
Integrating Rule and Agent-Based Programming to Realize Complex Systems

ALESSANDRO BENEVENTI, AGOSTINO POGGI, MICHELE TOMAIUOLO, PAOLA TURCI
Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma
Viale delle Scienze, 181A – 43100 - Parma

ITALY

Abstract: - Current agent-based frameworks are used for the realization of flexible distributed systems, but rarely they
provide the support for building really adaptive and intelligent applications. This paper presents a framework integrating a
scripting engine and a rule-based system inside a FIPA compliant agent framework. Both tasks and rules can be moved
among the deployed agents. The security issues are analyzed and proper authentication and authorization mechanisms are
deployed. Application areas range from e-learning to e-business, from service composition to network management. In our
experiences, the system proved particularly suitable for building advanced service-based applications to be deployed in open
and evolving network environments.

Key-Words: Agent-based systems. Rule engine. Adaptive agents. Security.

1 Introduction
The main motivation behind this work is the need to fill the
existing gap between multi-agent systems as environments
to build distributed applications, and their missed promise
to pave the way for really adaptive and smart applications.
The solution presented in the paper is founded on the
integration of a rule-based framework, Drools [3], and a
scripting engine, BeanShell [2], inside JADE [12], a
widespread, FIPA compliant [5], distributed multi-agent
system.
 The added value of the proposed solution is twofold. The
first evident advantage is that it allows the creation of rule-
based agents, whose actions are based on the activation of
different rules according to the evolving perception of the
world. Another important result is the possibility to move
rules from one agent to another, allowing them to share
learned behaviours, evolving their state and code, in order
to achieve their users’ needs and to best fit their
environment.
 Of course, these social interactions, i.e., the ability to
send and receive new behaviours, require security issues to
be carefully analyzed. The paper tackles these issues and
describes some mechanisms to define precise policies, to
limit the access to critic resources only to authenticated and
authorized principals.
 In particular, Section 2 describes existing technologies
and theories about related areas, as rule-engines and code
mobility. Section 3 deals with the integration of the Drools
engine and the BeanShell interpreter into JADE. Section 4
describes a concrete e-learning application where we’re
exploiting rules and code mobility, and then some more
application areas we’re going to apply these features to.
Finally some overall conclusions are drawn, and possible
future development lines are traced.

2 Adaptive rule-based agents
The advantages or rule-based systems over procedural
programming environments are well known and widely
exploited, above all in the context of business applications.
Working with rules helps keeping the logic separated from
the application code; it can be moved outside the code and
modified by non-developers. Another important advantage
is that the logic is not scattered around the whole code, but
is centralized in one point, where it can be analyzed and
validated. Finally, rule-based engines are often well
optimized, and they are able to efficiently reduce the
number of rules to match against the updated knowledge
base.
 Among the different mechanisms to implement a rule-
engine, mainly thanks to the high degree of optimization
that can be obtained, the Rete algorithm [6] has gained more
and more popularity.
 Currently, a number of different rule-engines are
available, some of which implement the Rete algorithm or
one of its variants. Probably the best know of them is Jess
[7], developed at Sandia National Laboratories in late
1990s. Jess has always been widely adopted by the JADE
community to realize rule-based agent systems, too, and
examples of use can be found in the JADE official
documentation [12]. But, since this framework is no more
licensed as a free open-source package, the necessity to
have low cost alternatives is becoming more and more
impelling. Our evaluation focused on Drools [3], a well
known, freeware tool that implements the so-called Rete-
OO algorithm.
 Apart of its open-source availability, one of the main
advantages of Drools is exactly the fact that it’s not just a
literal implementation of the Rete algorithm, but rather an
adaptation for the object-oriented world. This greatly eases
the burden of integrating the rule-engine and the application
rules with the existing external objects. In Drools, asserted

facts are simple Java objects, that can be modified through
their public methods and properties. Where Jess requires
hundreds of lines of code, for example to simply access an
ACL message mapped into a Java object, Drools rules can
obtain the same result in a dozen of easy-reading code lines.
Drools rule can bee specified through an xml file, and they
can be expressed using different scripting languages, as
Python, Groovy and Java. They can even be added
dynamically to the engine through the Semantic Module
Framework. Instead Jess only accepts rules written in the
CLIPS language. This could require developers to learn a
new Lisp-like language and deploy additional efforts to
adapt it to their object-oriented development environment.
 One of the main advantages of Jess over Drools is the
control it provides on the handling of active rules. But this
difference is going to disappear, as the last version of
Drools added a customizable Conflict Resolution Strategy
framework, exactly to fill this gap: the new APIs allow, for
example, to select the rules to execute first according to
their priority, or to the number of conditions they express.
 A lot of work has been done about the use of rules to
realize agent systems. On the one hand, rules have been
shown suitable to define abstract and real agent
architectures and have been used for realizing the so called
“rule-based agents”, that is, agents whose behaviour and/or
knowledge is expressed by means of rules [17,15,10,16]. On
the other hand, given that rules are easy and suitable means
to realize reasoning, learning and knowledge acquisition
tasks rules have been used into the so called “rules-
enhanced agents”, that is, agents whose behaviour is not
normally expressed by means of rules, but that use a rule
engine as additional component to perform specific
reasoning, learning or knowledge acquisition tasks [9,13].
 Both the approaches have some advantages and
disadvantages. Rule-based agents provide all the advantages
of rule-based systems and a uniform way to program them,
but their performance is inadequate for some kinds of
applications. Rule-enhanced agents allow the use of
different programming paradigms; therefore, it is possible to
use the most appropriate paradigm for the realization of the
different tasks both to simplify the development and to
satisfy the performance requirements, but there is an
additional cost for the management of the integration
/synchronization of such heterogeneous tasks.
 In our system, the rule-engine is integrated into an agent
as a JADE behaviour. This approach guarantees both the
advantages of full rule-based agents and the ones of rule-
enhanced agents. In facts, both procedural and rule-based
behaviours can be seamlessly added to each deployed agent,
according to the application features and requirements.
 Mobile code prove useful in many context [8], thanks to
its ability to overcome network latency, reduce network
load, allow asynchronous execution and autonomy, adapt
dynamically, operate in heterogeneous environments,
provide robust and fault-tolerant behaviours. Anyway, a
wide range of different technologies are currently available,

and all claims to be founded on mobility of code. These
technologies vary from applets and other dynamic code
downloading mechanisms, to full mobile agent systems,
adhering to models as code on demand, remote evaluation,
mobile agents.
 In our system, two different cases are possible: asking a
remote agent to execute a task, or to apply a new rule to its
knowledge base. While mobile rules falls into the class of
asynchronous requests with deferred execution, instead
mobile tasks fall into the synchronous class. In both cases
the moved entity is a fragment of code, to be interpreted by
a scripting engine on the target agent, and not a complete
thread of execution.
 Lots of research work has been devoted to analyze the
different security threats that a mobile code system could
face, and the relevant security countermeasures that could
be adopted. In [11] two different classes of attacks can be
identified, depending on their target: the ones targeting the
executing environment of mobile code, and the ones
targeting the code itself.
 While the fact that mobile code could pose threats to its
hosting environment is widely accepted, instead often the
possibility to face threats against the hosted code is not
taken into consideration. This is certainly due to a lack of
effective countermeasures to prevent the hosting
environment from stealing data and algorithms from the
mobile code, from executing it too slowly to be effective,
altering its execution flow, or stopping its execution.
Experimental algorithms exist to at least detect “a
posteriori” this type of threats, including partial result
encapsulation, mutual itinerary recording, itinerary
recording with replication and voting, execution tracing.
Some algorithms even try to prevent some types of attacks
to the code hosted in malicious environments, but their real
effectiveness has yet to be proved; these include
environmental key generation, computing with encrypted
functions, and obfuscated code (sometimes called time
limited blackbox).
 Our main effort has instead been devoted in protecting
the executing environment hosting mobile code. Potential
threats posed by hosted code include masquerading, denial
of service, eavesdropping, and alteration. Available security
countermeasures to protect the execution environment
against potentially malicious mobile code often rely on
algorithms to prevent attacks, like software-based fault
isolation, safe code interpretation, authorization and
attribute certificates, proof carrying code. Other techniques
are focused on detecting attacks to the environment and
tracing them to their origin; these include state appraisal,
signed code, path histories.
 In particular, in our system we leveraged on the security
means provided by Java, and extended them to allow the
definition of precise protection domains on the basis of
authorization certificates [14]. These certificates, attached to
mobile code, list a set of granted permissions and are signed
by trusted authorities according to customizable policies.

The authorization certificates owned by the agents can also
be used to delegate access rights to other agents, to allow
them to complete the requested tasks or to achieve
delegated goals [18]. Finally, masquerading and alteration
threats are prevented by establishing authenticated, signed
and encrypted channels between remote components of the
system.

3 JADE, Drools, BeanShell
The concrete implementation of the proposed system is the
direct result of the evaluations exposed in the preceding
sections. In particular, we decided to not start from scratch,
from the development of a totally new agent platform, but
instead we judged that existing solutions demonstrated
during the time to be a sound layer on which more advanced
functionalities should be added.
 The chosen system was JADE. Past experiences in
international projects, proved it to be preferable to other
solutions, thanks to its simplicity, flexibility, scalability and
soundness. As already argued, to the integration of JADE
with Jess, yet valid in some contexts, we preferred instead
the integration with an open source, object-oriented
software, as Drools. To the rich features of Drools, we
added the support for communications through ACL
messages, typical of FIPA agents. Drools rules can
reference ACL messages in both their precondition and
consequence fields, which are expressed in the Java
language and executed by the embedded BeanShell
interpreter. Moreover, a complete support was provided, to
manipulate facts and rules on Drools agents through ACL
messages.
 Inside the Drools environment a rule is represented by an
instance of the Rule class: it specifies all the data of the rule
itself, including the declaration of needed parameters, the
extractor code to set local variables, the pre-conditions
making the rule valid, the actions to be performed as
consequence of the rule. Rule object can be loaded from
xml files at engine startup, or even created and added to the
working memory dynamically.
 Rules contain scripts in their condition, consequence and
extractor fields. The scripts can be expressed using various
languages, fore example Python, Groovy and Java. In this
last case, the script is executed by the embedded BeanShell
engine. When a rule is scheduled for execution, i.e. all its
preconditions are satisfied by asserted facts, Drools creates
a new instance of a BeanShell namespace, set the needed
variables inside it and invokes the BeanShell interpreter to
execute the code contained in the consequence section of
the rule.
 Drools agents expose a complete API to allow the
manipulation of their internal working memory. Their
ontology defines AgentAction objects to add rules, assert,
modify and retract facts. All these actions must be joined
with an authorization certificate. Only authorized agents,
i.e. the ones that show a certificate listing all needed

permissions, can perform requested actions. Moreover, the
accepted rules will be confined in a specific protection
domain, instantiated according to their own authorization
certificate.
 Finally, we decided to provide direct access to the
BeanShell interpreter, too. BeanShell agents can receive
tasks, submitted through ACL messages. As the requests to
perform actions contain the code of the task, expressed in
the Java language, it is possible to use this feature to
implement applications adhering to the remote evaluation
model. Moreover, the future integration of advanced grid
features, as transparent and reconfigurable load balancing
functions, could pave the way for the development of
distributed computing environments founded on networks
of FIPA agents and platforms.
 BeanShell is an application written by Pat Niemeyer that
allows to use Java as a scripting language [2]. Usually, the
main difference between a scripting language and a
compiled one, lies in the handling and control of types. In
this sense, BeanShell is a new type of scripting language: it
allows the developer not to renounce to type control. In this
way, it is possible to write BeanShell scripts that look like
Java applications under every degree. But BeanShell allows
to relax the type control to different extents, too, making the
code more similar to a traditional scripting language. The
advantage of BeanShell is therefore to not impose any sort
of syntactic barrier between its scripts and real Java code.
All this is allowed by the use of the Java Reflection API. In
facts, as BeanShell is executed into the same Virtual
Machine where the embedding application is executed,
programmers are free to work with true Java objects,
inserting and extracting them freely from the scripting
environment of BeanShell.
 In particular, we integrated the scripting engine inside a
JADE agent, and provided an API for interacting with it
through ACL messages. The FIPA request protocol is used
to submit tasks. A specific ontology describes the new
AgentAction objects which can be used to submit tasks and
to manipulate variables in the BeanShell environment. The
code to perform a submitted task is contained into the
AgentAction object, in the form of Java statements. If
proper permissions are owned, the code will be executed by
the embedded scripting engine of the BeanShell agent.
 While mobility of rules and code among agents paves the
way for real adaptive applications, it cannot be fully
exploited if all the security issues that arise aren't properly
addressed. The approaches to mobile code security are
different, depending on the particular threats that should be
faced. In the context of our applications, we decided to
leave out the problem of threats of hosting environments
against received code. These issues are harder to face, and
solutions often rely on detection means, more than
prevention ones.
 In our work, instead we focused on the problem of
receiving potentially malicious code, that could harm the
hosting agent and its living environment. For this purpose,

we leveraged on JadeS [14], the security framework that is
already available for JADE, to implement two different
layers of protection.
 The security means we implemented in our system
greatly benefit from the existing infrastructure provided by
the underlying Java platform and by JADE. The security
model of JADE deals with traditional user-centric concepts,
as principals, resources and permissions. Moreover it
provides means to allow delegation of access rights among
agents, and the implementation of precise protection
domains, by means of authorization certificates issued by a
platform authority.
 In the security framework of JADE, a principal
represents any entity whose identity can be authenticated.
Principals are bound to single persons, departments,
companies or any other organizational entity. Moreover, in
JADE even single agents are bound to a principal, whose
name is the same as the one assigned by the system to the
agent; with respect to his own agents, a user constitutes a
membership group, making thus possible to grant particular
permissions to all agents launched by a single user.
 Resources that JADE security model cares for include
those already provided by security Java model, including
local file system elements, network sockets, environment
variables, database connections. But there are also resources
typical of multi-agent systems that have to be protected
against unauthorized accesses. Among these, agents
themselves and agent execution environments must be
considered.
 A permission is an object which represents the capability
to perform actions. In particular, JADE permissions,
inherited from Java security model, represent access to
system resources. Each permission has a name and most of
them include a list of actions allowed on the object, too.
 To take a decision while trying to access a resource,
access control functions compare permission granted to the
principal with permission required to execute the action;
access is allowed if all required permissions are owned.
 When an agent is requested to accept a new rule or task,
a first access protection involves authenticating the
requester and checking the authorization to perform the
action; i.e.: can the agent really ask to add a new rule, or to
perform a given task on its behalf? To perform these tasks,
the requester needs particular permissions, i.e. instances of
the DroolsPermissions and BshPermission classes. A
DroolsPermission object can authorize the execution of
requests as add or remove rules or add, remove and
manipulate facts. A BshPermission object can authorize the
execution of requests as submit a task or remotely set or
cancel a variable.
 So, only authenticated and authorized agents can
successfully ask another to accept rules and tasks. But till
this point the security measures don't go further than what
other technologies, like ActiveX, already offer. In facts,
once the request to perform a given task is accepted, then no
more control on the access to protected resources can be

enforced. The agent can choose to trust, or not to trust. But,
if the request is accepted, then the power of the received
code cannot be limited in any way.
 Instead, to deploy the full power of task delegation and
rule mobility, the target agent should be able to restrict the
set of resources made accessible to the mobile code. The
agents should be provided means to delegate not only tasks,
but even access rights needed to perform those tasks. This is
exactly what is made possible through the security package
of JADE, where distributed security policies can be checked
and enforced on the basis of signed authorization
certificates.
 In our system, every requested action can be
accompanied with a certificate, signed by a known and
trusted authority, listing the permissions granted to the
requester. Permissions can be obtained directly from a
policy file, or through a delegation process. Through this
process, an agent can further delegate a set of permissions
to another agent, given the fact that it itself can prove the
possession of those permissions.
 The final set of permissions received through the request
message, can finally be used by the servant agent to create a
new protection domain to wrap the mobile code during its
execution, protecting the access to the resources of the
system, as well as those of the application.

4 An Application
A first exploitation of the implemented framework has to do
with the development of a multi-agent system to support the
automatic generation of courses. In the following sub-
sections a brief description of the system and of its future
evolution are reported.
 The development of electronic course material and the
consequent need to keep the content up to date takes much
effort and is time consuming. Therefore it is getting vital to
provide a valuable support for teachers. Learning objects,
on the other hand, appear to have significant potential for
creating highly personalized learning programs and easily
updated courses.
 The aim of our application - learning objects on demand,
is to provide an infrastructure to support the automatic
search of learning objects. This is accomplished by
exploiting the rule-based agent, described in the previous
sections, acting as an intermediary agent having the role of
a broker, in order to support a matching between the
learning objects, appropriately annotated with metadata, and
the users’ preferences. By means of this approach, we
intend to achieve a high degree of reusable course content
as well as a reduction in costs for courses development.
 This application is part of the TechNET [19] project,
funded by the European Community and started in
September 2003. This project addresses the key area of
Education and Cultural Heritage within the @LIS call,
demonstrating a highly innovative teaching and
experimentation environment spanning across 8 countries.

The environment functions as a live continuously running
network – enabling students, learning professionals and
researchers to gain hands-on experience of using cutting
edge Web/Internet technologies to create complex dynamic
on-line applications. In particular the demonstrator will
include a lead application example that will provide
personalized wire line and wireless teaching services
spanning 5 Latin American and 3 European countries.

Fig. 1. “Learning Objects on Demand” system architecture
 The project is in its first phase of a multiphase effort.
Our aim, in this first phase, is to develop a simplified
version of which will be the final system
 The model expects that several components of the same
type can coexist in the system. The current version of the
demonstrator is based on a single Intermediary, a small
number of Service Providers and Personal Agents.
Obviously users in turn can play the role of services
providers and vice versa, but in this initial basic version of
the demonstrator this eventuality has not been considered.
 The core of the system is represented by the Broker
Agent, a rule-based agent which is in charge of
implementing a middle layer able to match properties of the
learning objects with interests and demands of the users.
The Service Provider is responsible for providing the
description of each LO. In this first phase much effort has
been spent in conceptualize and design LOs. Since the
broad acceptance of SCORM [1] as a de facto standard for
content creation and distribution, each LO has been
annotated according to the SCORM Meta-data Information
Model. We decided to use six of the nine categories of meta
data elements; more specifically the following categories:
general, technical, educational, relation, classification and
finally rights. The latter is of particular importance in order
to guarantee the intellectual property and to regulate the
conditions of use for the resource.
 Each service provider is represented into the agent
community by its Provider Agent. We have implemented a
Provider Agent that represents its LO service. It is
connected through the Internet to a Web server that allows
querying the Database with the description of the LO.

 LO metadata are described and published to the Broker
Agent, by sending it a FIPA ACL message that request to
register an object with the Broker Agent. In the registration
message it is mandatory to declare values for the following
three attributes: identifier, title, description and keywords,
where the semantics of this last attribute is a list of
keywords that help classifying the LO. Optionally, other
attributes can be registered according to the chosen SCORM
categories. If no meta-data elements belonging to the
“rights” category are specified, this means that no copyright
or other restrictions apply to the use of this resource.
 The intermediary is a third party between users and
providers. In the demo, it provides a personalization service
to the user through the learning of its profile (User Profile
Agent) and the matchmaking between user preferences and
provider capabilities (Broker Agent). Overall, this
functionality is implemented through the collaboration
between two agents.
 The rule-based engine, that is the core of the project, has
the ultimate goal to help the user to retrieve the information
he is looking for. Therefore, at a first guess, there should be
no need for a relevance measure, in the sense of classical
keyword-based search engines, to filter out unwanted
results. However the user may provide generic preferences,
which will have as outcome a large amount of information
with no possibility of saying that some results satisfy better
the search criteria than others, so that we could sort the list
of answers. It is obvious that objective relevance measures
(that do not take into account the user’s context), like the
keyword frequency in keyword-based search engines, will
not be of much help in our case. In this case, an interactive
negotiation with the user will take place to refine the set of
answers before sending them back, or a subjective relevance
measure may be used to rank the results.
 The User Profile Agent, in charge to carry out this task,
gives to the intermediary very powerful tools that enable
monitoring of changes in users preferences and adaptation
of offers. It maintains a profile of each registered user and
by observing the behaviour of the user, the agent filters the
LOs according to the learning user preferences.
 The User Profile Agent has been designed to function
both in the "pull" and "push" mode. In the pull mode, it acts
as a mediator in the query processing cycle, using user and
context dependent information to filter and sort the results.
While in the push mode, as soon as the confidence on
ranking of documents is high enough, the same engine
proposes the new LOs to the user for which the predicted
ranking passes above a certain threshold.
 The user is able to switch off the adaptive behaviour, that
is he can render inoperative the activity of the UPA, and
return to a static model. If he goes for the adaptive
behaviour, the Broker Agent will receive two kinds of rules:
“temporary rules”, sent by the Personal Agent and the User
Profile Agent in order to look for interesting LOs, and
which will be discarded at the end of the search process;
“permanent rules”, sent by the User Profile Agent as a

 User
 Personal Agent

(Data +
 Inference Rules)

LOs Repository

Provider
Agent

Web Server

Service Provider
User

 User
Profile Agent

Broker
Agent

User Profile Repository

 User
 Personal Agent

Provider
Agent

consequence of the user registration. The last kind of rule is
concerned with the general interest of the user and then they
will be removed when the user decides to deregister
himself/herself. In the first version of the system two kinds
of users, with different rights, have been considered, that is
teachers and students.
 The JADE Agent Platform provides the middleware
necessary to manage the agents, distribute them on several
hosts, and implement the communication mechanism. JADE
enables full scalability of the multi-agent system and several
different configurations can be selected, as necessary.
 For the successive phases of the project, in order to
improve our system in terms of effectiveness, scalability
and better distribution of the workload, we envisage a
network of distributed broker agents, each dedicated to
specific interest areas, possibly having common
characteristics. One of the most challenging aspects of this
evolution is to ensure that the work carried out by different
brokers results in a coherent whole. To address this, we will
consider a different role for the user personal agent, which
will be in charge of collaborating with several broker agents
in order to find the needed teaching materials. We identified
goal delegation [18] from the personal agent to the broker
agents or from the UPA to the Broker Agent (if the adaptive
behaviour is chosen), as the key mechanism to reach a
complex goal such as the organization of a courseware. The
PA/UPA will decompose the global goal into subgoals and
will assign them to the broker agents. The goal for the
broker will be defined in terms of rules.

5 Conclusion
This paper described the integration of BeanShell, a
scripting engine for the Java language, and Drools, an
object-oriented rule-engine, with JADE, a FIPA-compliant
agent development framework. The resulting system joins
the soundness of JADE as a platform for distributed multi-
agent systems, with the expressive power of rules and the
ability to adapt to changing conditions granted by mobile
code.
 Of course, the development of real world applications
poses serious security requirements, which can be faced by
means of detailed security policies and delegation of
authorizations through signed certificates. Application areas
include, but certainly are not limited to, e-learning, e-
business, service-composition, network management.
 The development of advanced grid features, as
transparent and dynamic load balancing functions, will add
even greater value to the system, making it suitable to
realize smart and distributed computing environments..

References:
[1] ADL SCORM, Advanced Distributed Learning

Initiative, Sharable Courseware Object Reference

Model (version 1.2). Available at ADLNet
http://www.adelnet.org.

[2] Beanshell Home Page. 2004. Available from
http://www.beanshell.org.

[3] Drools Home Page. 2004. Available from
http://www.drools.org.

[4] Eberhart. OntoAgent: A Platform for the Declarative
Specification of Agents, In Proc. of ISWC 2002,
Cagliari, Italy, 2002.

[5] Foundation for Intelligent Physical Agents
Specifications. Available from http://www.fipa.org.

[6] Forgy, Charles L., “Rete: A Fast Algorithm for the
Many Pattern / Many Object Pattern Match Problem”,
Artificial Intelligence 19(1), pp. 17-37, 1982.

[7] E.J. Friedman-Hill. Jess, the Java Expert System Shell.
Sandia National Laboratories. 2000.
http://herzberg.ca.sandia.gov/jess.

[8] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code
mobility, IEEE Transaction on Software Engineering
24 (5):342–362, 1998.

[9] O. Gutknecht, J. Ferber, F. Michel. Integrating tools
and infrastructures for generic multi-agent systems. In
Proc. of the Fifth Int. Conf. on Autonomous Agents.
Montreal, Canada, 2001

[10] K.V. Hindriks, F.S. de Boer, W. van der Hoek, J.C.
Meyer. Control Structures of Rule-Based Agent
Languages. Proc. ATAL-98, Paris, France, 1998.

[11] W. Jansen, T. Karygiannis. Mobile agent security.
NIST Special Publication 800-19.

[12] JADE Home Page, 2004. Available from
http://jade.tilab.com.

[13] E.P. Katz. A Multiple Rule Engine-Based Agent
Control Architecture Technical Report HPL-2001-283.
HP Laboratories Palo Alto - Software Technology
Laboratory. 2002.

[14] A. Poggi, G. Rimassa, M. Tomaiuolo. Multi-user and
security support for multi-agent systems. In Proc.
WOA 2001: 13-18. Modena, Italy. 2001.

[15] A.S. Rao. AgentSpeak(L): BDI Agent Speak Out in a
Logical Computable Language. In W. van der Velde
ansd J.W. Perram (eds.), Agents Breaking Away,
pp.42-55, 1996.

[16] M. Schroeder, G. Wagner. Vivid agents: Theory,
architecture, and applications. Int. Journal for Applied
Artificial Intelligence, 14(7):645-676, 2000.

[17] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51-92. 1993.

[18] M. Somacher, M. Tomaiuolo P. Turci. Goal
Delegation in Multiagent System. AIIA 2002. Siena,
Italy. 2002.

[19] TechNET project. Home Page available at
http://www.alis-technet.org

