
Computing the Hamming Distance of a Regular
Language in Quadratic Time∗

L. KARI1, S. KONSTANTINIDIS2,+, S. PERRON3, G. WOZNIAK1, J. XU2

1Department of Computer Science
University of Western Ontario
London, Ontario, N6A 5B7

CANADA

2Department of Mathematics and Computing Science
Saint Mary’s University

Halifax, Nova Scotia, B3H 3C3
CANADA

3Department of Computer Science
University of Toronto

10 King’s College Road, Toronto, Ontario, M5S 3G4
CANADA

∗Work supported by the Natural Sciences and Engineering Research Council of Canada
+Corresponding author

Abstract: - Given an arbitrary (nondeterministic) finite state automaton A we consider the problem
of computing the Hamming distance of the language L(A) that is accepted by the automaton. This
quantity is simply the minimum Hamming distance between any pair of distinct words from the
language L(A). We show an algorithm that solves the problem in time quadratic with respect to
the size of the given automaton. To our knowledge, this problem has not been addressed before.

Key-Words: - automata, Hamming distance, regular language, shortest-path algorithm.

1. Introduction

The problem of measuring the difference be-
tween words (strings) and languages (sets of
words) is important in various applications of
information processing such as error control in
data communications, bio-informatics, and spe-
lling correction. Well-known measures of the
difference between two words are the edit (or
Levenshtein) distance and the Hamming dis-
tance – this is used in the theory of error cor-
recting codes [6], [1]. Typical problems pertain-

ing to differences between strings and languages
are (i) computing the distance (also known as
self-distance) of a given language, (ii) comput-
ing the edit-distance between two words, and
(iii) correct a given word to a word of a given
language using a minimum cost string of edit
operations.

The first problem can be used to find the
maximum number of errors that a given code
can detect. To our knowledge, it has not been
addressed for the case of regular languages. The
second problem can be solved using a dynamic

1

programming algorithm – see [8]. The third
problem is solved in [9] for regular languages
and unrestricted edit operations, and more gen-
erally and efficiently in [3].

In this work, we address the first problem for
the well-known case of Hamming distance. In
the next section we provide the basic notation
about automata. In Section 3, we introduce the
sigma automaton of a given automaton that,
loosely speaking, represents all pairs of strings
that are different and belong to the language
accepted by the given automaton. The size of
the sigma automaton is quadratic with respect
to the size of the given automaton. Section 4
shows a quadratic time algorithm for computing
the Hamming distance of a given regular lan-
guage. The algorithm operates in linear time
on the sigma automaton corresponding to the
given automaton. Finally, Section 5 contains a
few concluding remarks.

2. Basic Notions and Notation
An alphabet is a finite nonempty set of sym-

bols. In the sequel we shall use a fixed alphabet
Σ. A word or string (over Σ) is a finite se-
quence a1 · · · an such that each ai is in Σ. The
set of all words over Σ is denoted by Σ∗. A lan-
guage is any set of words, that is, any subset
of Σ∗. The Hamming distance H(u, v) between
two words u and v of the same length is the
number of corresponding positions in which the
words u and v differ. If the words u and v are of
different lengths then we agree that H(u, v) =
∞. For example, H(aabbcc, abbbac) = 2 and
H(ab, aba) = ∞. The Hamming distance H(L)
of a language L is the smallest quantity H(u, v)
over all pairs (u, v) of words in L with u 6= v.

A (nondeterministic finite) automaton, an
NFA for short, is a quintuple A = (Σ, Q, s, F, T)
such that Q is a finite nonempty set, the set of
states, s is the start state, F is the set of fi-
nal states, and T is the set of transitions. Each
transition in T is of the form q1xq2, where q1
and q2 are states and x is an alphabet sym-
bol in Σ – we assume that the sets Q and Σ
are disjoint. A computation of A is an expres-
sion of the form q0x1q1 · · ·xnqn such that each
qi−1xiqi is a transition in T . We say that such a

computation is accepting if q0 is the start state
and qn is a final state. In this case, x1 · · ·xn is
called the accepted word. We use the notation
L(A) for the language accepted by A, that is,
the set of all accepted words of A. The size |A|
of the automaton A is the quantity |Q|+|T |. An
NFA is said to be trim if every state is reach-
able from the start state and can reach a final
state. Note that in every trim NFA we have
that |Q| ≤ |T |+ 1 and, therefore, the size of A
is O(|T |). For further information on automata
and languages we refer the reader to [7] – see
also [4] for information on the size of automata
in constructions involving these objects.

3. The sigma NFA
In this section we introduce the NFA Aσ of

a given NFA A. Recall – see for instance [10] –
that for any two NFAs A1 and A2 one can use
the standard product construction to define the
trim NFA A1∩A2 of size O(|A1||A2|) accepting
the language L(A1) ∩ L(A2). The construction
of the NFA Aσ can be viewed as a generaliza-
tion of the standard product construction. We
note that an interesting product construction
between two copies of the same automaton is
defined in [2] for the purpose of deciding the
property of unique decodability for regular lan-
guages. Although the topic of [2] is not relevant
to the present work, we wish to acknowledge
that our product construction was inspired in
part by the product construction in [2].

Let E be the set consisting of all expressions
x/y, where x and y are in Σ, that is, alphabet
symbols. We consider E to be an alphabet and,
therefore, we can define strings and languages
over E as usual. We call the strings over E as
e-strings and we write (x1/y1) · · · (xn/yn) for
an arbitrary e-string.

Construction 1. Given an NFA A, the
NFA Aσ is defined as follows.

1. Firstly, define the NFA A1 that is con-
structed as follows. The states of A1 are
all the pairs of the form (p, q), where p
and q are states of A. The start state of
A1 is the pair (s, s), where s is the start
state of A, and the set of final states of A1

2

consists of all pairs (p, q) such that p and
q are final states of A. The transitions
of A1 are of the form (p1, q1)(x/y)(p2, q2)
such that p1xp2 and q1yq2 are any two
transitions of A.

2. Secondly, define the NFA A2 that is con-
structed as follows. Let B be the NFA
that has two states s and g, with s being
the start state and g being the only final
state, and transitions

s(x/x)s, s(x/y)g, g(x/x)g, and g(x/y)g

for all alphabet symbols x, y ∈ Σ with x 6=
y. It is evident that B accepts all e-strings
in E∗ containing at least one element x/y
with x 6= y. Then, A2 is defined to be the
NFA A1 ∩B.

3. Finally, the NFA Aσ is the trim part of
the NFA A2.

Theorem 1: Given any NFA A, the NFA Aσ

is of size O(|A|2) and accepts the language of all
the e-strings (x1/y1) · · · (xn/yn) such that the
words x1 · · ·xn and y1 · · · yn are different and
belong to L(A).

Proof: It is sufficient to show that the
NFA A1 of Construction 1 accepts all e-strings
(x1/y1) · · · (xn/yn) such that both of the words
x1 · · ·xn and y1 · · · yn are in L(A). First let
h = (x1/y1) · · · (xn/yn) be an e-string accepted
by some computation

(p0, q0)(x1/y1)(p1, q1) · · · (xn/yn)(pn, qn)

of Aσ. By Construction 1, h is in E∗ and the
expressions p0x1p1 · · ·xnpn and q0y1q1 · · · ynqn

are accepting computations of A. Hence, both
of the words x1 · · ·xn and y1 · · · yn belong to
L(A).

Conversely, suppose h = (x1/y1) · · · (xn/yn)
is an e-string in E∗ such that both of the words
x1 · · ·xn and y1 · · · yn belong to L(A). Then
one can define two accepting computations of
A of the form

p0x1p1 · · ·xnpn and q0y1q1 · · · ynqn.

This implies that

(p0, q0)(x1/y1)(p1, q1) · · · (xn/yn)(pn, qn)

is an accepting computation of Aσ and, there-
fore, h must be in L(Aσ).

4. Computing the distance
In this section we obtain the following result.

Theorem 2: The following problem is com-
putable in quadratic time.

Input: An NFA A.
Output: The Hamming distance of L(A).

The NFA Aσ can be viewed as a labelled
directed graph and can be modified conceptu-
ally by replacing the label x/y of every edge
p(x/y)q with the label 0 if x = y, or 1 if x 6= y.
It should be evident now that the Hamming
distance of the language L(A) is equal to the
smallest weight of a path from the start state
to a final state in the directed weighted graph
Aσ. It is well-known that this value can be com-
puted in time O(n log n), where n is the size of
the graph, using Dijkstra’s algorithm – see [5],
for instance. Note that the factor log n in the
time complexity is due to the fact that A might
contain cycles. However, using the fact that
each weight in the graph Aσ is either 0 or 1,
we show next that the shortest accepting path
can be computed in time linear with respect to
the size O(|A|2) of Aσ, even when this graph
contains cycles. This would also establish the
validity of Theorem 2.

Consider a directed graph G all the nodes
of which are reachable from a start node s, and
all the weights on the edges of the graph are 0
or 1. We can view G as two graphs G0 and G1
such that G0 results by removing from G the
edges of weight 1 and G1 results by removing
from G the edges of weight 0. The main idea of
the algorithm is as follows: Let Q

(0)
0 be equal

to s. Define Q
(0)
1 to be Q

(0)
0 union the the set

of all new nodes (i.e., nodes that have not been
visited before) that are reachable from Q

(0)
0 via

the graph G0. The nodes in Q
(0)
1 are exactly

those of distance 0 from s. Let Q
(1)
0 be the set

3

of new nodes that are reachable from Q
(0)
1 using

exactly one edge of G1. Each node in Q
(1)
0 is of

distance 1 from s. This process is repeated by
defining Q

(i)
1 from Q

(i)
0 , and Q

(i+1)
0 from Q

(i)
1 ,

until all nodes in G have been visited. It is
evident that the nodes in Q

(i)
1 are exactly those

of distance i from s.
We turn the above idea to an algorithm by

using two queues Q0 and Q1, a counter length
that plays the role of i, an array Seen to keep
track of whether a node has been visited, and
an array Distance to store the distance of each
node from the start node.

Algorithm.

Define two empty queues Q0 and Q1
Initialize all entries of the boolean

array Seen to false
Initialize all entries of the integer

array Distance to 0
Q0.insert(startNode);
Seen[startNode] = true;
length = 0;

while (Q0 is not empty)

while (Q0 is not empty)
a = Q0.front()
for each edge (a,b) in G0 with
not Seen[b]

Q0.insert(b), Seen[b] = true;
Distance[b] = length

end for
Q0.delete(), Q1.insert(a)

end while

length = length + 1

while (Q1 is not empty)
a = Q1.front()
for each edge (a,b) in G1 with
not Seen[b]

Q0.insert(b), Seen[b] = true;
Distance[b] = length

end for
Q1.delete()

end while

end while

As each node of the graph G can be exam-
ined no more than two times, the above algo-
rithm runs in time proportional to the size of
the graph.

5. Concluding Remarks
For the problem of computing the Hamming

distance of a given regular language, we were
able to give a fast algorithm by constructing the
sigma automaton and taking advantage of the
fact that one can compute in linear time short-
est paths in a directed graph when the weights
involved are zero and one. On the other hand
the problem of computing the edit-distance of
a given regular language in polynomial time re-
mains open.

References:

[1] M. A. Armand: Efficient decoding of Reed-
Solomon codes over z q based on remain-
der polynomials. WSEAS Transactions on
Communications, 1 (2002), 116–121.

[2] T. Head, A. Weber: Deciding code related
properties by means of finite transducers.
In Sequences II, Methods in Communica-
tion, Security, and Computer Science. 260–
272, 1993.

[3] L. Kari, S. Konstantinidis, S. Perron,
G. Wozniak, J. Xu. Finite-state error/edit-
systems and difference-measures for lan-
guages and words, 2003. Technical
Report 2003-01, Department of Math-
ematics and Computing Science, Saint
Mary’s University, Canada. Available at
www.smu.ca/academic/science/compsci/.

[4] S. Konstantinidis: Some remarks on reg-
ular factorizations. WSEAS Transactions
on Communications, 1 (2002), 167–172.

[5] U. Manber: Introduction to Algorithms, A
Creative Approach. Addison-Wesley Pub-
lishing Company, 1989.

[6] S. Roman: Coding and Information The-
ory. New York, 1992.

[7] G. Rozenberg, A. S. (eds): Handbook of
Formal Languages, Vol. I. Springer-Verlag,
1997.

4

[8] D. Sankoff, J. K. (eds): Time Warps,
String Edits, and Macromolecules: The
Theory and Practice of Sequence Compar-
ison. CSLI Publications, 1999.

[9] R. A. Wagner: Order-n correction for reg-
ular languages. Communications of the
ACM, 17 (1974), 265–268.

[10] S. Yu: Regular languages. 41–110. In [7].

5

