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Abstract – In this paper, we are to develop a second-order LMS-type Volterra filter to reduce distortions of data 
transmission over analog telephone channels due the channel impulse response and inter-symbol interference 
(ISI). 

A novel approach for updating the linear and quadratic coefficients vectors of a second-order Volterra 
filter is presented. The innovative features of this algorithm provide distinct convergence treatment of the linear 
and quadratic Volterra filter kernels, and adaptive formulation for the convergence factors, hence providing a 
unique platform for both linear and nonlinear channel adaptive handling. 

 Simulations are carried in an equalization set-up to compare the performance of this algorithm with 
conventional and variable step LMS algorithms. The obtained results show that this algorithm brings 
substantial increase in the convergence speed while keeping, to some extent, the simplicity of the conventional 
LMS algorithm. Considering the performance of the formulated algorithm, it could be a useful tool for adaptive 
equalization applications. 
 
Key-Words: - Adaptive Filtering, Equalization, HOS-based LMS, Nonlinear Volterra filter. 

 
1 Introduction 
It is well known that linear filtering came across an 
unbeatable adversary when it comes to filter out 
impulsive noise. In fact, linear filters are not able to 
provide satisfactory performance when dealing with 
nonlinear noise sources. In data communication over 
a non-ideal communication channel, it has been 
shown that nonlinear adaptive equalization has to be 
used to come over the most encountered types of 
noise, dispersion and intersymbol interference (ISI) 
[1],[2]. HOS are becoming a very attractive tool to 
deal with nonlinearities. A good survey on HOS is 
given in [3] and [4]. Nonlinear adaptive filters and 
in particular Volterra filters have met lot of attention 
and found wide application in various fields. This 
‘success’ is mainly due the convergence behavior 
and the parameter linearity of such filters. In [5], a 
comparative study of steady-state performance of 
adaptive algorithm bypassing nonlinearities in their 
update equations is given. [6] proposed a confined 
variable step-size normalized LMS, and [7] 
presented a segmentary update of NLMS-like 
algorithm, intrinsically reducing the algorithm 
convergence dependence on the adaptation step.   

A variety of nonlinear Volterra filters have 
been reported in literature [8-14] to name but a few, 
where convergence treatment is performed on the 
input signal regardless being linear or nonlinear. In 

fact, a single convergence step expression is used 
for the adaptive algorithm.  

In this paper, we propose a novel approach 
to update recursively the convergence factor of a 
least-mean-square (LMS) algorithm used to 
minimize the mean square error. This approach is 
distinctively applied to both the linear and quadratic 
part of a second order Volterra filter. 
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Fig. 1 Communication system block diagram 
 
This paper is organized as follows. In 

section 2, we formulate the problem and give the 
necessary background and analysis.  Section 3 
presents the adaptive equalization of a nonlinear 
communication channel using a variable step 
adaptive algorithm and states the convergence 
conditions. In section 4, we discuss the obtained 
results and we draw conclusions in section 5. 

 
 

2 Problem Formulation and Analysis 
A general discrete-time system may be represented 
using a nonlinear model via Volterra series [15].  

H(z) Receiver C(z) 



The input and output of a discrete-time 
linear system are related via 
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where x(k) is the input, y(k) is the output and h(i) is 
the impulse response of the system. 
  

The linear expression (1) is simple and 
widely used to represent practical systems with 
limited duration of h(i). But in many cases where we 
use (1), we only get an approximation to the real 
world systems. So if more accuracy of the 
representation is needed, then a more complex 
model may be used by introducing the concept of 
Volterra series. 
 A general discrete-time system may be 
represented using a nonlinear model via Volterra 
series 
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For practical reasons, this representation is truncated 
at the cubic term with finite kernels, designed in (2) 
by h1(i), h2(i,j) and h3(i,j,l), also called Volterra 
Kernels. 

The problem here is to find the impulse 
response of Wiener Filter that minimizes the 
functional [1],[16] 
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Where d(k) is the desired output. 
 
 
For the linear case, the classical Wiener filter 
minimizes J when 
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Considering a quadratic (nonlinear) filter given by 
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The problem is to minimize (3) when the output of 
Wiener filter is given by (5). We proceed as in the 

classical derivation of Wiener filter. First, form the 
data vector X and the coefficients vector H. From 
(6), one can see that the dimensions of X and H are 
(N+1) + (M+1)2. 

One of the properties of the Volterra kernels 
is that the quadratic kernel h2(i,j) is symmetric, 
which means that we do not have to consider all the 
elements of h2 and consequently the dimensions of X 
and H become  (N+1) + (M+1)(M+2)/2. 
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Expression (5) becomes 
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and the functional J of (3) takes the form 
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Developing (8) leads to 
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Differentiating JQ with respect to the coefficients of 
H and setting the resulting gradient to zero gives the 
following normal set of equations: 
 

        ℜH = P                             (10) 
 

where  ℜ = E(XXT)                                      (11a) 
P = E(d(k)X)                          (11b) 

 
In this case, ℜ is no longer an autocorrelation matrix 
as in the classical case. For this quadratic filter, ℜ 



includes second order statistics, third order statistics 
and fourth order statistics.   

To allow distinct processing of linear and 
nonlinear parts of the input signal sequence, X may 

be partitioned as 
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X , where  X1 is the linear 

part  and   X2  is the   quadratic part that involves 
x(k-i)x(k-j). 
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Given the input data x(k) and the reference signal 
d(k), the system (10) can be solved for H. 
 

The use of Auto Regressive (AR) modeling 
can be extended to nonlinear case via Volterra 
series, where the use of HOS becomes necessary. 
Recall that an AR linear model is given by 
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If one considers linear models, then a simple 

extension is possible using Volterra series. Most of 
the time, adding a quadratic term to (12) is 
sufficient; otherwise, the model becomes very 
cumbersome. A typical quadratic AR model can be 
written as 
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with the assumption that x(k) and y(k) are 
uncorrelated.  

Notice that for all those nonlinear models, 
the output is a nonlinear function of the data (input 
and/or previous output) but it is linear in the 
coefficients. So, the computation of the latter can be 
performed using the classical well known methods 
of parametric modeling and optimal filtering. 
 
 
3 Proposed Algorithm and 
Convergence Analysis 
It this section, we describe the proposed novel 
approach to update the linear and quadratic kernels 
coefficients of a nonlinear adaptive Volterra filter 
and state the convergence conditions. 

If we consider again the quadratic Wiener 
filtering problem given previously, the adaptive 
version using LMS will have the form 
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The index k is added here to indicate the iteration 
number. 
 
ek is the error given by ek = dk - yk   
and Xk is given by 
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It is clear that (14) uses (implicitly) HOS to update 
the coefficients vector Hk. 

In this paper, the step size µ is not the same 
for the linear and nonlinear parts of Xk. In this case, 
(14) becomes 
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and µ1 and µ2 are the adaptation steps for the linear 
and nonlinear parts respectively. 
 

Using a similar approach as in [17], [18], the 
linear and quadratic parts adaptation steps are given 
by 
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where (N+1) and (M+1)2 are the orders of the linear 
and nonlinear filter kernels orders respectively. 

After the first (N+1) and (M+1)2 first 
initializing iterations, µ1 and µ2 can be reformulated 
as 
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Finally, replacing µ by 1/µ’, equation (18) becomes 
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thus reducing the number of extra mathematical 
operations required to update the coefficients 
vectors of (16a). This gives 
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From (17), it can be show that, as k  ∞, 

1−→ kiki µµ leading to similar convergence conditions 

on the adaptation step as in the classical LMS 
algorithm using a constant convergence factor, 
namely for the linear kernel adaptation step.  Next, 
we state the convergence conditions on the 
adaptation step '

2µ  (or µ2) for the quadratic filter 
part.  
 
From (20), we get 
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The pseudo-random binary sequence (PRBS), used 
to drive the algorithm (input signal Xk), being 
bounded, applying the Milosavljević convergence 
condition [19]  
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Ultimately, to ensure convergence,  
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4 Simulation Results and Discussion 

The fist step in evaluating the performance 
of the variable step Volterra-based adaptive 
algorithm was to build a simulation model which 
was programmed in Matlab. Figure 2 shows the 
basic block diagram of the simulation model.  

The simulation initial adaptation steps are 
µ1=0.2 and µ2=0.001. The linear filter part order is 
M=8 and the quadratic filter part order is N=4. 
Simulation is carried out for 1000 signal samples 
and results are averaged over 200 runs. 

A PRBS (sequence) of period 14 is 
generated to feed the simulation block with a bipolar 
input signal. 

 

 
                 
 
         Additive WGN             
                                                              + 
Volterra                                              - 
 System                                                   -       
output Signal         X                          y(n)      e(n) 
(V) 
 

Fig. 2 Adaptive Volterra filter simulation setup 
 
For all the remaining figures, except Fig. 8, 

only the first 100 samples out of 1000 are shown for 
figure clarity purpose. 

Figure 3 shows the primary signal while 
Fig. 4 represents the Volterra system output signal 
when fed by a PRBS. Figure 5 shows the highly 

Adaptive 
filter 

Desired signal Omega1 



noise corrupted signal fed to the variable step 
nonlinear equalizer with a signal-to-noise ratio 
(SNR) of 10 dB. 
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Fig. 3 Desired signal 
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Fig. 4 Volterra system output 
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Fig. 5 Noise corrupted signal (SNR=10dB) 
 

In Fig. 6, the variable step nonlinear filter 
starts the adaptation process to converge towards the 
desired signal. Convergence is obtained after 50 
iterations. 
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Fig. 6 Adaptive equalizer output 

 
Figure 7 shows coefficients variations of the linear 
and quadratic filter kernels. 
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Fig. 7 Coefficients of linear (Hlin) and quadratic 
(Hquad) filter kernels 

 
The mean-square error (MSE), see figure 8, 

which is a performance measure of the algorithm, 
converges faster compared to conventional LMS 
algorithm within similar simulation conditions. 
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Fig. 8 Comparison of learning curves, for the same 
nonlinear input signal X, of standard LMS, VSS- 

LMS and variable step Volterra filter 



5 Conclusion 
This paper has described a new formulation of a 
variable adaptation factor for a nonlinear Volterra-
based adaptive equalizer. Compared to the constant 
step-size algorithm, this expression allows faster 
convergence and better tracking performance. 

As such, this variable step algorithm 
formulation could be used as a cost effective method 
of implementing the adaptive equalization of digital 
data transmission over nonlinear communication 
channels. 

Using this type of nonlinear adaptive 
filtering, the performance has been significantly 
improved because extra information about the data 
is used. Application could be extended to digital 
data communication where echo canceling and other 
filtering operations are needed. 
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