra to itself are intro-
duced. Section 3 contains the concept and properties
of V Hp-spaces on the infinite dimensional Fréchet
algebra. In Section 4 the optimal solutions and the
infimal model-matching error of the V H∞ control
theory are presented.

2 Meromorphic mappings
Let S be the sequence space of all complex vari-
ables. Here s = (s1, s2, . . . , si, . . .) ∈ S and si ∈
Ci(complex plane) for any i. If s = (s1,s2, . . . ,si, . . .) ∈

S, then the quasinorm over S is defined by

|||s||| =
∞∑

i=1

(
2
3

)i |si|
1 + |si| .

The multiplication of s and w in S can be defined
by

sw = (s1w1, s2w2, . . . , siwi, . . .),

where w = (w1, . . . , wi, . . .) ∈ S.
Obviously from the definition of the multiplica-

tion we may derive

|||sw||| ≤ |||s||||||w|||,

sκ = (sκ
1 , . . . , sκ

i , . . .)

for any κ > 0. Thus S is a Fréchet algebra.

Assume for convenience sake, that L =
∞∏

i=1

Li is

a manifold over S, where each Li ⊂ Ci is a simple
path, and that f(t) = (f1(t), . . . , fi(t), . . .) : L → S,
and t = (t1, t2, . . . , ti, . . .) ∈ S. Let Ds =

∏∞
i=1 Dsi

be a domain over S. Here Dsi is a domain over Ci.

LEMMA 2.1. A mapping f : Ds → S is holomor-
phic if and only if f can be denoted by

f(s) = (f1(s1), f2(s2), . . . , fi(si), . . .) ∈ S,

where s = (s1, s2, . . . , si, . . .) ∈ S and fi(si) : Ci →
Ci is a holomorphic function.

Proof. If f is a holomorphic mapping in Ds, then
for any fixed s0 = (s01, s02, . . . , s0i, . . .) ∈ Ds, there
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exists a neighborhood U(s0) ⊂ Ds such that

f(s) =
∑∞

k=0 ßk(s− s0)k

=
∑∞

k=0(ßk1, ßk2, . . . , ßki, . . .)

((s1 − s01)k, . . . , (si − s0i)k, . . .)
)

=
( ∑∞

k=0 ßk1(s1 − s01)k, . . . ,
∑∞

k=0 ßki(si − s0i)k, . . .
)

=
(
f01(s1 − s01), f02(s2 − s02), . . . ,

f0i(si − s0i), . . .
)

for s ∈ U(s0), where ßk = (ßk1, ßk2, . . . , ßki,
. . .) ∈ S and

f0i(si − s0i) =
∞∑

k=0

ßki(si − s0i)k.

Analytic continuation and the Uniqueness Theorem
of holomorphic mappings in complex analysis yield
that f(s) can be written as

f(s) =
(
f1(s1), f2(s2), . . . , fi(si), . . .

) ∈ S.

This is just required conclusion.
Conversely, because the above each step is invert-

ible, f is holomorphic in Ds. This proof is ended.
2

A meromorphic mapping on S without appear-
ance in [1,10] may be defined as follows:

DEFINITION 2.1. A mapping f on S is called
meromorphic if its each component fi(si) is a mero-
morphic mapping of si over Ci for each i.

Remark. Using the similar method to Definition
2.1 we may define a meromorphic mapping on a do-
main Ds =

∏∞
i=1 Dsi, where Dsi is a domain over Ci

for each i.

Let
{

s(ı)(0)
}∞

ı=1
=

{
(s(0)

ı1 , . . . , s
(0)
ıi , . . .)

}∞
ı=1

(2.1)
be an increasing sequence of distinct complex ele-
ments tending to the infinity ∞ = (∞, . . . ,∞, . . .).
From the above definition for convenience sake, with-
out loss generality we may assume that every fi is a
meromorphic function of si which can be written for
any i as

∞∑
ı=1

∞∑

k=−mıi

ßıki(si − s
(0)
ıi )k,

where the following conditions are satisfied:
(α){s(0)

ıi } for any ı, i has no any finite limit point;
(β)−∞ < inf{−mıi}.
Under the preceding conditions s(ı)(0) is called a

pole of f.
On a meromorphic mapping f(s) on S there is

the following conclusion.

LEMMA 2.2. Let
{
s(ı)(0)

}∞
ı=1

satisfy (α)–(β), and
let {

~(ı)(s− s(ı)(0))
}∞

ı=1

=
{

(hı1(s1 − s
(0)
ı1 ),. . . ,hıi(si − s

(0)
ıi ), . . .)

}∞
ı=1

be a sequence. Here

hıi(si − s
(0)
ıi ) =

−1∑

k=−mıi

ßıki(si − s
(0)
ıi )k

and ßı(−mıi)i 6= 0. Then there exists a meromorphic
mapping

f(s) =
∞∑

ı=1

∞∑

k=−mı

ßık(s− s(ı)(0))k,

such that its poles coincide with (2.1), and its prin-
cipal part at the pole s(ı)(0) equals ~(ı), for each ı =
0, 1, 2, . . . and ßık = (ßık1,
. . . , ßıki, . . .) ∈ S.

Proof. In the proof of Lemma 2.1 we replace the
power series

∑∞
k=0 ßki(si−s0i)k by the Laurent series∑∞

k=−mıi
ßıki(si − s

(0)
ıi )k. And using the famous

Mittag-
-Leffler’s theorem in complex analysis for each com-
ponent we may obtain required result. This proof is
finished. 2

Next, integrals can be defined on a manifold L in
S as follows.

DEFINITION 2.2. Let Li be any closed rectifiable
Jordan curve contained in a simply connected subdo-
main of a domain Gi in Ci and L =

∏∞
i=1 Li. The

positive direction of L can be defined by the positive
direction of Li for each i. Let D+

i be the interior of Li

and D+ =
∏∞

i=1 D+
i . Then D+ is called the interior

of L. Let D
+

=
∏∞

i=1 D
+

i .
∫

L

f(s)ds

:=
(∫

L1

f1(s1)ds1, ...,

∫

Li

fi(si)dsi, ...

)
∈ S,

where f = (f1, ..., fi, ...) ∈ S.

It follows that the most main theorems can be de-
rived from the definition of integral and correspond-
ing to classical theorems in complex analysis respec-
tively. For examples, Cauchy’s integral theorem and
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Cauchy’s integral formula on S are as follows.

LEMMA 2.3. Let f(s) be a single S-valued holo-
morphic mapping on G. Then

(A)(Cauchy’s integral theorem).
∫

L

f(s)ds = 0,

where G =
∏∞

i=1 Gi;
(B)(Cauchy’s integral formula).

1
2πj

∫

L

f(t)(t− s)−1dt = f(s),

where s ∈ D+ ⊂ G, and (t− s)−1 exists.

DEFINITION 2.3. A subset E0 of E is called a
base-real subspace of E and ū is called the conjugate
element of u if following conditions hold:

a) E is a vector space on C.
b) E0 is a vector subspace of E on R.
c) For every u ∈ E, there exists an ū(∈ E) such

that u + ū ∈ E0 and j(u− ū) ∈ E0 satisfying a
unique decomposition u = ξ + jη for ξ, η ∈ E0.

d) E0 ∩ jE0 = {0}, where 0 is the zero element.

LEMMA 2.4. If E is a complex vector space, then
there exists a base-real subspace E0 such that E =
E0 + jE0, i.e. a complex vector space can be repre-
sented by a direct sum of two spaces which are gen-
erated by some real vector space.

Proof. For any x0( 6= 0) ∈ E, let M0 = Rx0 =
{ςx0 : ς ∈ R}. Then M0 is a vector subspace of E on
the restricted number field R, and M0 ∩ jM0 = {0}.
Setting CM0 = {s0m0 : s0 ∈ C,m0 ∈ M0}, we have
that CM0 is a complex vector subspace of E. For
any x1 ∈ E\CM0 we know that M1 = M0 + Rx1 is
also a vector subspace on a restricted number field
R of E and M1 ∩ jM1 = {0}. By induction we
obtain a sequence {Mn} of vector subspaces with
Mn ∩ jMn = {0}. Assume that M is the family
of all vector subspaces on R, that M′ = {M0 ∈ M :
M0∩jM0 = {0}} (clearly, M′ is nonempty), and that
{M}∈J is the family of totally ordered subsets of
M′, where J is an indexing set. Consequently, EM =
∪∈JM is a vector subspace on R and a supremum
of {M}∈J . Further we have

EM ∩ jEM =
⋃

∈J

M ∩ j
⋃

∈J

M

=
⋃

∈J

M ∩ j
⋃

l∈J

Ml

=
⋃

∈J

⋃
l∈J

(M ∩ jMl).

Since {M}∈J is a family of totally ordered subsets
with M ∩ jM = {0} for any  ∈ J and M ∩ jMl =
{0} for any , l ∈ J , we get EM ∩ jEM = {0}. Now
Zorn’s lemma yields that M′ has a maximum element
E0.

Next we shall show that E0 is the required sub-
space. Firstly, CE0 = E, here CE0 is the smallest
complex subspace containing E0. In fact, if CE0 6=
E, then there exists an x ∈ E\CE0. It follows that
E′

0 = E0 + Rx is a vector subspace on R containing
E0 with E′

0∩jE′
0 = {0}. This is in contradiction with

the maximality of E0. Obviously, CE0 = E0 + jE0.
Since E0∩jE0 = {0}, E = E0+jE0, i.e. E0 is a base
real subspace of E. This proof is finished. 2

Suppose that e is an idempotent element in S.
Theorem 5.3.2 in [5] may be extended to the Fréchet
algebra S containing the Banach algebra. Then us-
ing the result after extending we can get

exp (Log s) = s,

exp(s + 2πje) = exp s for s ∈ S,

exp(s + 2πjne) = exp s,

for n = 0,±1,±2, ..., where

exp s =
∞∑

i=1

si/i!,
and

Log[exp s] = s+2πjne = s′+j(s′′+2πne) (2.2)

for any integer n and s ∈ S, where S = S0 + jS0,
S0 is a base-real Fréchet algebra, and s′, s′′ ∈ S0.
From (2.2) we can define the argument of exp s being
s′′ + 2πjne. It follows that

Logs = (log |s1|, ..., log |si|, ...)
+j(Args1, ..., Argsi, ...), (2.3)

and that the argument Args of s is

(Args1, ..., Argsi, ...).

3 The V Hp-space
Let |f(s)| = (|f1(s1)|, . . . , |fi(si)|, . . .) be the vector
modulus of f . For any a, b ∈ S, a ≤ (<)b is ai ≤
(<)bi for each i. Let C+

i = {si ∈ Ci : <si > 0}
and S+ =

∏∞
i=1 C

+
i . The set V Hp(S+) consists of

all holomorphic mappings f : S+ → S satisfying

sup
<s>0

{∫

I

|f(ξ + jω)|pdω

} 1
p

< ∞,

where I =
∏∞

j=1{(−∞,∞)}, s = ξ + jω ∈ S+, and
0 < p < ∞. The set V H∞(S+) consists of all holo-
morphic mappings f : S+ → S satisfying

sup
<s>0

{|f(ξ + jω)|} < ∞.
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LEMMA 3.1. If f ∈ V Hp(S+), then there exists a
constant element c such that

|f(s)| ≤ cξ−
1
p , s = ξ + jω ∈ S+.

Proof. Let

L =
∞∏

i=1

{(0, 2π)}

and

R =
∞∏

i=1

{(0, ri)}.

Let X =
∏∞

i=1{(ξi−ri, ξi +ri)} and Y =
∏∞

i=1{(ωi−
ri, ωi + ri)}. Because |f(s)|p is a subharmonic map-
ping (see [4]),

|f(s)|p

≤ 1
2π

∫

L

|f(s + ρejθ)|pdθ, 0 < ρ < ξ ∈ X.

Product the two sides of the above formula by ρ and
integrate on R with respect to ρ. It follows that there
exists a constant element m ∈ S+ using hypothesis
such that

r2

2
|f(s)|p

≤ 1
2π

∫

R

∫

L

|f(s + ρ ejθ)|pρdθdρ

≤ 1
2π

∫

X

∫

Y

|f(ξ + jω)|pdξdω

≤ 1
2π

∫

X

mdξ =
mr

π
.

Therefore |f(s)|p ≤ cp

r where cp = 2m
π . Lemma 3.1 is

proved as r → ξ. 2

LEMMA 3.2. If f ∈ V Hp(S+)(p ≥ 1) and ∆s ∈
S+, then

f(s + ∆s)

=
1
π

∫

I

ξf(jt + ∆s)[ξ2 + (ω − t)2]−1dt,

s = ξ + jω ∈ S+.

Proof. Take Lr =
∏∞

i=1 Lri . Here Lri ⊂ Ci is a
closed lune path consisting of a line ξi = ∆si(> 0)
and a circular arc with the center at the origin and
radius ri sufficiently large in the right-half plane C+

i .
Let ri cos θ0i = ∆si. Since

exp jθ = (exp jθ1, . . . , exp jθi, . . .),

cos θ0 = (cos θ01, . . . , θ0i, . . .).

So r cos θ0 = ∆s ∈ S+. From Lemma 2.3 we derive

f(s + ∆s) =
1

2πi

∫

Lr

f(η)[η − (s + ∆s)]−1dη,

where s + ∆s is in the interior of Lr. Because ∆s− s
lies the exterior of Lr, Lemma 2.3 yields

1
2πi

∫

Lr

f(η)[η − (−s + ∆s)]−1dη = 0.

It follows that

|f(s + ∆s)|

=
1

2πi

∫

Lr

f(η){[η

−(s + ∆s)]−1 − [η − (−s + ∆s)]−1}dη

=
1
πj

∫

Lr

ξf(η)[(η −∆s− jω)2 − ξ2]−1dη

=
1
π

∫

T

ξf(jt + ∆s)[ξ2 + (ω − t)2]−1dt

+
1
π

∫

H

ξrejθf(rejθ){[rejθ

−∆s− jω]2 − ξ2}−1dθ

= I1 + I2,

where

T =
∞∏

i=1

(−ri sin θ0i, ri sin θ0i),

and

H =
∞∏

i=1

(−θ0i, θ0i).

Obviously

lim
r→∞

I1 =
1
π

∫

I

ξf(jt + ∆s)[ξ2 + (ω − t)2]−1dt.

Next we show limR→∞ I2 = 0.

Lemma 3.1 implies

|f(rejθ)| ≤ c(r cos θ)−
1
p .

It follows that
∣∣ξrejθ[(rejθ −∆s− jω)2 − ξ2]−1

∣∣
= ξr|rejθ −∆s− jω + ξ|−1

|rejθ −∆s− jω − ξ|−1

≤ ξr(|r −∆s− ω − ξ|−1)2

for r sufficiently large. Thus

|I2| ≤ 1
π

∫

O

c(r cos θ)−
1
p
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ξr(|r −∆s− ω − ξ|−1)2dθ,

where O =
∏{(−π

2 , π
2 )}. Because the integral

∫

O

(cos θ)−
1
p dθ

converges and

lim
r→∞

ξr1− 1
p (r −∆s− ω − ξ)−1 = 0,

lim
r→∞

I2 = 0 if p ≥ 1.

Combining the above, letting r → ∞ we obtain
required conclusion. 2

LEMMA 3.3. It f ∈ V Hp(S+) with 1 ≤ p, then f
is written as

f(s) =
1
π

∫

I

ξf(jt)[ξ2 + (ω − t)2]−1dt,

where s ∈ S+, f(jt) ∈ V Lp(I).

Proof The following two cases are discussed.
α) p > 1
Since f ∈ V Hp(S+), there is an [ > 0 such

that
∫

I
|f(jt + ∆s)|pdt ≤ [, where ∆s > 0 is any

element in S. It follows that f(jt + ∆s) is weak
convergence to f(jt) ∈ V Lp(I). Lemma 3.2 yields
f(s+∆s) = 1

π

∫
I

ξf(jt+∆s)[ξ2 +(ω− t)2]−1dt. Set-
ting ∆s → 0 in the above formula we get the result
of Lemma 3.3.

β) p = 1
From Lemma 2.3 we derive

∫
I

f(jt + ∆s)(jt +
s)−1dt = 0 for any ∆s ∈ S+. The mapping f(jt +
∆s)dt is weak* convergence to dµ(t), where µ(t) is a
measure satisfying

∫
I
|dµ(t)| < ∞ if ∆s → 0. It fol-

lows that for any 0 < ξ ∈ S,
∫

I
(jt+ξ−jω)−1dµ(t) =

0. Letting ω = 0 in the above formula we have
∫

I
(jt+

ξ)−1dµ(t) = 0. Finding the Fréchet derivatives of
each order we obtain

∫
I
(jt + ξ)−ndµ(t) = 0 for n =

0, 1, . . . . Specially there are
∫

I
(jt + I)−ndµ(t) = 0

for n = 0, 1, . . . as ξ = I, where I is the unit element
in S. Let dv(τ) = (jt − I)−1dµ(t). The conformal
mapping w = (s− I)(s + I)−1 implies

∫

L

ejnτdv(τ)

=
∫

I

(jt− I)n−1(jt + I)−ndµ(t)

=
∫

I

[(jt + I)− 2I]n−1(jt + I)−ndµ(t)

=
n∑

k=1

[
ak

∫

I

(jt + I)−kdµ(t)
]

= 0,

where ak ∈ S is a constant element for each k. From
Riesz’s theorem (see [6]) and the absolute continuity

of v(τ) we derive that µ(t) is also absolutely contin-
uous and f(jt) ∈ V L1(I) and that dµ(t) = f(jt)dt.
Hence Lemma 3.2 yields

f(s) =
1
π

∫

I

ξf(jt)[ξ2 + (ω − t)2]−1dt.

This proof is finished. 2

LEMMA 3.4. Assume that F (s) ∈ V Hp(S+), and
that f(w) = F (s), then f(w) ∈ V Hp(Ds), where
w = (s − I)(s + I)−1, Ds = (Ds1, . . . , Dsi, . . .) and
Dsi is a unit disk in Ci for each i.

Proof. The following two cases are discussed.
α) p ≥ 1
From Lemma 3.3 we derive

F (s) =
1
π

∫

I

ξF (jt)[ξ2 + (ω − t)2]−1dt, s ∈ S+,

where F (jt) ∈ V Lp(I). Using F (jt) = f(ejt), we can
get

F (s) =
1
2π

(I − r2)
∫

L

f(ejτ )[I + r2

−2r cos(ϕ− τ)]−1dτ.
So ∫

L

|f(ejτ )|pdτ =
∫

I

2|F (jt)|p(I + t2)−1dt

≤ 2
∫

I

|F (jt)|pdt < ∞.

Hence f(w) ∈ V Hp(Ds).
β) 0 < p < 1.

Lemma 3.1 yields |F (s)| ≤ cξ−
1
p . Particularly

|F (s)| and |F (s)|p are bounded on the half space∏∞
i=1{si : <si ≥ ∆si > 0}. Thus |F (s + ∆s)|p is

a subharmonic mapping on S+. It follows that

|F (s + ∆s)|p

≤ 1
π

∫

I

ξ|F (jt + ∆s)|p|ξ2 + (ω − t)2|−1dt.

Since
∫

I
|F (jt + ∆s)|pdt ≤ m′ for any ∆s > 0, there

is a measure µ such that
∫

I
|dµ(t)|

< ∞ and

|F (s)|p ≤ 1
π

∫

I

ξ|ξ2 + (ω − t)2|−1dµ(t).

Let dν(τ) = −2(I + t2)−1dµ(t). Then

|f(rejϕ)|p ≤ 1
2π

∫

L

(I − r2)|I + r2

−2r cos(ϕ− τ)|−1dν(τ).

Fubini’s theorem yields
∫

L

|f(rejϕ)|pdϕ ≤ 2
∫

I

|I + t2|−1|dµ(t)| < ∞
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for any r > I, so f(w) ∈ V Hp(Ds). 2

Let æ(t, s) = (jts− I)[(jt− s)(I + t2)]−1.

LEMMA 3.5. If F (s) ∈ V Hp(S+), then

F (s) = F[i](s)F[o](s),
where

F[i](s) = ejγB(s) exp
{

1
π

∫

I

æ(t, s)dσ(t)
}

ejεs

is called the inner mapping of F , γ ∈ I, B(s) is the
the Blaschke product of F, σ(t) is a singular measure,∫

I
(I + t2)−1dσ(t) > −∞, ε(∈ S) > 0 and the map-

ping

F[o](s) = exp
{

1
π

∫

I

æ(t, s) log |F (jt)|dt

}

is called the outer mapping of F .

Proof. By using the transform w = (s − I)(s +
I)−1 and Lemma 3.4 we obtain f(w) ∈ V Hp(Ds),
where f(w) = F (s). Theorem 2.2.8 in [8] implies
f(w) = f[i](w)f[o](w), where

f[i](w) = ejγBf (w) exp
(
− 1

2π

∫

L

f(τ, w)dν(τ)
)

,

Bf (w) =
∏
n

œ[n](w),

œ[n](w) = (|w[n]|(w[n] − w)[w[n](I − w[n]w)]−1,

f[o](w) = exp
(

1
2π

∫

L

f(τ, w) log |f(ejτ )|dτ

)
,

γ ∈ I and ν ≥ 0 is a singular measure on L,

f(τ, w) = (ejτ + w)(ejτ − w)−1.

It follows that

f[i](w) = ejγBf (w) exp
(

1
π

∫

I

æ(t, s)dσ(t)
)

e−εs,

f[o](w) = exp
(

1
π

∫

I

æ(t, s) log |F (jt)|dt

)
,

where ε = 1
2π [ν(0) + ν(2π)], and dν(τ) = −2(I +

t2)−1dσ(t).
Let B(s) = Bf (w), F[i](s) = f[i](w), and F[o](s) =

f[o](w) via w = (s − I)(s + I)−1. Then F (s) =
F[i](s)F[o](s). By using Theorem 2.2.8 in [8] we can
check that F[i](s) and F[o](s) are an inner mapping
and an outer mapping respectively.

This ends the proof. 2

LEMMA 3.6. A mapping f ∈ V H∞(S+) is outer
if and only if fV H2 is dense in V H2

Proof. Let £ is a shift operator on V H2, i.e.
£(f) = sf(s). Assume that Υ is a closure of fV H2

in V H2. Obviously, Υ is an invariant subspace with
respect to £. By using Beurling’s Theorem in [4],
we know that there is an inner mapping g such that
Υ = gV H2. Since f ∈ Υ, the mapping f can be rep-
resented as f = gh, where h ∈ V H2.

Necessity. If f is an outer mapping, then g ≡
const by f = gh. It follows that Υ = V H2, namely,
fV H2 is dense in V H2.

Sufficiency. Use proof by contradiction. Suppose
that f is not outer, and that f = f[i]f[o], then f[i] 6≡
const. We can check that f[i]V H2 is an invariant sub-
space with respect to £ and f[i]V H2 ⊃ fV H2. Thus
fV H2 is not dense in V H2. This is in contradiction
with the hypothesis. This contradiction shows the
sufficiency.

Therefore the result of this lemma holds. 2

4 The V H∞-control theory
In this section, we replace S by the bounded sequence
space l∞. The subset of V H∞ consisting of all ele-
ments with every component being real-rational func-
tion, is denoted by V RH∞.

The space (l∞)n×m consists of all n×m complex
matrices with each element being in l∞. If f(s) ∈
(l∞)n×m, then f can be written as

f =




f11 · · · f1n

f21 · · · f2n

...
. . .

...
fm1 · · · fmn




= (f1, . . . , fi, . . .),

where

fi =




f11i . . . f1ni

f21i . . . f2ni

...
. . .

...
fm1i . . . fmni


 .

Let %i be the maximal singular value of fi. Then
(%1, . . . , %i, . . .) is called the maximal singular value-
vector of f . Let V L∞ be a space consisting of all
mapping matrices f(jω) with

sup
ω

σ̄[f(jω)] < ∞.

Here σ̄[f(jω)] is its maximal singular value-vector
for any fixed ω. The vector norm of f ∈ V L∞ is
defined by

‖f‖∞ = sup
ω

σ̄[f(jω)].

The space V RL∞ consists of all real-rational map-
ping matrices in V L∞.
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The space V L2 consists of all mapping matrices
{x(jω)} which are in (l∞)n and satisfy

∫

I

x∗(jω)x(jω)dω < ∞,

where x∗ is the complex-conjugate transpose of x.
The space V H∞ consists of all holomorphic map-

ping matrices {f(s)} satisfying
sup{σ̄[f(s)] : <s > 0} < ∞. (4.1)

The space V RH∞ consists of all real-rational map-
ping matrices in V H∞. Define

‖f‖∞ = (‖f1‖∞, . . . , ‖fi‖∞, . . .)

if f ∈ V H∞. It is the vector norm of f. Here ‖fi‖∞ is
in the sense of the norm of the classical H∞ control.
Obviously ‖f‖∞ < ∞ if and only if formula (4.1)
holds.

We call f to be strong proper if f(∞) < ∞, and
strictly strong proper if f(∞) = 0. We call f to be
stable if f ∈ V RH∞ and f has no poles in the do-
main S̄+(=

∏∞
i=1 S̄+

i ), where S̄+
i = {si : <si ≥ 0}.

From the above definitions and the corresponding
conclusion in [7] we derive f ∈ V RH∞ if and only if
f is strong proper and stable.

Three transfer matrices

T [`] = (T [`]
1 , . . . , T

[`]
i , . . .), ` = 1, 2, 3

are controllers. Similar to the classical me-
thod in [2], we define the transfer mapping matrix

G(s) :=
[

T [1](s) T [2](s)
T [3](s) 0

]
,

K(s) = −Q(s),

where T [`] ∈ V H∞ for ` = 1, 2, 3 are given. Let

T [`] =
[

T`1 · · · T`i · · · ]

for ` = 1, 2, 3. Then G can be written as
[[

T11 T21

T31 0

]
· · ·

[
T1i T2i

T3i 0

]
· · ·

]
.

In V H∞ control theory, the model ma-
tching problem is to find a strong proper element
Q ∈ V RH∞ or a matrix Q ∈ V RH∞ to mini-
mize

∥∥T [1] − T [2]QT [3]
∥∥
∞ under the constraint that

K stabilize G, Q is the controller to be designed. Let

α := inf
{∥∥∥T [1] − T [2]QT [3]

∥∥∥
∞

}

be the infimal model-matching error.
The following linear time invariant system in

V RH∞ is defined by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t).

Completely controllable (c.c.) and completely ob-
servable (c.o.) concepts and symbols (A,B) and
(A,C) are similar to Definition 2.3 in [7]. The con-
cept of the minimal realization is similar to Defini-
tion 2.4 (see [7]). A matrix A ∈ V RH∞ is said to
be antistable if all the generalized eigenvalue vectors
consisting of its all eigenvalues, of A, are in S+.

From the classical H∞-control theory we derive
the following result.

LEMMA 4.1.
(1) A realization [A,B, C, 0] of a given transfer

matrix G(s) ∈ V RH∞ is minimal if (A,B) is com-
pletely controllable and (A,C) is completely observ-
able respectively.

(2) If A is antistable, then the Lyapunov equa-
tions

ALc + LcA
T = BBT

ATLo + LoA = CT C

have the unique solutions respectively, where

Lc =
∫

L

e−AtBBT e−AT tdt,

Lo =
∫

L

e−AT tCT Ce−Atdt,

where L =
∏∞

i=1 Li, Li = (0,∞).

Lemma 3.5 implies that a mapping T in (l∞)n ∩
V RH∞ is inner if and only if T (−s)T (s) = I, and
outer if it has no zeros in S+, that T (−s)T (s) = I
if and only if each component Tj(−si)Ti(si) = 1 for
any i, that every mapping T in (l∞)n ∩ V RH∞ has
a factorization T = T[i]T[o] with T[i] inner and T[o]

outer, and
∥∥T[i](jω)

∥∥
∞ = I, and that if T (jω) 6= 0

for all ω ∈ L̄ =
∏∞

i=1 L̄i, where L̄i = [0,∞] for any i,
then T−1

[o] exists and T−1
[o] ∈ V RH∞.

Returning to the model-matching problem, for
simplicity, we may assume T [3] = I and bring in an
inner-outer factorization of T [2] : T [2] = T

[2]
[i] T

[2]
[o] . It

follows that for Q in V RH∞ we have

‖T [1] − T [2]Q‖∞ = ‖T [2]
[i]

−1
T [1] − T

[2]
[o] Q‖∞

= ‖R−X‖∞,

where R = T
[2]
[i]

−1
T [1], X = T

[2]
[o] Q.

Let λ2 be a generalized eigenvalue vector of LcLo

and w the correspondent generalized eigenvector ma-
trix respectively. Define

f(s) = [A,w, C, 0],
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g(s) = [−AT , λ−1Low, BT , 0]

and
X(s) = R(s)− λf(s)[g(s)]−1.

Let F ∈ V L∞ and g ∈ V L2. Then the operator

ΛF : ΛF g = Fg

is called the Laurent operator. For F in V L∞, the
Hankel operator with symbol F , denoted by ΓF , maps
V H2 to V H2⊥ and is defined as

ΓF := Π1ΛF |V H2,

where Π1 is the projection from V L2 onto V H2⊥ .
Let {si : <si = 0,=si ≥ 0} = Ξi and

∏∞
i=1 Ξi =

Ξ.

Basing on previous results we may obtain the fol-
lowing conclusions.

THEOREM 4.1.
(a) If the ranks of T [2] and T [3] are constant on

Ξ, then the optimal Q exists.
(b) There exists a closest V RH∞-mapping X(s)

to a given V RL∞-mapping R(s), and ‖R−X‖∞ =
‖ΓR‖, where

‖ΓR‖ = (‖Γ1R1‖, . . . , ‖ΓiRi‖, . . .).
(c) The infimal model-matching error α equals

‖ΓR‖ and the unique optimal X equals

R(s)− λf(s)[g(s)]−1.

The optimal controller

Q = (Q1, . . . , Qi, . . .) =
(
T

[2]
[o]

)−1

X ∈ V RH∞

is found via this theorem. Therefore the V H∞-control
theory is solved.

Remark. In this article, all corresponding conclu-
sions hold for arbitrary Fréchet algebras and Banach
algebras being isometric isomorphism to S and l∞

respectively.

5 Conclusions
• The concept and properties of meromorphic

mappings on an infinite dimensional algebra to
itself are obtained. These are breakthrough in
infinite dimensional complex analysis without
appearing in [1,10].

• The concept (2.3) of an argument on infinite di-
mensional algebras is defined. This is a break-
through in infinite dimensional geometry.

• The theory of V Hp spaces on infinite dimen-
sional algebras to infinite dimensional algebras
is presented.

• The infimal model-matching error and the uni-
que optimal solution of V H∞ control theory
on infinite dimensional algebras to infinite di-
mensional algebras are established.

• All control theory on finite dimensional spaces
can be extended that on infinite dimensional
spaces to infinite dimensional spaces by using
methods in this paper.
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