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Abstract: - The aim,  of this paper, is to make a first step towards formalizing a Multi-Agent Predictive Model-Based Diagnostic (MA-PMBD) System. In addition to standard diagnostic ability, the system should allow for prediction of faults and failures. To achieve this aim, we need to formulate knowledge which specifies how a (possibly faulty) system may evolve. We also need to monitor/detect constraints that should not be violated and/or the presence of unwanted constituents that may explain the change in the normal conditions of operations. This requires an integration of description physical system, to be diagnosed, with a theory of time, event and change. We shall extend the definition of Model-Based Diagnosis (MBD), in a multi-agent framework, where a diagnosis is a set of faulty components to one, (MA-PMBD), where a diagnosis could be a combination of (1) faulty components, (2) undesired conditions; and/or (3) the occurrence of some events. 
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1 Introduction
Large enterprises are under increasing pressure to guarantee more production reliability at reduced expenses while avoiding, if possible, unexpected failures. However, large problems require expertise that goes beyond the capabilities of a single agent. This requires a coordinated decision making effort between, a number of communicating, agents where each possesses specialized knowledge. It also  requires the Maintenance Management System (MMS) (of the enterprise processes, apparatus and resources) to be reactive by focusing on the  conditions of these objects of interest., as well as, the maintenance processes. This can be accomplished if there is a Multi-Agent Predictive Model-Based Diagnostic (MA-PMBD) system that can warn of possible faults and/or failures occur.

The aim, in this paper, is to make a first step towards formalizing a MA-PMBD. In addition to standard diagnostic ability, the system should allow for prediction of faults and failures. Indeed, there is a shift, in the diagnostic requirement, from explaining abnormal observations (suggesting that a component is faulty) to explaining undesirable observations which may indicate that a potential failure/fault is imminent. To achieve this aim, we need to formulate knowledge which specifies how a (possibly faulty) system may evolve. We also need to monitor/detect constraints that should not be violated and the presence of unwanted constituents that may explain the change in the normal conditions of operations. This requires an integration of the description of the physical system, to be diagnosed, with a theory of time, event and change. We shall extend the definition of Multi-Agent Model Based Diagnosis (MA-MBD) [11], where a diagnosis is a set of faulty components to one, (MA-PMBD), where a diagnosis could be a combination of 3 sets of: (1) faulty components, (2) undesired conditions; and (3) the successful occurrence of some events. Each of these sets could be empty. If both (2) and (3) are empty, then we will have a standard MBD diagnosis as a set of abnormal components.   
Section 2 will be concerned with the issues and the requirements of a Predictive MBD System. The concern in section 3 is with a multi-agent diagnostic system that can predict faults and failures. In section 4, we present a general framework for an MA-PMBD system. Section 4 is concerned with the formal machinery where we present Temporal Nonmonotonic Logic Extended with Events (ETFONL). The emphasis in section 5 is on modeling diagnostic knowledge. Section 6 is concerned with agents Communication and Dialogue. Cooperative diagnosis is presented in section 7. 
2 Issues and Requirements of a PMBD System  

MBD [7, 14] represents deep knowledge, of the system to be diagnosed, based on understanding. It overcomes the main difficulties faced by the rule-based approach. However, MBD assumes that the entities relevant to diagnosis are components which can be associated with different behavior modes and the system to be diagnosed consists of a given set of such components that interact in a way determined by a fixed structure (cf. [16]). Thus, it cannot handle predictive diagnosis where there is no faulty componene.  Even if there is a faulty component, locating it is not sufficient to give an explanation as to why and how the fault has originated. Such a diagnosis may not be very useful for repair purposes or for restoring the system to its normal working conditions. In other words, knowledge where the fault has originated is necessary if the aim is keep the system in normal working conditions. In cases where there is a fault, but there is not faulty component, MBD might fail to give a diagnosis. For instance, an increased carbon emission from the exhaust of an engine may not necessarily be imputed to a broken/malfunctioning component. If the problem is due to, say, bad fuel, In this case, the appropriate diagnosis does not necessarily have to be a (set of) faulty component(s) in a (some) particular fault mode(s). 

More formally, single agent consistency-based diagnosis is initiated when a set of observations, OBS, is inconsistent with a system description, SD, and an assignment of correct behavior modes to all components (the set COMPS):

SD ( OBS ( {OK(Ci): Ci  ( COMPS} is inconsistent.
The diagnosis procedure is then a search for revised mode assignments to the components in order to get rid of inconsistency:

SD ( OBS ( CONTEXT ( (  is consistent where  ( = {modei(Ci): Ci  ( COMPS}.
A PMBD system has to be able to decide, given current process conditions, whether, or not, the process is functioning normally according to some criteria of normality. In case of abnormality, the system should determine whether the cause could lead to a known malfunction. This requires the ability to reason about cause and effect relationships in a process in a multi-agent setting. Thus, there is a need to shift from explaining abnormal observations (suggesting that a component is broken) to explaining undesirable observations which may indicate that a potential failure/fault is imminent. To achieve this aim, we need to formulate knowledge which specifies how a (possibly faulty) system may evolve. We also need to monitor/detect constraints that should not be violated and the presence of unwanted constituents that may explain the change in the normal conditions of operations. 

3 A Predictive Multi-Agent Diagnostic System 

The idea of multi-agent diagnosis is to decompose a system into a set of subsystems where each has some clear form of interactions with other subsystems that must be known to the appropriate agents. Each subsystem is diagnosed by an appropriate diagnostic agent that has detailed knowledge of it and an abstract view of the subsystems with which it interacts.
Ideally, the agents cooperate among each others in order to achieve some individual objectives, to handle the dependencies that result from what they are involved with or to reach a consensus regarding a diagnostic goal.

A (MA-PMBD) system consists of a collection of agent/components that interact with each other within a context and a dialog framework. 

The dialog framework specifies for every agent/component its ontology, communication language and communication protocol. It involves the following elements:

(1) Specialized agents.
(2) Formal inference machinery.
(3) Theories: sets of formulae, in the agent language, 
      that are considered true.

(4) Bridging rules: rules of inference that  can be  

      employed by an agent to  make  use of   formulae  
      coming from other agents. 
Agents may have different designated roles depending on the part of the system they are responsible for, the type of modeling they can handle, their reasoning capabilities and their knowledge speciality. 

Agents may employ different ontologies and languages. In such cases, They need to employ translation rules from TR and bridging rules from B-Rules as appropriate. They may also employ different logic systems depending on their specialization/expertise and the purpose of their reasoning. Classical two-valued logic is the basis of most logic systems. Thus, every agent is expected to have the inferential capability using the axioms and inference rules of classical logic.

The distribution of a system’s knowledge among a set of cooperating agents could follow various criteria such as physical proximity, functionality and/or knowledge-based. When a diagnostic agent receives an alarming message/signal  of a possible fault, it investigates if there is one in its subsystem, its cause and whether its effect is local or could spread into other subsystems. In any case, a message is sent to the appropriate diagnostic agents. The other agents could do the same with regard to passing on the appropriate message(s) and thus the process continues until the fault is located and its causes are known.

In addition to the usual components of an agent theory, the model should include objects of communications and dialogue such as the available alternatives to an agent and the criteria for evaluating these alternatives. To capture the dynamics of a decision, there is a need for notions of time, state and change. In this paper we assume that all agents use the same language and every agent’s knowledge is partial and uncertain. Furthermore, each agent has the ability to reason about time, event and change. 

4 Temporal Nonmonotonic Logic Extended with Events (ETFONL)

There are usually some temporal constraints on when a diagnosis is needed. Prediction must be performed, as soon as there is a deviation from expected behavior in order to maintain the normal/temporal evolution of the system, avoiding some unacceptable degradation of its behavior.  On the other hand, the real causes that explain whether and how the malfunction may occur are essential in MA-PMBD since the aim would be to avoid a failure or to restore it to its normal functioning state. Thus, there is a need for representing and reasoning with events, time and change.  

In this paper, we employ a Temporal First Order Nonmonotonic Logic extended with events to which we shall refer as ETFONL. The system is based on the quantified version of the non-temporal system T3, which is a three-valued based nonmonotonic logic system (cf. [9]).  The language, LT3, of T3 is that of Kleene’s three-valued logic extended with the modal operators “M” (Epistemic Possibility) and “P” (Plausibility). Informally, MA states that A is not established as false. In T3, "L" is the  dual of "M" and "N" be the dual of  "P", i.e., LA ( ~M~A and NA ( ~P~A. Using M, we may define the operators U (undefined) as UA (  MA&M~A, D (defined) as DA (  ~UA and ( (classical negation) as (A ( DA & ~A. the material implication of classical logic can be defined as follows: (A ( B = M(~A & B) V ~A V B . 
We extend the language LT3 to allow for the expression of quantified temporal expressions and relations, and for the occurrence of events. We need four sorts P (for points), I (for intervals), E for events and L3 (for the three-valued base logic literals). 

Definition 4.1. The vocabulary of LETFONL consists of the following symbols:  
(, V, &, (, (, (, <, Meets, Within,  (, ),  and the following mutually disjoint countable sets of symbols:

CONSTPI, CONSTE  (constants of the sorts P(I and E where P stands for points, I for intervals and E for events),
VARPI, VARE , VAR3 (variable of sorts P(I, E and the three-valued base logic),
FUNCPI , FUNCE (function symbols of arity n >0 of sorts P(I and E),
PRED (first order relation symbols of arity n(0)
HOPRED (higher-order relation symbols of arity n(1),
If S ( {D, I, P} then TERMS  is the minimal set such that:

(1) CONSTS ( VS ( TERMS
(2) if f is an n-ary function symbol in FUNCP  and u1, …, un are TERMS then f(u1,…, un) ( TERMS. 

Let TERMPI = TERMP ( TERMI 

TERME is the minimal set such that
(1) CONSTE ( VARE ( TERME
(2) if f is an n-ary function symbol in FUNCE and u1, …, un are TERMD then f(u1,…, un) ( TERME. 

Let ( = { r(u1, …, un): r ( PRED and u1, …, un (  TERMD} be the set of  atom in the base logic and let ( = ( ( {(l: l ( (}. Then TERM3 = (  ( VAR3 

Definition 4.2. The language, LETFONL, is a minimal set that satisfies:

If t, t’ ( TERMP then t = t’ ( LETFONL and t < t’( LETFONL

If i, i’ ( TERMI then i = i’ ( LETFONL and Meets(i, i’) ( LETFONL

If  u1, …, un  ( TERMD, r ( PRED and t ( TERMPI then A[t] ( LETFONL 
If  l ( VAR3 and t ( TERMPI then l[t] ( LETFONL 
If e1, e2, …, en ( TERME, l1, ・m ( TERM3, hr ( HOPRED  and t ( TERMPI then hr(e1, e2, …, en , l1,…, lm)[t] ( LETFONL  
If S is a sort and u, u’ ( S the u = u’ ( LETFONL    
If A, B ( LETFONL, then A&B, AVB, (A, A ( B ( LETFONL

If S is of sort D, P, I or E, x ( VS and A ( LETFONL then (x A and (x A ( LETFONL
One of the advantages of T3 is that defaults [13] can be represented as sentences ETFONL. 
5 Modelling Diagnostic Knowledge

It is widely accepted that providing a model (e.g., structure and behavior) of a dynamic physical system is not a straightforward problem. The success/failure of a diagnostic system depends to a large extent on the quality of the model it employs. 

ETFONL explicitly employs a temporal representation. The language, LETFONL,    provides means to represent temporal constraints and allows for a distinction between events and fluents. Fluents (resp. events) represent static (resp. dynamic) aspects of the world. A domain description D is a set of sentences (i.e., Well-Formed Formulae (WFF) of LETFONL) that, as mentioned above, describe the structure of the system, the normal/abnormal behavior of components and the domain, conditions/fluents that change with time, constraints/goals that must be observed, events and their effects, and domain constraints. These sentences may take one of the following forms:

A(X)[t]



 
(1) 

A1(X1)(t1), …. Am(Xm)(tm) &                   (2) 

                        C(t1, …. tm, t’1 , …. t’n) 


(IMPLIES 

                 B1(Y1) (t’1), …. Bn(Yn)(t’n) 

where IMPLIES ( {(, (} as needed. 

( is the defeasible implication. A ( B is a representation of a default rule A:B/B in ETFONL. 
Sentences of form (1) represent constraints or conditions that hold at a time unit (point or interval) as required. Sentences of form (2) represent relations between fluents in a particular information state where fluents are those sentences whose truth value change with time. An information state is an interpretation (simply the set of sentences that are true at a particular time unit). An information state of D is an interpretation of D that is closed under the set of static formulae of form (2). 

Events are represented as changes in states. Using ETFONL, a state can be taken as the set of facts (together with rules default that form a default theory) which are true at/during a particular time unit (point or interval). Changes in the state are then represented by changes in the truth-values of fluents. The effect of an event may be represented by an axiom of change:

PRECOND(e)[t1] & OCC(e)[t2]                           (3)

   & C(t1, t2 , t3) 



IMPLIES   POSTCOND(e)[t3]
 
Where t1, t2,t3  are time units (e.g. point or interval), IMPLIES ( {(, (} as needed and  C(t1, t2 , t3) reflects the constraints on t1, t2 and t3.

6 Agents Communication and Dialogue
Agents communication and exchange of information could be realized through messages. A message consists of a message type, a sender, a receiver and a wff of the language LETFONL. The message type is used to convey the purpose of the message that is being sent. For instance, a message of type INFORM specifies to the receiving agent that the content of the message is some information; whereas a message of type QUERY specifies that some information is required from the receiving agent. The receiver should process the query, prepares the response and then invokes the appropriate protocol.

There are many types of messages that agents could employ. Among these are: INFORM, QUERY, PROPOSE, ACCEPT and REJECT. Each of these message types has its specific protocol, which the communication component of an agent has to follow in order to ensure successful communication with other agents. That is, when an agent initiate the communication using a protocol, the other agent must use the same protocol. For more detailed discussion cf. [4]. 
Dialogue is an exchange of messages between two (or more) participants. That is, an exchange of questions and responses between two agents. Every dialogue has a goal and requires cooperation between the participants to fulfill its goal. This means that each participant has a commitment to work towards fulfilling its own goal and a commitment to cooperate with the other participant’s attempt to realize their own goals [18]. The types of dialogue relevant in our model are: inquiry,  persuasion and negotiation [10, 12].
7 Cooperative Diagnosis

Whichever distribution of knowledge is employed, some constraints and axioms are needed in order to  regulate the Subsystem-subsystem hierarchies and relations, component-subsystem relations, abstraction criteria and consistency, intra-subsystems and inter-subsystems behavioral modes.
Let Sub1, … Subm be a physical proximity distribution of a system S and let SD1, … SDm be their description respectively as in Section 5. 

We assume that Subj, where 1 ( j ( m, is composed of a distinguished set of components COMPj = {cj1, ..., cjn } is a list of components (and interconnections between them). Each component cjk is associated with two distinguished fluents ab(cjk) and faulty(cjk). COMPj is associated with a set BEHAV = {Bj1, ..., Bjn} specifying how each component is expected to behave, extended with formulae of the form 

faulty(cjk)[t] ( ab(cjk)[t]

for each component cjk in COMPj. 
We also  assume the existence of two time points t0j and tj which identify, for each Subj, two information states s0j and sj representing the initial information state and the current information state. Diagnosis will take place at t. While sj at tj denotes the current information state associated with Subj (the truth fluents at tj), we employ the term: 
Historyi(s0j, sj) to denote a history of successful events for Subj, from the information state s0j at t0 j to sj at t j. 
F(s0j, sj) = {f: f is a fluent,  f holds at sj and f does not hold at s0j} and (j  = {c | ab(c) holds in sj and ab(c) does not hold at s0j}

Definition 7.1  A agent gj, where 1 ( j ( n, responsible for subj is said to need to cooperate with other agents  iff

SDj(CONTEXT(History(s0j,sj)(F(s0,sj) |=
(Mode(Subj, AB) and  

SDj(CONTEXT({Mode(Subj,AB)}(
History(s0j, sj)(F(s0, sj) |( F   where F stand for falsity. 

Suppose that agent gj receives a message from an agent gk reporting an observation OBSl such that SDj(CONTEXT({Mode(Subj,ABj)}(History(s0, s)(F(s0j, sj)(OBSl(Normal0 |= F, 

then there are a number of possibilities: 

(1) Subj is faulty and gj has to investigate what may have caused the fault.

(2) some event has occurred with some undesirable effect.

(3) some fluent in F(s0, s) is not desired.  

(4) There is a need for cooperation with other agents 

If we initially had some abnormal component Xj, associated with Subj, we can express that as
Normal0j ={ab(c)[t0j] | c ( Xj } ({(ab(c)[t0j] | c (COMP- Xj}.
Definition 7.2. (Diagnostic Problem)  We say a system Sysj = (SDj, OBSl) is a Diagnostic Problem (DPj) at time tj where Before(t0j, tj) if there is no (consistent) information state that is a model of  <SDj, OBSl (Normal0j> at tj.

Definition 7.3. We say that sj is a diagnostic model of Sysj at tj iff sj is an information state that is a model of 

<SDj,(j(History(s0j,sj)(F(s0j, sj) (OBSl (Normal0j>  

A diagnosis is then (j(History(s0j, sj)(F(s0j, sj). 

Each of the sets (j, History(s0j, sj) and F(s0j, sj) could be empty. If both History(s0j, sj) and F(s0j, sj) are empty, then we will have a standard MA-MBD diagnosis as a set of abnormal components.
8 Related Work

The work in [8], where it is argued that a comprehensive account of diagnostic problem solving must involve reasoning about action and change and provides such an account, is of some relevance. However, there is no explicit representation of temporal knowledge as it is presented in a dialect of the situation calculus. The approach in [17] is quite similar to ours, in a single agent framework, in that it views the diagnosis task as the determination of an event-history of a system between successive observations. The representation of the domain uses state transition diagrams which is sufficiently expressive for the power distribution domain they have examined. The work in [5], which investigates the problem of integrating actions and qualitative process theory, captures computationally some aspects of  the intuition found in this paper.
Other important work on the diagnosis of dynamical systems include works on on-line mode identification for the NASA remote agent system [19]; on the diagnosis of large active concurrent systems [1].
Along a different line, a multiple agent diagnostic approach that utilizes fuzzy reasoning has been developed, in [6], to diagnose faults in manufacturing systems. In using fuzzy reasoning, the approach can allow the diagnostic process to utilize prior experience. 
On the multi-agent side, Sidner in [15] presents a model of collaborative negotiation based on the idea of setting up mutual beliefs, e.g., beliefs that agents hold in common. The work in [2, 3] is along the same line as Sidner’s. 

9 Concluding Remarks

We have made, in this paper, a first step towards formalizing MA-PMBD. The logic, which we have employed to represent and reason with diagnostic knowledge, is a Temporal First Order Nonmonotonic Logic extended with events to which we referred as ETFONL. 
The main contributions of this paper are (1) the definition of a multi-agent diagnosis in terms of a diagnostic model: a particular model of the failing components, which the agent is responsible for,   together with unwanted conditions and the successful occurrences of the events that contribute to the fault(s), and (2) the extension, in a multi-agent setting, of the definition of MBD, where a diagnosis is a set of faulty components to one, (MA-PMBD), where a diagnosis could be a combination of 3 sets of: (1) faulty components, (2) undesired conditions; and (3) the successful occurrence of some events.
In addition to elaborating many of the concepts presented in the paper and showing that the formalism takes into consideration the frame, qualification and quantification problems, work is planned towards an implementation.
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