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Abstract: - Four wheel steering vehicles are being used increasingly due to high performance and
stability that they bring to the vehicles. This paper deals with a novel high performance four wheel
steered vehicle model which is optimally controlled during a lane change manoeuvre in high
speeds. Simulation results reveal the effectiveness of the proposed model and controller.
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1 Introduction

Safety in driving a vehicle with high speed is
extremely crucial. Due to the large yaw rate and
sideslip angle of a vehicle body moving in high
speed, turning of a vehicle cannot be well
controlled by only steering the front wheels. The
four-wheel-steering (4WS) technique is thus
developed over the past decade. A great number of
studies have been made on various control
strategies for 4WS vehicles since the first 4WS
system was reported. Four wheel steering is a
relatively new technology that improves
manoeuvrability in cars, trucks and trailers. In
standard two wheel steering vehicles, the rear set
of wheels are always directed forward therefore
and do not play an active role in controlling the
steering. In four wheel steering systems, the rear
wheels can turn left and right. To keep the driving
controls as simple as possible, a computer is used
to control the rear wheels. Yet, a few archival
publications in current literature dealt with the
dynamics of the 4WS vehicle/driver closed-loop
system with nonlinear properties of the lateral tyre
forces taken into account [1-3]. The nonlinear
behavior, the stability of the vehicle and the
nonlinear effects on vehicle dynamics, hence,
require a systematical analysis.

In the present work, a new methodology of
mathematically modelling for the 4WS vehicle—
driver system during turning is developed.

In this paper by optimizing a cost function regards
to state variables, the control law is determined.
The optimal control used in this paper is based on
the Riccatti differential equations [4,5].

The paper is organized as follows: Section 2
describes a complete model of vehicle. In Section
3 the design procedure of optimal control is
considered. Simulation results of the system are
provided in Section 4. Finally, the paper is
concluded in Section 5.

2 Vehicle modelling

There are usually two well known approaches in
modelling a vehicle dynamics: single track and two
track. The first model is presuming the two front
and the two rear wheels as two wheels and hence it
is sometimes called the bicycle model. This model
has many simplifications and is not valid for
accelerations above 0.3g. The second model (the
reduced nonlinear two track model) considers
much more nonlinearities and hence gives a much
more precise result. In this model, each tyre has
forces in direction of the wheel plane and
perpendicular to it which are called F; and Fjs
respectively. We may introduce two coordinate
systems as:

e "CoG" (Center of Gravity) for the chassis
coordinate system
e "In" for the fixed inertial system

The reduced model should contain only those state
variables which are essential for vehicle dynamic
control. These are the vehicle speed V., the
vehicle body side slip angle £, and yaw ratey .

Now the vehicle speed can be transformed to fixed
inertial coordinate system:
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These accelerations are now transformed from the
inertial into the CoG coordinate system.
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By neglecting gravitational forces Fy,, and Fjy,
rolling resistance F,, lateral wind force and the
wind velocity V., the complete equation for
horizontal translatory motion are then given by:
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by substitution of :
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in eq. 5 to 7 we will have the state space variables
in terms of longitudinal and lateral forces and other
vehicle parameters.

The longitudinal forces Fj; are regarded as control
inputs (by assuming a vehicle with four electrical
driving motors on four wheels). The wheel lateral
forces Fy; are now approximated to be proportional
to the tyre side slip angle «;; [6,7].
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Hence the wheel turn angle and the longitudinal
wheel forces F); are utilized as control inputs for

vehicle dynamic control by steering. So the state
space variables of the reduced nonlinear four
wheels steered two track model become:
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3 Controller Design
In the state space form the reduced nonlinear two
track model can be written as:

X = A(x,u)x + B(x,u)u
y=C(x,u)x (16)
The state vector is:
=Vee B v1" (17)

While the control output is:

=V ¥1" (18)

This nonlinear state space equation has to be
optimally controlled. Regarding this will we would
need to express our state variables in terms of
Taylor series around an actual operating point.
Since the non linear state space equations are
rather complicated a first order Taylor series would
be appropriate.

The state space equations are rewritten as:
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Now by proper determination of operating point
and also the destination state all needed state space
parameters are determined.

The state-space representation of the system in
Equation 1 can be written as:

X=Ax+Bu (24)

The LQR problem is to find the optimal gain
matrix such that the state-feedback law minimizes
the quadratic cost function.

J:T(xTF x+u' Gu) (25)
0

The matrices F' and G are referred to as the
weighting matrices on the state and the input
respectively. A smaller F increased the relative
weighting on the input matrix. This should
decrease the magnitude of the input necessary to
maintain control. In order to insure that all the
states go to zero as time goes to infinity, ' must be
chosen to be a positive-definite matrix. G is also
chosen as a positive-definite matrix to insure the
control is finite. The weighting matrices are chosen
based on matlab simulations and driving simulator
tests such that
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constant gain optimal control is
u (ty=5,(t)=-G'BTPx(r) (27)

where, P is the steady-state solution to the matrix
differential Riccatti equation of the form :

P=-A"P-PA+PBG'BTP-F (28)

The boundary condition at terminal time is zero,
such that:

P(t;)=0 (29)

4 Simulation Results

In this section, the closed-loop responses using the
system parameters shown in Table will be
presented.

Table Vehicle Parameters

Vehicle mass M ., 1600 kg
Mass moment of Inertia J 23002
kg.m
Distance from CoG fto front axle [ 1.2m
Distance from CoG to rear axle I, Im
Distance between wheels on front and
rear axles b, b, 1.25m
Front and rear tire longitudinal
casters: n 0.05m
My s i
Effective vehicle surface A, 1.5m’

In fig. 1-3 we can see the results of the model
operating in a lane change manoeuvre in a
highway. The vehicle is changing the position
from the primary velocity of 25 m/s and body side
slip of 6 degrees while the yaw rate is 0.15 rad/sec
to the final state that the velocity has increased to
35 m/s, the body side slip angle of 4.5 degrees and
the yaw rate of 0.136 rad/sec. The inputs of the
system are 4 longitudinal forces applied to the 4
wheels of the vehicle of which the first one Fj; is
depicted in fig.6 as well as the two steering angles
of the front and rear wheels shown in figs. 4,5.

5 Conclusion

In this paper, a three degree of freedom model for
a four wheel steering system was considered and
an optimal controller was designed to control the
vehicle during its lane change manoeuvres in
highways. Simulation results reveal that the model
has a very good and effective performance.

References

[1] Y. Wang and M. Nagai, "Integrated Control
of Four-Wheel-Steer and Yaw Moment to
Improve Dynamic Stability Margin", Proc.
35th IEEE-CDC, pp.1783-1784, 1996.

[2] Varaiya, P., “Smart Cars on Smart Roads:
Problems of Control,” IEEE Trans. on Auto.
Ctrl., Vol. 38., No. 2, Feb. 1993, pp. 195-
207.




[3] Peng, H., and M. Tomizuka, “Vehicle [6] A. Daiss and U. Kiencke, "Estimation of

Lateral Control for Highway
Proc. of the Am. Ctrl Conf.
1990, pp. 788-794.

Automation,” Tire Slip during combined Cornering and
, San Diego, Braking  Observer  Supported  Fuzzy
Estimation", Proc. of 13the IFAC World

[4] R. Uinter “Optimal Control” Birkhaus, Congress, 8b-02-2, pp.41- 46, 1996.
Boston, 2000. [7] L. R. Ray, "Nonlinear Tire Force Estimation
[5] J. Yang,X.Y. Zhou “Stocastic controls- and Road Friction Identification: Simulation
Hamiltonian systems and HJB equations” and Experiments", Automatica, Vol.33,

Springer,New York,1999

35F-------

Vcog (m/s)
w
o

25

No.10, pp.1819-1833, 1997.

i
|
|
|
|
|
|
|
|
l
L
|
|
|
|
|
|
|
|
|
:
5

0
Time (sec)

Fig. 1. Vehicle velocity during lane change maneuver
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Fig. 5. Rear wheels steering angle during lane change maneuver
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Fig. 6. Front left wheel longitudinal force during lane change maneuver



