
Prefetching Web Objects with Inter-Query Relationships

SHIU HIN WANG, VINCENT NG
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon

HKSAR

Abstract: - By virtue of the prevalence of XML in data interchange and databases publishing, XML queries
become more popular employed in enquiry of XML documents. Nowadays many researches have been done
to discover the queries patterns. Very often the patterns are value specifics and neglect the underlying
relationship. In this paper, we present a framework to support prefetching of web objects through mining of
query relationships. We start with a presentation of a method to identify the possible relationships between
XML queries. With a query log, sessions of enumerated query relationships can be formed. After mining of
the sessions, query patterns are discovered and can be utilized for prefetching so as to improve query
performance.

Key-Words: - XML, Prefetching, XML Query

1 Introduction
As the web logs and transaction files from web
databases provide queries histories issued from
clients, analyzing of the transaction histories will
provide insight users patterns for various purposes.
In some researches, the discovery of these
relationships enables the caching and prefetching for
OLTP of DBMS and web objects. For example,
mining of queries from transaction logs and URLs in
web server log provides a means of data sources.

The presence of structures in XML documents poses
a new challenge for retrieval of data. Various
works[18,20,21] have been done on
flexible/approximate query answering through query
relaxation and definitions of new indexing or
ranking models against XML documents. In
addition, the study of query matching[12],
containment problem[9] and exploitation of
XPath[1] in storage of fragmented query results[10]
raise the interests to develop efficient replacement
strategies. Apart from passive caching of query
results, prefetching is also exploited by
[3,5,8,13,14,15] to improve the user perceived
latency.

Inter-query relationships represent the patterns
existing in consequent data queries. In traditional
object and relational database systems, we may
identify the relationship through the investigation of
result sets or the queries themselves.
Regarding to XML, Inter-query relationships may
refer to the data queries applied to different XML

documents. To simplify our investigation, we make
the following assumptions:
1) Only one XML document instance
2) Queries are ‘trivial’ such that the result are
either a document node or a subtree rooted at one
node of the original document.
The first assumption assumes that only one XML
document is considered. We assert the assumption
because the schema and contents between two
different DTDs may be different and therefore the
inter-relationships of queries will be meaningless. In
other words, the structure and semantics of the data
will not be utilized. For the second assumption, we
only handle those ‘trivial’ queries such that the
results are either a document node or nodes subtree.
In other words, predicates other than the leaf must
evaluate to at least one node.

In this paper, we will illustrate the identification of
inter-query relationship. Although many researches
have been done on the study of inter-query
relationships of SQL transactions and URLs of
Internet queries, URLs and virtual path of web
objects only represent the nature, the location of
requested objects and design of the system. By
contrast, XML is different in nature from RDBMS
and Web in its inherent hierarchical and semantics
information.

In our work, we are interested to extend the
StructCache framework[23] to support prefetching
of XML queries through mining of inter-query
relationships. We start with a presentation of a

method to identify the possible relationships
between XML queries. With a query log, sessions of
enumerated query relationships can be formed. After
mining of the sessions, query patterns are discovered
and can be utilized for prefetching so as to improve
query performance.

Section 2 describes the different representations of
XML queries and mentions Inter-query relationships
under specific assumptions and measures. Mining of
inter-query relationships is then covered in Section
3.
Section 4 presents how the mining can be applied to
the StructCache framework[23]. In addition, it also
describes how the modifications are done in the
internal architecture of the framework to support the
prefetching of web objects. Lastly, Section 5
concludes our work.

2 Inter-Query Relationships
It is generally true that queries are not purely
random. In many cases, users have particular
patterns when asking questions. In this section, we
are interested in patterns in the querying answering.
Inter-Query relationship refers to the patterns
existing in consequent data queries. For a pair of
queries expressed in XPath expression, Q1 and Q2,
we like to represent the possible inter-relationship of
them. In this paper, five possible relationships are
enumerated, namely Γ1, Γ2, Γ3, Γ4, Γ5. Before
proceeding to define the different relationships, we
will illustrate a XPath query representation method
using one suggested encoding scheme in the coming
section. Section 2.2 will be devoted to define basic
measures that can help us elaborate different
relationships among nodes in a tree and section 2.3
covers the definitions of the inter-query
relationships.

2.1 Query Representation
It is well known that a XML document can be
expressed as a tree. An example XML instance is
shown in Figure 1 and the following XPath queries
are asked against it.

Q1: /PLAY
Q2: /PLAY/PERSONA
Q3: /PLAY/ACT
Q4: /PLAY[TITLE=’Hamlet’]/ACT/TITLE
Q5: /PLAY[TITLE=’Hamlet’]/ACT[.=’Act II’]/SCENE

The XPath expressions have not considered the
structural relationship between the nodes in the
XML document. Suppose the relative position

between two XPath indicate the distance between
them and absolute position represents their locations
with respect to the root node. A simple method to
capture both the absolute and relative positions of
the nodes in the XML queries is by using subscripts
to augment the node labels.

In Fig. 1, each node is assigned an index ranged
from 1 to n, where n represents the number of
children of their corresponding parents. A node is
then identified by traversing the path from the root
node and concatenating the augmented index until
reaching itself. In other words, the 5 queries are
represented as:

Q1 -> Q(1)

Q2 -> Q(1,1)
Q3 -> Q(1,2)
Q4 -> Q(1,2,1) {constraints}

Q5 -> Q(1,2,2) {constraints}

The assignment of subscripts requires the structural
knowledge from the XML file. The enumeration has
the following four characteristics:

1) Each node has an unique identity to indicate
it’s absolute position within the XML tree;
2) The horizontal position among the siblings
can be inferred by the last index(dimension) of the
subscript;
3) The depth/level(vertical) of nodes are
indicated by “dimensions” of the subscript. In other
words, number of values represent the longest
possible location path; and
4) Relative position of two selected nodes can
be determined.

2.2 Primitive Measures
This section defines five measures which will be
used for our discussion of inter-query relationships
in section 2.3.

Definition 1
Length(Q) : for a given query Q(i1,i2,… ik) {constraints},
Length (Q) is k.

Fig. 1 Tree representation of an XML document

Play [1]

Persona [1] Act [2]

Title [1] Scene [2] Title [1]

Definition 2
VerticalDifference(Q1 ,Q2) or DV(Q1 ,Q2) : it is
defined as |Length(Q1) - Length(Q2)|.

Definition 3
Suffix(Q1 ,Q2) : it is the maximum length(number of
nodes) of sub-string overlapping between Q1 and Q2
counting from the last node in a reverse order. In
addition, 0 <= Suffix(Q1, Q2) <= max(Length(Q1),
Length(Q2)).

Definition 4
Prefix(Q1 ,Q2) : it is the maximum length(number of
nodes) of sub-string overlapping between Q1 and Q2
counting from the beginning. In addition, 0 <=
Prefix(Q1, Q2) <= max(Length(Q1), Length(Q2)).

Definition 5
Dist(Q1, Q2) = Length(Q1) + Length(Q2) - 2 *
Prefix(Q1, Q2)

Definition 5 denotes the difference nodes from the
query results in a XML tree. In short, the distance is
the number of edges traversed from one node to
another. That is, it is the ‘path distance’ between the
two queries.

Here, we use two examples to illustrate the first four
measures for our sample queries in section 2.1:

Case 1: Q2 => Q4

/PLAY/PERSONA => /PLAY/ACT/TITLE
DV (Q2,Q4) = 1, Suffix(Q2,Q4) = 0, Prefix(Q2,Q4) =
1.

Case 2: Q4 => Q5

/PLAY[TITLE=’Hamlet’]/ACT/TITLE =>
/PLAY/ACT/SCENE
DV (Q4,Q5) = 0, Suffix(Q4,Q5) = 0, Prefix(Q4,Q5) = 2.

The Path Equivalence Class (PEC) takes advantages
of the semantic context by separating the tree nodes
from data leaves[21]. The maximal prefix defined in
[21] is similar to our function Prefix() defined.
However, our encoding scheme does nothing with
the supporting of XML document indexing nor the
navigating algorithms for retrieval of approximate
query embeddings. Instead, it exploits the index path
(XPath) and the reformed expression to assist the
definition of inter-query relationships. In addition, it
also provides hints about user patterns and query
heuristics.

2.3 Types of Inter-Query Relationships
Here, we classify the inter-query relationships into
the five different types in accordance with the
measures already defined:

(1) Self(Γ1)
The Self() relationship, shown in Fig. 2, represents
the two queries, Q1 and Q2, access the same node. It
implies the following criteria are satisfied:

1. DV(Q1, Q2) = 0
2. Prefix(Q1, Q2) = Suffix(Q1, Q2)

(2) SamePath(Γ2)
The SamePath(), as shown in Fig. 3, is a type of
relationship that one encoded path is a sub-path of
the other and both are rooted at the same node. In
other words, the following criteria must be satisfied:

1. DV (Q1, Q2) ≠ 0
2. Prefix(Q1, Q2) = min{Length(Q2),

Length(Q1)}
3. Suffix(Q1, Q2) = 0

Hence, the parent-child and grandfather-grandchild
relationships are specific cases of Γ2. For direct
parent relationship, DV (Q1, Q2) has a value equal to
1. For the ‘Grandfather-Grandchild’ relationship,
DV (Q1, Q2) has a value greater than 1.

(3) Sibling(Γ3)
The Sibling(), as shown in Fig. 4, is a type of
relationship the node of the preceding query is a
sibling that of the following query. The following
criteria will be satisfied for this kind of relationship:

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Fig. 2 Relationship Γ1

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Fig. 3 Relationship Γ2

Fig. 7 Preprocessing for Inter-Relationships Mining

1. DV(Q1, Q2) = 0
2. Prefix(Q1, Q2) = Length(Q2) - 1 =

Length(Q1) – 1
3. Suffix(Q1, Q2) = 0

(4) Ancestor-Only(Γ4)
The Ancestor-Only(), as shown in Fig. 5, represents
the two nodes of the queries have a common
ancestor relationship but not the parent nor the same
path of each other. In other words, the queries are of
different levels in the hierarchy and the following
criteria must be satisfied:

1. DV(Q1, Q2) ≠ 0
2. Prefix(Q1, Q2) > 0
3. Prefix(Q1, Q2) <

min{Length(Q2), Length(Q1)}

Therefore, ‘Uncle-Nephew’ relationship is a specific
case of Γ4 whenever DV(Q1, Q2) for the queries
equals to 1.

(5) Cousin(Γ5)
The Cousin() relationship, as shown in Fig. 6,
represents the two nodes have a common ancestor
and same depth. However, the queries should not
have a common parent and the following criteria
must be satisfied for Γ5:

1. DV(Q1, Q2) = 0
2. Prefix(Q1, Q2) > 0
3. Prefix(Q1, Q2) <

min{Length(Q2), Length(Q1)}

3 Discovering Relationships
Although the usual support and confidence
framework to assess association rules has several
drawbacks[17], association rules mining are still
widely used in prediction [5,8], user customizations
[4] and profiling [7]. Particularly, we are interested
in their uses in caching of XML query patterns [16].
XML documents structure mining can provide
useful information for applications such as
prefetching and rating of documents.

In this section, we describe a method that performs
data mining on the patterns of XML queries with
respect to the inter-query relationships discussed in
Section 2.3. We aim to use the mining results as
hints to predict future queries and user access
patterns.

3.1 Steps of Relationship Mining

In order to obtain the association rules for inter-
query relationship. Firstly, we preprocess queries
from the query log and transform them (a series of
XPath expressions) into transactions as shown in
Fig. 7. Suppose ‘TranSet’ represents the set of
extracted transactions for user sessions, ‘Result’
denotes an atomic transaction for each session, and

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Fig. 4 Relationship Γ3

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Fig. 5 Relationship Γ4

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Play [1]

Persona
[1]

Act [2]

Title [1]

Scene
[2]

Title [1]

Fig. 6 Relationship Γ5

Obtain the query history for an XML document
Identify different user sessions in query log
TransSet = empty
For each user session {
 Result = empty
 (If the session is not empty) {
 For each sequential pair of queries {
 R = the inter-query relationship identified
 Result = Result ∪ R
 }
 TransSet = TransSet ∪ Result
}

‘R’ represents one inter-query relationship(item) for
a sequential pair of queries. In the preprocessing
step, we assume that each user session has issued a
sequence of queries Q1Q2Q3Q4Q5… Qk against the
same XML document. The corresponding sequence
of relationship would be R1R2R3R4… Rk-1 as shown
in Fig. 8. Therefore, each user session is represented
as a series of query relationships and forms an
atomic transaction. With many user sessions,
sequential mining algorithms can be applied .

4 Applications of Inter-Query
Relationships

Sequential association rules mined from the inter-
query relationships provide the access patterns of the
users in the past. With this information, various
applications can take advantage of it when
publishing large XML documents from RDBMS or
ORDBMS.

4.1 The StructCache Framework
In [23], we have introduced the StructCache
framework that takes advantage of the DTD in
design of replacement algorithm, ‘StructCache’. The
‘StructCache’ algorithm specifically handles XML
objects in a different way than other web objects.

In this paper, we try to enhance the prefetching
performance by incorporating the mined inter-query
patterns obtained in section 3. Fig. 9 shows the
revised internal structure of StructCache framework.
In short, the ‘Offline information’ represents the
identified query heuristics whilst ‘Prefetching
module’ denotes the software module that adopts
our suggested prefetching strategy. Hence, the
revised architecture allows queries caching and
prefetching. In next section, we will mention the
details of the prefetching stragtegy.

4.2 Prefetching of Web Objects
Mined query patterns can be used to support
prefecthing of web objects. Fig. 10 shows the role of
prefetching in queries answering in a user session.
Let Qi+1 and Qi+1

’ be the next and predicted data
query respectively and Ri+1 and Ri+1

’ denote the
actual (if exists) and predicted relationship issued or
to be issued by client respectively.

Rather than inferring Qi+1

’ directly, we adopt another
approach to infer the possible query by a predicted
relationship. As shown in Fig. 11, predicted
relationship Ri+1

’ is obtained from the sequential
association rules of relationship sequence and actual
queries sequence. The predicted results is set of
possible queries, {Qi+1

’}. For our prediction, we
utilize the last and second last executed query (Qi ,
Qi-1) instead of the whole query sequence in order to
minimize the complexity.

Fig. 10 Prefetching of queries using queries sequence

Fig. 8 Mapping relationships of XPath queries into a
transaction

Q1Q2Q3Q4Q5… …

 R1R2R3R4… … …

Q1 Q2
’

Q2
 Q3

’

Q3
 Q4

’

Q4

Fig. 9 Prefetching in revised StructCache framework

Fetched XML documents
with DTD as schema

XML documents
without DTD

Fetched non-
XML documents

DTD Extractor

DTD given

Classical object
caching engine

XML / non-
XML Queries
from clients

XML / non-
XML Queries
results

Cache Memory

Caching engine for
XML data

Prefetching module

Offline
information

The details of query generation based on query
relationships can be found in [22]. In [22] set
relationships are defined between the constraints of
antedent and consequent queries which are used by
an pre-processing algorithm for generic rules
extraction. Here, predicted result(s) of {Qi+1

’} is/are
prefetched to answer query Qi+1. Assume Ri is the
last derived relationship, each candidate Qi+1

’ is a
projection from function ⊗:

{Qi+1

’} = ⊗(Ri+1
’, Ri, Dist(Qi, Qi-1), Qi)

For each possible Qi+1

’, there is an accompanied
score (Si+1

’) and is obtained from a scoring function
(Ψ).

Si+1

’ = Ψ(Qi+1
’ , Ri+1

’, Ri, Dist(Qi, Qi-1), Qi)

where Ψ denotes a weighted combine function that
takes the mined rules {A}, Ri, Dist(Qi, Qi-1) and Qi
into consideration.

If association rule mining is performed to discover
the relationship patterns, we can develop the scoring
function based on the candidate itemsets.

Suppose α, β, µ ∈ [0,1] and α > β. Support() is a
function returns the support count for an association
rule whilst ItemLength() returns the item length of
the candidate itemset.

Assume that an association rule of the form at => aj is
used for the generation of Qi+1

’ where ItemLength(aj

| ∀ak∃aj ItemLength(aj) >= ItemLength(ak) ∧ aj,ak ∈
{A}) and Support(aj | ∀ak∃aj Support(aj) >=
Support(ak) ∧ aj,ak ∈ {A})

Case 1: Dist(Qi, Qi-1) <= 1 and Ri = Γ1
Si+1

’
 = ItemLength(at) / ItemLength(aj) *

(µ + Support(at) / Support(aj))

Case 2: Ri = Γ3
Si+1

’
 = ItemLength(at) / ItemLength(aj) *

(µ + Support(at) / Support(aj)) * (Dist(Qi, Qi-1))α

Case 3: Others
Si+1

’
 = ItemLength(at) / ItemLength(aj) * (µ +

Support(at) / Support(aj)) * (Dist(Qi, Qi-1))β

Note that the score is affected by support counts,
antedent’s item length, and distance function. By
adjusting parameters α, β, µ, we can avoid biasing
to a single factor. Moreover, we are also able to
obtain an optimal scoring function for a XML
document by empirical results.

In this paper, we suggest 3 approaches to perform
prefetching. The first approach is to select the
predicted query/queries with top score. The second
approach selects queries with scores higher than a
given threshold. The last approach is to select the
set of queries with scores higher than the score
obtained with a reference association rule.

Let Antedent() be a function returns the antedent of
an association rule and i denote the number of
queries executed in a user session, prefetching is
only done iff the following creteria are met:

1. Si+1
’ > 0

2. Antedent(at) ⊆ ∀t ({Ri
’ }| {Ri

’ }={Ri-1
’ }

∪ Ri ∧ 1 <= t <= i)

The first criterion indicates that we would prefetch
query if and only if there is at least one at such that
the corresponding Si+1

’ has non-zero value. The
second criterion requires the antedent of at to appear
in the possible enumeration of relationship sequence
beginning from Ri

’. Hence, length of each
enumeration is different and the number of
enumerations will be i if i >= 1 or 0 otherwise.

5 Conclusion
In this paper, we describe a framework to support
prefetching of web objects through mining of inter-
query relationships. We start with a presentation of a
method to identify the possible relationships
between XML queries. With a query log, sessions of
enumerated query relationships can be formed.
Through the mining of the relationships, we have
developed a prefetching approach that makes use of
the mined rules.

6 Acknowledgement
The work reported in this paper was partially
supported by Hong Kong CERG Grant – PolyU
5094/00E.

Fig. 11 Prefetching with relationship sequence

 Ri-3 Ri-2 Ri-1 Ri Ri+1
’

Qi-4 Qi-3 Qi-2 Qi-1 Qi
 Qi+1

References:

[1] W3C, XML Path Language (XPath) 2.0,
http://www.w3.org/TR/xpath20, Dec 2001

[2] R. Agrawal, T. Imielinski, and A. Swami,
“Mining association rules between sets of items
in large databases”, In Proceedings ACM
SIGMOD Intl. Conf. Management of Data, pages
207-216.

[3] Qiang Yang, Henry Haining Zhang, Ian Tian Yi
Li, “Mining web logs for prediction models in
WWW caching and prefetching”, KDD 2001,
2001

[4] Andreas Geyer-Schulz and Michael Hahsler,
“Evaluation of Recommender Algorithms for an
Internet Information Broker based on Simple
Assocation-Rules and on Repeat-Buying
Theory”, Proceedings of the WebKDD 2002,
2002

[5] E. Frias-Martinez and V. Karamcheti, “A
Prediction Model for User Access Sequences”,
Proceedings of the WEBKDD Workshop: Web
Mining for Usage Patterns and User Profiles,
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, July
2002

[6] Robert Cooley, Bamshad Mobasher, and Jaideep
Srivastava. “Data Preparation for Mining World
Wide Web Browsing Patterns”, Journal of
Knowledge and Information System 15-332.

[7] F. Abbattista, M. Degemmis, N. Fanizzi, O.
Licchelli, P. Lopes, G. Semeraro, F. Zambetta,
“Learning User Profiles for Content-Based
Filtering in e-Commerce”, Proceedings
Convegno Associazione Italiana per Intelligenze
Artificale(AIIA 2002), Sep 2002

[8] A. Nanopoulos, D. Katsaros, and Y.

Manolopoulos, “Effective Prediction of Web-
user Access : A Data Mining Approach”, In
Proc. of Workshop on WebKDD 2001, San
Francisco, CA, Aug 2001

[9] Chen, L. and Rundensteiner, EA “ACE-XQ: A
Cache-aware Xquery Answering System”,
ACM SIGMOD Associated Workshop on the
Web and Databases(WebDB), Madison,
Wisconsin, June 2002

[10] Chen L., Wang. S. and Rundensteiner, EA “A
Fined-Granied Replacement Strategy for XML
Query Cache”, ACM International Workshop
on Web Information and Data

Management(WIDM), McLean, Virginia,
November 2002

[11] Carlo Sartiani, “A Framework for Estimating
XML Query Cardinality”, WebDB 2003, Jun
2003

[12] Dongwon Lee and, Wesley W. Chu, "Semantic
Caching via Query Matching for Web Sources",
Proc. ACM CIKM Intl Conference on
Information and Knowledge Management, Nov
2-6, 1999

[13] Dan Duchamp, “Prefetching Hyperlinks.
USENIX Symposium on Internet Technologies
and Systems”, AT&T Labs, 1999

[14] L. Fan, P. Cao, W. Lin, and Q. Jacobson, "Web
prefetching between low-bandwidth clients and
proxies: Potential and performance", In
Proceedings of the Joint International
Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS '99),
Atlanta, GA, May 1999

[15] Edith Cohen, Haim Kaplan, “Prefetching the
Means for Document Transfer: A New
Approach for Reducing Web Latency”,
INFOCOM 2, 2002

[16] Liang Huai Yang, Mong Li Lee, Wynne Hsu,
“Efficient Mining of XML Query Patterns for
Caching”, School of Computing National
University of Singapore VLDB-03, 2003

[17] Fernando Berzal, F., Blanco, I., Sánchez, D., &
Vila, M., “A new framework to assess
association rules”, In F. Hoffmann (Ed.),
Advances in intelligent data analysis. Fourth
international symposium IDA'01, 2001

[18] P. Ciaccia and W. Penzo, “Adding Flexibility to
Structure Similarity Queries on XML Data”, In
Proceedings of the 5th International
Conference on Flexible Query Answering
Systems (FQAS 2002), Copenhagen, Denmark,
October 2002

[19] Laurentiu Cristofor, “ARMiner Project”,
UMass/Boston, Spring 2000

[20] W. Penzo, “Integration of Semantic and
Structure Similarity for XML Data Ranking”,
In Atti del Decimo Convegno Nazionale su
Sistemi Evoluti per Basi di Dati (SEBD 2002),
Portoferraio, Italy, June 2002

[21] P. Ciaccia and W. Penzo, “The Collection Index
to Support Complex Approximate Queries on
XML Documents”, In Proceedings of the First
International XML Database Symposium
(XSym03), Berlin, Germany, September 2003

[22] Vincent Ng and Chi Kong Chan, “Mining
Patterns for Prefetching XML Queries”,
Department of Computing, The Hong Kong
Polytechnic University, 2004

[23] Shiu Hin Wang and Vincent Ng, “Structural
Caching XML data for Wireless Accesses”, In
Workshop on Applications, Products and
Services of Web-based Support Systems, Halifax,
Canada, October 2003

