A new approach for software process modeling
ATIL FADILA – BOUNOUR NORA – MESLATI DJAMEL

LRI Lab. Department of computer science

University Badji Mokhtar - Annaba

B.P. 12 Annaba (23000)

ALGERIA

GHOUL SAID

Department of computer science

University of Phyladelphia

Amman

Jordania

Abstract: This paper presents a Model of Software Processes based on the object-oriented paradigm. In contrast to other Models, we concentrate on the integration of structural and methodological aspects into one consistent model framework. Semantic classification and coordination are concepts which are introduced in order to obtain a simple and natural modeling.

The originality of this approach is to consider a process as a coordination of an agent system. This have include profits; among which, the modular distribution of methodologies upon implicated system agents, the construction and the realization of component methodologies, and the association of version of behaviors to the same agent.

Keywords: Activity, Agent, Agent system, Alternation, Behavior, Coordination, Genetic program, Methodology, Semantic classification, Software process.

1. Introduction
As part of software engineering, a large community defines a software process as a partially ordered set of activities accomplished during development or evolution of software [1]. This definition imply that each set of software life cycle activities (and not necessarily every activities) forms a software process. For against, number of searcher defines a software process as the total set of software engineering activities. This definition is a particular case of the first because it is interested with a particular software process (covering all the set of life cycle activities).

Software process model (spm) is a descriptive representation of the software process structure, used as a reasoning support, allowing it's understand and it’s progress.

Analysis of any process get appear two levels : structural level which represent objects on which process's activities perform, and methodological level describing the policies which lead the process and its component methods.

spm=({Methodologies : Policies, Mechanisms },

 { Structures })

In this paper, we propose modeling of software processes by a simple and natural way, using object paradigm. This approach presents many conceptual advantages with regard to actual works in the domain. In fact, a software process is regarded as an agent system which cooperates for realizing the same objective. This vision is natural and present contribution concerning construction and reuse of software process’s methodologies. In this approach, it's even possible to associate versions of behaviors to the same agent.

2. Example of software process model

Let a simple software process which takes place in a little programming environment that includes an editor, a compiler and a tester. This process consists to edit a file, then to compile it (as soon as the programmer finishes edition). If compilation doesn’t fail, the object program will be tested by using data test. This minimal programming environment presents a simple model Edit-Compile-Test (figure 1).

 Edit

 Compile

Test

Figure 1. A minimal programming environment.

A software process model, ProgramingEnvironment, that models this process must support three steps, as indicated in figure 2.

In ProgramingEnvironment, the mechanisms are defined by the set of implicated activities and are unchangeable.

Mechanisms = {ReadyToCompile, Editor, EndEdit, Compiler, FailCompiler, SuccesCompiler, Run, TestWithData, FailTest}

The policies are defined by dependencies between process's activities. These policies and their control are taken under one’s responsibility of the user, who must pass on the product from one step to an other. This often engenders diverse mistakes and exceeding delay.

3. Semantic classification

The software process model that we propose in this paper is based on the semantic classification [2], [3]. By semantic classification, we imply the possibility of belonging to the same class of objects with different profiles but with the same underlying semantic. In order to express contribution of such approach, concerning modeling of software processes, we propose the modeling of the step Edit of the ProgramingEnvironment (Figure 1). We want regroup in this model properties relative to tree different editors (Figure 3) : A normal editor (let NormalEdit), and two syntactical editors, one for Pascal (let SyntaxPascal) and one for Prolog (let SyntaxProlog).

Edit

Figure 3. Example of software process.

We note that NormalInit is relative to the initialization concerning the normal editor and SyntaxEdit is that concerning syntactical editors.

We model structural aspects of the software process Edit by using semantic classification. We obtain then a condensed schema, containing the single class Edit, that hold all properties. This class can be partially defined like that (Figure 4).

Class Edit;

 Instance Variables
 F : File of char;

 ...

 Instance methods
 Init : Alt
 begin ... end; // Code of NormalInit
 begin ... end; // Code of SyntaxInit
 EndAlt
 Editor : Alt
 begin ... end; // Code of NormalEdit
 begin ... end;// Code of SyntaxPascal
 begin ...end;// Code of SyntaxProlog
 EndAlt
 ReadyToCompile : ...

 EndEdit : ...

End Edit;

Figure 4. A partial definition of Edit class.

The constructor Alt ... EndAlt allows to define alternately properties (exclusives properties). The choice of properties to retain for an object, as well as the elimination of incompatibilities problems are realized by an entity associated to the class called genetic program.

A genetic program consists of a set of rules allowing the selection of properties to retain for a variety of objects. An instance can be generated from each object according to a genetic program, allowing then to different objects to belong to the same class. Rules are expressed with:

At ClassName [If [Not] inherited <Properties List> [From <Classes List>]]

Inherit [First/Only/Except] < Properties List > [From <Classes List>];

Therefore, here are tree genetic programs, every one allowing to retain properties relatives to a normal editor or those relatives to a syntactical editors.

NormalEditPg = {At Edit If Inherited Editor.1

 Inherit First Init.1,

 ReadyToCompile, EndEdit}

SyntacticEditPg = {At Edit If Inherited (Editor.2 or

 Editor.3) Inherit First Init.2,

 ReadyToCompile, EndEdit}

4. Limits in expressing methodologies

To model a software process according to the object approach, the principle is based one’s argument on invocation of methods by sending messages to objects of a class hierarchy. The series of these methods must allow the correct and not ambiguous resolution of the given problem [4]. A such series of methods qualified with sensible and explicit, define a coordination of these methods [4], [5].

If in object oriented programming languages, the semantic analysis allows verification of method invocation’s validity by an object, nothing allows the verification of methods coordination’s validity of the same object or of different objects. Nothing allows then to consider an object as a process, and consequently, to verify it’s correct exploitation (according to this process). This is due to the total absence of an explicit formulation of coordination in actual object oriented formalism, which is a serious handicap for software processes modeling. We attempt to remedy to that by the integration of methodologies in the definition of objects. We note that actually there are needs in this way as part of formal specifications.

5. Coordination paradigm

In addition to object oriented model based on a semantic classification, we use a coordination model permitting expression of software processes methodologies. We consider a software process as a set of agents that cooperate for realizing the same objective. This approach is based on the set of the following concepts [4]:

Activity. An activity corresponds to a simple or compound action, which is executed by a human being or a machine.

Agent. An agent is an active, a reactive or a cognitive entity responsible of the execution of a set of activities, defining its behaviors.

Dependency. A dependency defines a relation between two or some activities. We say that an activity A1 depend on the activity A2 if the working of A1 require this of A2.

Some dependencies come under intrinsic semantic of activities. They exist independently of any context (global objective to reach). For example, any "Consumer" activity depend on a "Producer" activity : It must ever check that the "Producer" activity is accomplished before it’s results are required by "Consumer" activity. Some other dependencies between activities come under a global objective to reach. These dependencies must be dynamically introduced (or separated) to satisfy this goal. A same objective can be reach with different manners, according to the applicable methodology.

The set of dependencies between activities is open, in view of the infinity of contexts were they evolve and the changeable goals to reach. In our study, we are interested with two types of dependencies, namely, functional dependencies and organizational dependencies.

- Functional dependencies: These of dependencies regroup all data flux and control flux dependencies, well known in procedural languages. They must every be verified and are explicitly defined by the relation Function that have a changeable semantic (constraints) (Figure 6)

Ctr

 IA

 TA

Figure 6 Function dependency.

The Function dependency expresses that a set of target activities TA depends on an optional set of initial activities IA under the optional constraint Ctr. When all activities of IA are executed, activities of TA could be executed under the constraint Ctr.

Formally, this dependency is defined with : ([IA] [Ctr] SYMBOL 174 \f "Symbol" TA (, were Ctr is defined with <condition; value; sense>. The Condition attribute defines conditions that must be satisfying in order that dependency being valid. Value attribute defines the data flux required by this dependency. Finally, Sense attribute defines the semantic of dependency, which can be repetition (SYMBOL 42 \f "Symbol"), implication (SYMBOL 217 \f "Symbol"), exclusion (SYMBOL 216 \f "Symbol"), equivalence (SYMBOL 126 \f "Symbol"), instantiation (SYMBOL 39 \f "Symbol"), etc.

For example, the instantiation dependency {Edit} <SYMBOL 198 \f "Symbol"; SYMBOL 198 \f "Symbol"; SYMBOL 39 \f "Symbol"> SYMBOL 174 \f "Symbol" E consists of generating an agent E from the class Edit. The dependency <SYMBOL 198 \f "Symbol"; SYMBOL 198 \f "Symbol"; SYMBOL 216 \f "Symbol"> SYMBOL 174 \f "Symbol" {NormalEdit, PascalSyntax, PrologSyntax} express an exclusivity between tree type of editors : A normal editor, and two syntactic editors, one for Pascal and one for Prolog.

- Organizational dependencies: These dependencies allow an organization of activities during time (with Synchronous and Alternation dependencies) as well as their hierarchical organization (with Aggregation dependency). We note that organizational dependencies allow the modeling of behaviors of agent's software processes.

SYMBOL 183 \f "Symbol" \s 10 \h
Synchronous. This dependency allows to order activities in time. It’s expressed with : Syn a1, a2, ..., an Endsyn. For example, the dependency Syn init, ReadyToCompile Endsyn expresses that the activity ReadyToCompile can’t be executed only after the activity Init. Activities non implicated in a Syn dependency may be executed in any order.

SYMBOL 183 \f "Symbol" \s 10 \h
Alternation. It’s a dependency, which allows establishing a nil order between a set of activities. These activities are then alternated, and could constitute a varying activity. By nil order, we imply that only one of concerned activities can be executed. This activity will be determined dynamically according to explicit or deduced contextual knowledge. It’s defined with : Alt a1, a2, ..., an Endalt. Only one activity ai (i=1,n) must be executed and all the others will be ignored. For example, Alt Edit1, Edit2 Endalt expresses that only one activity among the two exclusive activities can be executed at a fixed time.
SYMBOL 183 \f "Symbol" \s 10 \h
Aggregation. It allows constructing a complex activity with an hierarchical composition (designed by an identifier) of different agent’s activities. If the composition is designed with an identifier, this last will indicate the resulting activity. Such dependency will be expressed with : ({IA1,IA2,...,IAn} <SYMBOL 198 \f "Symbol";SYMBOL 198 \f "Symbol";U> SYMBOL 174 \f "Symbol" TA (, were TA is the identifier of the resulting activity. A non- designed composition don't construct a complex activity.

6. Role modeling

We consider real word concepts to consist of several mutually cooperating and interacting entities, not stand-alone entities existing independently of other entities in the same domain of interest. The design approach presented here is related to the ideas of considering objects as "plying" different roles in different contexts [10], [11].

Agent of a software process cooperates with each other to accomplish a global goal. So, they are related to each other in different way: Serving, using, and communicating with each other. From the way in which they treat one another, agents have different perspectives of each other. These perspectives define the role that an agent may play towards another. A role is formed as a set of behaviors of the agent. Different roles exist for different purpose, and the roles played by an agent may change over time.

The role is a powerful modeling concept. It gives restricted, possibly complementary perspectives on a complex and compound agent and allow dynamicity of such perspectives.

An agent has several roles that have been chosen in order to accomplish the objective of the modeling. The roles may change and they may exist simultaneously.

The concept of role is intuitive and important to achieve a simple and natural modeling of process activities, and to aid comprehension.

The mission of role modeling is to reduce complexity when doing "large-scale" design; i.e complexity due to the size of the design task. This is done by supporting separation of concerns, and reusable design [11].

In our approach, agent’s activities can exist in many versions and can be organized during time in many different manners. Each acceptable organization of activities defines an agent behavior (a methodology of its working). In this way, a behavior presents the associated agent as a states machine [6] or simply as a process. The agent’s behavior according to a determined objective defines its role and the role is then a sensible series of activities.

In order to illustrate the use of this concept for modeling software processes, we retain the same example of the figure 1. Behaviors present in the software process Edit are defined by the set of activities {Init, Editor, ReadyToCompile, EndEdit}. Edit correspond then to an agent that can be obtained by generating an instance from a class Edit. We can assign to this agent two distinct roles, schematically defined by the figure 7, allowing going buck or no to the edition step from the compilation step.

NormalEdit1

 Editor.1 ReadyToCompile

 Init.1 EndEdit

NormalEdit2

 Editor.1 ReadyToCompile

 Init.2 EndEdit

Figure 7. Two roles, NormalEdit1 and NormalEdit2, of Edit agent.
7. Agent modeling

A software process correspond in our approach to an agent that can be simple or complex, i.e, compound of a set of agents which cooperate in order to achieve the same objective. The modeling of such agent is essentially based on the definition of the set of composing agents, of dependencies between its activities and of roles that it offers (Figure 8).

Agent < Agent Name >;

 Interface < Interface description:

 Identification of roles >

 Agents < Definition of the set of composing

 agents >

 Functional Dependencies

 <Definition of functional dependencies

 between activities >

 Organizational Dependencies
 < Definition of the set of roles >

End < Agent Name >
Figure 8. Definition of a formal agent.

A formal agent define a generic software processes model, offering some alternatives, from which, we can generate specifics software processes (Real agents). The generation is done according to an appropriate behavior, and allows then the solving of a particular problem.

Owing to such model, we can define a formal agent that can be independent of any problem (Figure 9), and from which, we can generate a real agent as an instance that can take part in development of specific software processes.
Agent Edit;

 Interface NormalEdit1, NormalEdit2;

 Agents
 {File, Boolean} <SYMBOL 198 \f "Symbol"; SYMBOL 198 \f "Symbol"; SYMBOL 39 \f "Symbol"> SYMBOL 174 \f "Symbol" {F, EndEdit}

 Functional Dependencies
 <SYMBOL 198 \f "Symbol" ;SYMBOL 198 \f "Symbol" ;(>SYMBOL 174 \f "Symbol" {NormalEdit, PascalSyntax,

 PrologSyntax}

Organizational Dependencies

 NormalEdit1 = ...; // Description of the first role

 NormalEdit2 = ...; // Description of the second

 role

End Edit
Figure 9. Specification of the formal agent Edit.
For example, we can generate from the formal agent Edit (Figure 9) two software processes, respectively according to NormalEdit1 and NormalEdit2 behaviors.

Therefore, according to need, we can define or modify different methodologies (behaviors). The instance's methodology, generated from an agent, impose to this last a controlled behavior that can be automated. This vision offers a considerable benefit for software processes modeling.

We note that benefit of our approach is in the construction of methodologies of software processes that is done with a modular manner by reusing composing agent's methodologies.

8. Related work

In the IA approach, the rule concerns an activity and its interface with others, which make the dependencies between activities implicit and informal. Against, in our approach, a rule of dependency relates two sets of activities according to a coordination constraint, that make the methodology more explicit, more formal and especially well structured (set, behavior, agent). This approach has the possibility of formal verification of methodologies and reasoning which it’s the support.

In the IA approach, the inference’s motor constructs the different possible alternatives when with the model proposed, the alternatives to consider may be imposed by an explicit selection mechanism (description of behavior). In this context, IA’s approach is purely analogue to an inference’s motor with fixed strategy, when in our approach; it can correspond to a motor with a programmable strategy (behavior of agent).

9. Conclusion
In this paper, we have presented a modeling approach of software processes based on integration of object oriented paradigm (with semantic classification) and coordination paradigm. The notion of semantic classification has allowed expressing the structural aspect of a process (objects on which operate its activities). By the coordination concept, we have represented its methodological aspect, by formally defining the policy which lead it (rules determining the activities and their organization, ...), and composing mechanisms (tools realizing activities and operating according to this policy). We have proved that the construction of complex methodologies can be done with modular manner by reusing the composing methodologies.

References:

[1] M.I Kellner, G.A Hansen. Software Process Modeling : A case study. Proc. Of 22th Annual Hawaii Int. Conf. On Syst. Sciences, PP.175-188, 1989.

[2] D. Meslati. SELESA: Un modèle de données hypersémantique. Master's thesis, University of Annaba, Avril 1994.

[3] D. Meslati, S. Ghoul. Semantic classification : A genetic approach to classification in object-oriented models. Journal of Object-Oriented Programming, jan. 1997

[4] S. Ghoul. Aspects Méthodologies et Structures dans les Modèles de Processus Logiciels. Ph.D. dissertation, University of Annaba, 1995.

[5] T.W. Malone, K. Rowston. The interdisciplinary study of coordination. ACM Computer Surveys, Vol. 26, No. 1, PP. 87-120, 1994.

[6] J.D. McGregor, D.M. Dyer. Inheritance and state machines. ACM/SIGSOFT, PP. 61 - 69, 18 Avril 93,.

[7] F. Atil. Un modèle de processus de résolution de problème. Master's thesis, University of Annaba, Mars 1996.

[8] F. Atil, S. Ghoul. Object based software process modeling. 1 st UK Colloquium on object Technology & System Re-engineering (COTSR), Demontfort University, Leicester, 1998.

[9] G.E Kaiser and al. Preliminary experience with Software Process Modeling in the MARVEL Software. Environment Development Kernel. Proc. Of 23th Annual Hawaii Int. Conf. Syst. Sciences, PP.131-140,1990.

[10] Egil P. Andersen and Trygve Reenskaug. System Design by Composing Structures of Interacting Objects. Proceedings of the 6th European Conference on Object-Oriented Programming (ECOOP'92), volume 615, The Netherlands, June 1992. Springer-Verlag.

[11] Pernici B.: “Objects with roles”, IEEE/ACM Conference on Office Information Systems, Cambridge, Massachusetts, eds. Lochovsky F. H., Allen R. B., ACM Press, ACM SiGOiS Bulletin, Vol. 11, Issues 2, 3, Apr. 1990.

Run

Edit

Editor

EndEdit

ReadyToCompile

ReadyToCompile

EndEdit

Figure 2. Steps of ProgrammingEnvironment.

FailCompiler

Test

FailTest

TestWithData

Compile

Compiler

SuccesCompiler

NormalEdit

SyntaxPascal

SyntaxInit

NormalInit

PAGE

