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Abstract: - Since fractal characteristics of network traffic were discovered by Leland in 1994, the literature is both well 
developed and skeptical about the value of traditional time series analysis on network data. In this paper, we investigate 
usability of traffic prediction based on fractal characteristics especially in the influence of assuming condition, model 
parameter with fractional predictors and burstiness behavior. Finally, some comments on prediction based fractal 
characteristics are given. 
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1 Introduction 
The ability to forecast bandwidth requirement in a next 
control time interval within a network is one of the 
fundamental requirements of network security and 
management, for example, to predict traffic bursts or 
information flows on networks before they arrive rather 
than having to adjust for them afterwards. Proverbially it 
has been used in various fields of network application, 
such as [1] [2] [3]. In recent years, there have been 
interested in research and development for traffic 
modeling to forecasting the upper bound of network 
traffic volume. Traffic prediction requires accurate traffic 
models which can capture the statistical characteristics of 
actual traffic. A number of high-quality, high-resolution 
measurements of Internet traffic have been carried out 
and analyzed. Last decade there has been a significant 
change in the understanding of network traffic. It has 
been demonstrated in numerous studies that traffic in 
high-speed networks exhibits presence of fractal features, 
viz. self-similarity (SS), long-range dependence (LRD), 
slowly decaying variances, heavy-tailed distributions and 
fractal dimensions [4], that can not be captured by 
previous models [5].  
The quality of a forecast depends on the amount of 
uncertainty that accompanies the prediction, and 
mathematically this is measured by the variance of the 
prediction error. This uncertainty depends on a number 
of factors, including the amount of traffic history that is 

used to make the prediction, the prediction horizon and 
the nature of the traffic itself [6]. Obviously, the 
prediction interval has significant impact on the 
performance of the predictor, for real-time applications, 
prediction must be made rapidly from the minimum 
amount of stored traffic. Also, the prediction interval 
must be designed to include the time required to process 
the control information and the round-trip delay 
experienced before the information becomes effective. 
At the same time, prediction must be as accurate as 
possible so that bandwidth and buffer resources are not 
wasted, and the overall quality provided by the traffic 
management functions is maintained. 
As the term implies, long-range dependence refers to a 
correlation structure that decays at a rate much slower 
than the exponential decrease that occur in the 
correlations of a short-range dependent process. The 
correlation structure of network traffic that accompanies 
long-range dependence means that the traffic exhibits 
sustained burstiness. From a mathematical point of view, 
for a stationary LRD process }1:{ ≥= tXX t with 

meanµ , variance 2σ and autocorrelation function )(kr , 
which have 22~)( −Hkkr , as ∞→k , means that the 
correlations are non-summable. In contrast, a short-range 
dependent process would have a correlation function that 
decreased according to k

SRD akr ~)( , as ∞→k , the 
Hurst parameter H is the index of self-similarity, where 
the invariance in the distribution of the process is defined 



as t
H

d

at XaX = and when the parameter H lies in the 
interval (0.5, 1.0) the resulting self-similarity process 
exhibits LRD[9]. There have been great expectations how 
forecast could utilize those properties, and the theoretical 
basis for predictors of long-range dependent traffic can 
be found in [2] [7] [8]. However the problem with LRD 
models is that they are required too many parameters, so 
that computationally complex. Their fitting procedure 
consumed a great deal of time while their parameters can 
not be estimated based on the real-time measurements. In 
this paper, we would investigate case of traffic forecast 
based on various fractal models. The significant 
conclusion is that the predictors based on fractal models 
fail to perform significantly forecast over the sampling of 
higher frequencies. 
The paper is organized as follows. In section 2 diffusely 
employ LRD stochastic models applicable to traffic 
modeling and forecast is reviewed. Section 3 discusses 
issues of the feasibility analysis about the influence on 
assuming condition, model parameter with fractional 
predictors and burstiness behavior to traffic forecast. 
Finally, some conclusions are drawn in section 4. 
 
 
2 Related Work about Predictor Based on 
Fractional Model 
In this section we would summarize a few predictors 
based on long-range dependence models which are 
diffusely employed in theory and practice. 

2.1 Fractional Gaussian Noise Prediction 

Assuming network traffic is fractional Brownian traffic, 
unfortunately, that a fBm process defined does not have 
stationary increments, although fractional Brownian 
motion is useful for theoretical analysis, but it’s not 
utilized with facility in practice. A later refinement of 
this model is the fractional Brownian motion process 
introduced by Mandelbrot and Van Ness [11], this 
process has stationary increments ( )HZ t  called 
Fractional Gaussian Noise, and again H is the Hurst 
parameter. 

+( ) ( 1) ( ), ZH H HX t Z t Z t n= + − ∈  
Norros [8] derived equations for short term prediction of 
fractional Gaussian noise traffic. In their work predictor 
is an integral over the observed part of the process in the 
form 

0
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∧

is the predicted value on the basis of 
observing ( , )X t T s− for [ , ]s t T t∈ − and ( , )gT h t is an 
appropriate weight function and is given by 
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Where ( , )B ⋅ ⋅ is the incomplete beta function. The 
function ( , )gT h ⋅ is a solution of the integral equation 
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and has the scaling property 
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As an application, literature [7] obtain an expression for 
the variance of the predictor [ | , ( ,0)]h sE X X s T∈ − : 
Corollary 1 For 0, (0, ]h T> ∈ ∞ we have 
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For T →∞ , the result can be stated in terms of the 
gamma function: 
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2.2 Fractional ARIMA Model Prediction 

Recent investigations on the long-range dependence of 
computer network traffic have showed the complicated 
correlation structures of this traffic. To better model the 
LRD process, FARIMA was proposed for modeling and 
predicting the LRD process since it can better describe 
the slow decrease of its autocorrelation function [12][13]. 
The FARIMA (p, d, q) process proposed by Hosking in 
1980 is an extension to ARIMA (p, d, q), is defined as[14] 



( ) ( )d
t tB X Bθ εΦ ∇ =           (1) 

Where d is the indicator for the strength of LRD and 
assumes the value between 0 and 1/2. tε is a Gaussian 
white noise, and 
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are polynomials of degree p and q, respectively, in the 
backward shift operator B. The operator (1 )d dB∇ = −  
can be expressed by the binomial expansion 
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Where ( )xΓ denotes the gamma function; note for all 
positive integers, only the first d+1 terms are non-aero in 
Eq. (2). 
To a FARIMA (p ,d, q) process{ }: 0,1, 2,tX t = K , 
assumptions of causality and invertibility allow to 
write[15]    
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Let ( )tX h
∧

 denote the h-step forecast made at origin t 
of t hX + at some future time t h+ . Then using theorem 
5.5.1 of [15] on the Eq. (1), we obtain its h-step forecast: 
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2.3 Generalized Autoregressive Moving Average 
Model Prediction 
The GARMA model of a process{ }tX is defined as  

2( )(1 2 ) ( ) ( ) ,d
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Where{ } 2~ (0, )t iid εε σ , B is the lag operator,µ is the 
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, for 1h ≥ , is given by the 
following expression: 
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3 A Feasibility Analysis of Fractional 
Predictors 
In above section, we reviewed mainly traffic predictors 
based on fractal characteristics. Those predictors are all 
linear predictor based on LRD process and Gaussian 
with stationary increments. In the rest segment of this 
paper, we will discuss the influence of assuming 
condition, model parameter with fractional predictors 
and burstiness behavior on fractional predictors. 

3.1 Assuming Condition 

Assuming that network traffic is Gaussian is more 
problematic, Norrors [8] indicated when a model is build 
on second-order properties alone, a Gaussian process is 
the simplest choice. However the predictor based linear 
expression presence unpredictable part, where stationary 
is assumed, The concept of describing the overall 
network behavior as a series of subsection stationary 
intervals seems equally applicable to our traffic data, a 
few authors have identified various examples of 
non-stationary [16][17]. Indeed, LRD estimators can be 
fooled by non-stationary behavior such as level shifts, 
linear and polynomial trends [21]. These forecast models 
seems to fly in the face of certain obvious and 
characteristic features of real trace, such as the fact that it 
arrives in discrete bundles and that there is often a 
non-zero probability of zero traffic in a time interval of 
significant length. For above reason, the authors in [12] 
suggest dividing up the time-series into non-intersectant 
segments and separately calculating the value of the 
Hurst exponent for each segment. We applied the same 
procedure to our OC1 traces by partitioning one of the 
100 minute traces to form 20 disjoint time-series. The 
results of our analysis are shown in Fig. 1, which shows 
that the Hurst exponent value varies significantly over 
time, oscillating between 0.5-0.85. Similar observations 
hold for the case of more larger scales. This indicates 



that our current Internet traces are non-stationary, at least 
for time scales on the order of approximately one hour. 
Though among the overwhelming number of studies 
documenting long-range dependence in Internet traffic, a 
phenomenon has been observed but not been cited, if 
there is long-range dependence, the values of the 
correlations between windows do not go to zero over 
long periods of time. For the power spectrum views, if a 
process has long-range dependence, the power spectrum 
will go to infinity as the frequency goes to zero. 
Another implication is that a low order autoregressive 
(AR) model will not remove the low frequency bulge in 
the spectrum. Literature [22] use a standard spectral 
analysis method to compute the sample spectrum and use 
the AR fit on the entire distribution. 
Figure 2 is the spectrum of the mean for each window of 
log transformed originator bytes for all transactions. The 
horizontal axe of both spectra is the frequency in Hertz. 
Figure 3 is the spectrum of residuals of the AR(5) fit. If 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Hurst exponent variety with time 

 

Fig.2. Spectrum of log of mean originator bytes, REJ = 
No, standard error = 0.21 

there were long-range dependence, the spectra would 

have a much larger peak at the lowest frequency band. In 
the case, there is no evidence for long-range dependence. 

 
Fig.3. Spectrum of residuals of an AR(5) to log of mean 

originator bytes, REJ = No, standard error = 0.21 

3.2 Model Parameter Estimate 

Real-time traffic prediction must take place on the small 
time scales implied by the high bandwidth of modern 
telecommunication network. The ever increasing volume 
of data that can be collected over a given time interval 
brings huge storage and processing problems. The above 
mentions of predictor parameter show in table 1. The 
strength of long-range dependence measured by d is the 
same as that by H upon 1/ 2d H= − . Then we can 
estimate parameter d from this relationship. In this paper 
we merely discuss their common Hurst parameter 
without weight coefficient, gamma function take into 
account the paper’s space limit. 

 

 

 

 

 

 
Fig. 4. A real trace of a minute 

There are several ways to calculate H . Those include 
methods like the variance-time analysis, R-S analysis, 
periodogram-based analysis, Whittles’s estimator and so 
on. Up to now, no single method is accepted as definitive 
the Hurst parameter H [18]. Especially, the later two 
methods are known to have some limitations [19], 
though they drive extensive adoption. We studied the 
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Table 1, Fractional Predictor Model Parameters 
Model Model Parameters 
FGN H ,µ , 2σ  

FARIMA p , d , q  
GARMA d , v  

small-time scaling behaviors of Internet traffic. 
Literature [20] observed the Hurst parameters at small 
time scales (1ms - 100ms) are fairly close to 0.5, hence 
for these traces the traffic fluctuations at these time 
scales are nearly uncorrelated. In consideration of the 
time expense of the other factor, so our choice minute is 
divided in to compute the segment. In the last few years, 
the Internet traffic keeps on to increase 80% annually. 
Because the application sends a large number of small 
packets with high frequency, produces high variance at 
certain time scale, Hurst parameter estimates for the 
packet-counts is easy to be hoaxed, so we adopt 
the H estimates for the byte counts. Figure 4 shows a 
real trace, comparison with various ways to 
calculate H in table 2. Using packet traces collected from 
OC1 links on an ISP pertained to China Unicom at 
05/19/2003. Dismayingly, methods for the estimation of 
the parameter from data have obviously diversity and 
have suffered from poor statistical performance, or high 
computational complexity inappropriate for large data 
sets or real-time use. There exist several estimating 
methodologies in table 2, but they can give misleading 
and conflicting estimates ( 1H > indicated 
non-stationary). Hereinbefore, experimentation have 
indicated H fluctuated with time variety, that must be 
computed by interval, the problem of parameter estimate 
will be the obstacle of bigness that predictors are 
applications. 

3.3 Burstiness Behavior 

Most real-world traffic is self-similar and bursty (e.g. 
Ethernet, web, video and disk traffic). A comprehensive 
overview of the area can be found in [4]. Modeling of 
bursty time sequences has recently received considerable 
attention in a flood of literatures. Traditional Poisson 
models and Markov models have fundamental problem: 
they greatly underestimate burstiness. Since bursts over 
many or all time scales, while a Poisson or Markov 
process, which display burstiness over much shorter time 
scales. As a result, traditional models tend to yield overly 
optimistic performance prediction. Last five years, 
research works have therefore focused on LRD models 
capable of capturing the burstiness property of traffic 
processes. Whereas Internet is always changing, you do 
not have a lot of time to understand it. Statistics 

 
Figure. 5. A real trace with burstiness 

according to the LBNL, the traffic increase with 80% of 
every year, sustained for at least ten years. By almost any 
measure, data generation capabilities exceed and are 
growing faster than data analysis capabilities. 
Gigabyte-sized data sets are common, terabyte-sized data 
sets exist, and petabyte-sized data sets are on the way. 
For great variation in Internet traffic, we are desperate 
for parsimonious models (few parameters) handles figure 
5 shown complicated circumstances is viable, isn’t? So 
far, there is no evidence for burstiness traffic prediction. 
 
 

4 Conclusion 
In this paper we have explored the issue of exploiting 
network traffic fractional predictors. What differs here 
from standard network analysis is the focus on traffic 
forecast based on fractal characteristics. Combined 
assuming condition, model parameter estimate and traffic 
burstiness behavior to forecast model influence 
proceeding thorough study. The main results can be 
summarized as follows. Our experiment results support 
that the tradeoff between a large maximum prediction 
interval and a small prediction error reveals inconsonant. 
The evidence of experiment about assuming condition 
may mean that prediction of network traffic based 
fractional properties can not be accomplished with 
current techniques. In fact, Internet is always in the last 
decade at the variety that keep on, we do not have a lot of 
time to understand it. For instance, a single peer-to-peer 
file sharing application that suddenly became popular 
between 2002 and 2003 had a strong influence on the 
Hurst parameter for packet counts in the aggregate traffic 
and caused the differences in H between the two years. 
Some consistently reported Internet traffic invariants 
(fractal characteristics) that we are applying to forecast in 
the analysis of network and Internet traffic will need to be 



Table 2, Comparison with various ways to calculate H 
Methods Aggregate 

Variance 
R/S Periodogra

m 
Absolute 
Moments

Variance of 
Residuals 

Abry-Veitch 
Estimator 

Whittle 
Estimator 

H 0.157 0.360 1.690 1.979 1.086 1.277 0.717 
developed and be considered afresh. Many of the last 
decade’s questions “What are the basic characteristics 
and properties of Internet traffic?” have returned. 
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