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CANADA
Abstract term recursion relation
We present a new parallel algorithm for the fast generation o Ti+1(X) = 2XTi(X) — Ti—1(X) , 1)

discrete Chebyshev polynomials. By fast we mean that the tim ) ]
wherei > 1, To(x) = 1, andT1(X) = x. Below, we list the first

complexity of the obtained parallel algorithm is of ord&togn), ]
seven Chebyshev polynomials

wheren is the degree of thén+ 1) polynomial to be generated,

and the number of available processors is assumed to be equal To(X) =1,
to a polynomial order of the input size. The parallel aldorit 383 =X 71+2x2
2 = - 5
makes extensive use of parallel algorithms for the wellvkmo Ta(X) = —3x+ 4%,
prefix computation problem. The parallel generation of orthogo-  T4(X) = 1—8x? +8x* @
, o N Ts(X) = 5x— 203 4- 16x°
nal polynomials has numerous applications in approximéttie- S '
POy PP PP To(X) = —1+18x%> — 48¢* + 328 .

ory, interpolation, and numerical analysis.
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We also observe the following:
matrix multiplication, discrete Chebyshev polynomials.

e SinceTi(—x) = (—1)' Ti(x), this makesT;(x) an even func-
1 Introduction tion of x wheni is even, and an odd function &fwheni is

odd.

1.1 Definition and Properties
e The nonzero coefficients d§(x) are integers that alternate

The Chebyshev polynomials were discovered more than argentu  in sign whereas the leading coefficient, that is the coefficie
ago by the Russian mathematici@afnouty Lvovitch Chebyshev of X in Ty(x), is always a positive integer.

Denoted byT;(x) for i > 0, they satisfy the orthogonality relation- ) o ) A )
e The leading coefficient df; (x) is equal to 2°* fori > 0 and

ship given by, 1 otherwise

/ TiCJT; ()w(x) dx=0, e Any Ti(x), i > 0, is determined b){ii + 1| nonzero coeffi-
fori+ j, and cients.

/ T2 X) dx= < ;ﬁT[’ Ig: : f 8’ Thus, the Chebyshev polynomials aimplein the sense that any

Ti(x) is completely specified by a finite number of coefficcients.
while assuming a weighting functiow(x) = (1 — xz)*% [4]. Itis this finiteness that makes these polynomials partibusaiit-
These polynomials can be obtained by using the followingehr able as approximations to more complicated functions [15].



10 0 0 0 0 ©0 the parallelization of the prefix computation problem. Wegent
0 1 O 0 0 0 O . .
1 0 2 0 0 0 0 without proof the following lemma [12].
S= 0 -3 0 4 0 0 O . ) .
1 0 -8 0 8 0 0 Lemma 1l The n input parallel prefix computation can be per-
0 5 0 -20 0 16 0 formed inlogn] time with n processots
| -1 0 18 0 —48 0 32|

Below, we present a detailed description of the paralleliyre

Figure 1: The matriSwhenn = 6. . : . .
'9u oW algorithm and summarize the required computations.

PROCEDURE Parallel.Prefix(n, q)
LetS=[S k] be an(n-+1) x (n+1) matrix in which the(i + 1) FOR j:=0TO [logn] —1DO

row consists of the coefficients @f(x), i.e., FORALL i€ {2/ +1,...,n} DO IN PARALLEL
| new(i] := qfi] o ofi — 2]
=5 S X, END FORALL
k=0 FORALL i€ {2/ +1,...,n} DO IN PARALLEL
and whereS i represents thé¢k + 1)t coefficient of Ti(x). We q[i] := newq|i]
note thatSis a lower triangular matrix whose entries satisfy a END FORALL
doubly-indexed recursion relation given by END FOR

END PROCEDURE {(q[i] containsgz o 20 --- o G}
= 2541 S-1k. 3 . .
FLe= 2~ Sk ) We observe that the outBOR-DOloop is executedlogn] times

for 0<k<i<n-—1and assuming th& 1 =S 1y = O for whereas the two inneFORALL-DO-IN-PARALLELUoops are
0<i,k<n. From the previous discussion, the diagonal entrig&Ch executed once every pass. We assume that identi¢al arit

of matrix S— which correspond to the leading coefficients of tH€UC processors, each of which can perform any one of the bi-
nary operations of-, —, x, or = in unit time, are available and

may be reused. Moreover, a floating-point arithmetic opamas

PR
Si= { il , :; : ig’ (4) assumed to take a single step while all issues related to nyemo

Chebyshev polynomials — are then yielded as follows

)

access and programming models are ignored.
Furthermore, starting with a nonzero diagor&ig found to depict

alternating zero and nonzero subdiagonals . This is duetodt- 2 Parallel Generation

even property of these polynomials mentioned earlier. feidu

displays the matrixfor n= 6. Given a particular value fon, our objective is to generate the
set of all Chebyshev polynomial(x), T1(x), ..., Ta(X). Since
1.2 Parallel Prefix Computation To(x), and T1(x) are known in advance, our task is then re-

duced to the calculation of the— 1 Chebyshev polynomials:

The prefix computation problem is to compute ralhitial prod-
T2(X), T3(X), . .. , Ta(X).

uctsgroqggo---ogq, for 1 <i < n of a setQ of n elements{qy,

02, --- , On}, Whereo is an associative binary operation on the set . .
) _ o 2.1 Derivation of the Parallel Algorithm

Q. The prefix computation is a powerful and common operation

that is used in many algorithms. It occurs in the evaluatioth aysing the fact thaSis a lower triangular matrix in conjunction

generation of polynomials, general Horner expressions.gam- ith Equation (3) and Equation (4) yields the following

eral arithmetic formulae. In addition, its utilization che seen

in the solution of linear recurrences, carry look-aheaduiis, Sk = 0, for O<i<ks<n.

ranking and packing problems, and scheduling problemsdin %he zero subdiagonals are then given by

dition, it is extensively used in the design of parallel aitions,

partly because it is useful in reallocating processors hpsab- Si-1=Sj3="=9,5=0,

lems [6, 7, 8]. Aparallel prefix algorithmrepresents the result of  *Throughout this paper lag= log, n, unless stated otherwise.




for1<i<nandd=2a+1,where 0< a < |3]if nis odd; and for0<i <n-—4. Since the ternx?! is given by Equation (7), itis
0<a< Lg — 1] if nis even. On the other hand, the entries in theabstituted into the above equation to yield
first nonzero subdiagonal conform to

s s SRS (10
Si2=25_1j-3—S-2i-2, %) = T T2 X

. L It can be shown that the coefficient mat8kas exacthd = | 2
for 2<i<n. We also note that the entries in th& nonzero w=13]

_ . nonzero subdiagonals. Thus, we need to generalize the efierm
subdiagonal are equal ®;_o, where X <i <n. _ _
’ tioned results. In order to do this, we allow the column vecto

0 ini _
Let X7 be a column vector of length+1 containig all the X' to denote the vector containing the entries of itAeonzero

. - . st O . .
diagonal entries. It follows that th@+ 1) entry of X° is equal subdiagonal, wheread corresponds to théj + 1)t element in

o that particular subdiagonal. It follows that the remainiamnzero
X,O 5 ©) subdiagonals of matri$ have their entries satisfying the follow-
o ing equations
wherei varies from 0 ton. Next, we defineX! to be a column 3

- 2Xi:il - Xi2

vector that contains the— 1 entries of the first nonzero subdiag- X3 —2X2 42Xt — P
onal in matrixS. Thus, the first two entries in this subdiagonal are = X', —2x%, +2%3, —XP,
now given by

{ X, =S 2., Xt = 2%t -
xij;g = S—l7i—3 ) 2Xi4,1_2Xi3_1+2Xiz,l—2xil,1+xio

= =2t 22X -2 2t X0,
where 2< i < n. Consequently, by substituting the above equal-

ities into Equation (5) and shifting up the indices by two,eavn

equivalent equation can be written as follows and
d—
Xt =2xt - X0, ) =gl -x" 1 )
= 2)951*2Xid—_11+2xi—_1 *2"'+2>§1'171*>§ (11)
for 0<i <n—2. We observe that Equation (7) is similar tfirat- =2 =2 2R 22X X

order linear recurrencerelation. Similarly, the second nonzer(e/ve note that the algebraic signs of the coefficients of thasam

subdiagonal oE has entries that satisfy the following formula the right hand side depend solely on the valud.oFhat is, ifd is

even, then the coefficient &' , is negative; otherwise it is pos-
Si-4=25-1j-5—S-2i-4, ® . . .
itive. By incorporating thet and thex symbols, Equation (11)

for 4 <i <n. The last term in the above equation is equatq,, can be written as

which represents th@g — 3)rd entry in the first nonzero subdiago- de . led ledfl L ledfz n 2X|1 - X|O
d=2xd, —2x97 a2 LFX
nal. We then definX? as a column vector that contains the 3 = 42X FoxZ  £2X3 o4 2Xd  FXO.

entries of the second nonzero subdiagonal and allow for tie fi
two terms in Equation (8) to be redefined as follows The main point, here, is to notice that the coefficients oténms
on the right hand side of the equation of a)qy do alternate in
{ X2 4=Si-a, sign, while the firstd coefficients of)(ij_1 in the same equation

2 = _ 11— .
X5 =S-1i-s are always equal to 2 in the absolute-value sense. Theservect

As a result, the fo||owing relation is obtained after appmw recursion relations allow us to calculate all ties for 1 <i<d

shifting up the indices provided that the vector containing all the diagonal estri¢’,
is available. The length of all column vectox8,X1,... . X% is
X2 =2x2 - Xt (9) assumed to be equal o+ 1.



The above recurrence formulae can be conveniently putina Yy = MiMpY_1,
matrix form as

x; 2 0 O 0 —xig‘ 'xii_l‘ Y2 = MaMiMoY_1,

X -2 2 0 0 X X1 :

X3 2 -2 2 0 X0 || X3,

X -2 2 -2 0 X || X

X =] 2 -2 2 0 X0 || x>, |- Yoz = Mn3Mnyg... MaMiMoY g,
xd +2 F2 F2 - 2 FXO xd and

1] L o o 0.0 1]| 1 |

Yoz Mn_2Mn_3 ... MaM1MoY_1. (13)

We observe that the entogo of the above square matrix is pre-
i i h i i . W . . .
ceded by a minus sign whenewris odd, and vice versa eTherefore, in addition t&_;, n— 1 square matrices Mo, M,

letY; denote the column vector on the left hand side of the preyl|? ' Mn_s, My — are needed as inputs for the computation of

ous equation. This is @+ 1) x 1 vector containing as its first the entries in the nonzero subdiagonal&atetC; be a(d+ 1) x

elements thé" entry of each nonzero subdiagonal. (ts+ 1)t (d+ 1) matrix such that

entry is equal to 1. It follows that the othéd + 1) x 1 vector

appearing on the right hand side of the same equation is émual Ci=MiMi_1 ... MoMi Mo,

Yi_1. Furthermore, we alloviv; to be the square matrix of rank

d+ 1 shown in the above equation. This matrix can be easily dor 0 < i < n— 2. ConsequentlyY, = G;Y_; wherei varies

tained, for the entries in the last column are known in adganfrom 0 ton—2. The computation o€y, Cy, ... , Ch_3, and
and are given by Equation (6). A new and more concise equatin, essentially calculates thre— 1 prefix products of the set of
is defined as follows (d+1) x (d+ 1) matrices{Mo, M1, M2, ..., Mn_3, Mn_2}. More-

over, we observe that sinde ; is equal to a column vector of
Yi=MiYi_1. (12) i L .
zeros, and a last entry of 1, the final multiplicationyaf with C;
Because it is known that, for a given valuergfthe number to calculatey; for 0 < i < n—2 is not needed. This is because the

of entries in the diagonal of matr@is equal ton+ 1, and since vectorsYy, Y1, ... , andY,_» can be determined by just taking the
a zero subdiagonal — af zeros — precedes the first nonzerfast column inCo, Cy, ... , andCn_», respectively.
subdiagonal (as one proceeds downward from the diagohal), t
the first nonzero subdiagonal has exactly 1 entries. Since no2.2 Construction of the Matrix S
other nonzero subdiagonal contains more elements, weumacl

. o . ot oo
that the index in Equation (12) varies from 0 to— 2 to yield As mentioned earliely; yields the(i + 1) entries in each of the

the needed entries of tllenonzero subdiagonals. Moreover, Wgossible honzero subdiagonals. Due to the fact that the aumb
assume tha 1 =S 14 = 0for 0< i,k < n. This implies that of subdiagonal entries linearly decreases from right to(ied.,
" 7 - going from columm to column 0 and starting from the diagonal),

C vl A _
igl 8 not all of the entries in th¥’s are going to be used to generate the
)éi 0 Chebyshev polynomials. Therefore, onfgeYs, ..., andY,_, are
v Xgl 0 computed, we are left with the task of determining the magiirx
R AT B B I order to obtain the coefficients of all the Chebyshev polyiatsn
; 0 The following is an algorithm for constructirtg
X .
1 1 The Construct.S Algorithm

Hence,Y_1 can be readily obtained at no computational cost. |13’|¥put nd—
repeatedly applying Equation (12) for0i < n— 2, we obtain the S
following results Output. The(n+ 1) x (n+ 1) coefficient matrixS.

|5], andY; for0<i<n-2.

Yo = MoY_.1, Step 1. Set§ =0, for0<i<k<n.



Step 2. SetSj = XP, for0<i<n.

Step 3. Use the following procedure to set the entries in the zero
subdiagonals equal to 0.
FORiIi=1TO nSTEP2DO

IFi<nTHEN DO
BEGIN
FOR j=0TO n—iDO
S;j=0
i=i+1
END FOR
END {of if-then}
END FOR
The following two steps allow us to obtain the nonzero en-
tries of matrixSfrom the calculated vectoiy, Y1,... ,Yh_2.

Step 4. If nis even, then:

4.1 The firstd elements ofyy are the first entries of the
nonzero subdiagonals.

e The following code gives the procedure to extract
the firstd entries ofYp.
FOR j=1TO dDO
Sj0=Yo(J)
END FOR
4.2 Extract the firsd — 1 entries of bothy;, andY,, where
Y1 (Y2) has the second (third) entries of the remaining
d — 1 nonzero subdiagonals.

e Extraction procedure fron; :
FORj=1TOd-1DO
Sj+11=Y1(j)
END FOR
e Extraction procedure fron :
FORj=1TOd—-1DO
Sji22=Y2(j)
END FOR
4.3 Repeat £ by replacingy; andY, with Y3 andYy, and
d—1withd—2, etc... until Y,,_» is reached (the en-

X 0 0 0 0 0 O

o X 0 0 0 0 O

Yo(1) o Xx? 0 0 0 O

S= 0 Yi(1) X9 0 0 O
Yo(2) 0 Ya(1) o X 0 o

0 Yi(2) 0 Ys(1) 0 X2 o

| Yo(3) 0 Y2(2) 0 Ya1) 0 X |

Figure 2: lllustration of the algorithm Constru8twhenSis a
7 x 7 matrix (1= 6).

e This code constitutes the procedure needed to ex-
tract the firstd entries ofYj.
FOR j=1TO dDO
S2j.0 =Yo(j)
END FOR
e This is the procedure needed to extract the first
entries ofY;.
FOR j=1TO dDO
Sj+11=Y1(])
END FOR

5.2 Use only the firstl — 1 entries of bottY,, andYs, where
Y2 (Y3) has the third (fourth) entries of the remaining
d — 1 nonzero subdiagonals.

e Extraction procedure frons :
FORj=1TOd-1DO
S22 ="Ya(j)
END FOR
e Extraction procedure fronds :
FORj=1TOd-1DO
Sj+33=Y3(j)
END FOR

5.3 Repeat 2 by replacingY, andYs with Y, andYs and
d—1withd—2, etc... until Y,_» is processed (the
entries inSare represented ;44 andSj 55, re-

spectively).

tries inSare represented (833 andSj.4 4, respec- Atthe end, the matri$is obtained.

tively).

Example 1 Figure 2 illustrates the use of the Construct.S algo-

Step 5. If nis odd, then:

rithm in the case of &= 6, d = 3, and having ¥, Y1, ..

., Y4 avail-

5.1 The firstd entriesYy (Y1) are the first (second) entries ofible.

thed nonzero subdiagonals.



2.3 The Parallel Algorithm and its Complexity in [logn] time with n processors. Hence, by combining these

two well known results, we deduce that the parallel prefixoalg

We call our new parallel algorithm tHeGCP Algorithm where fithm can be utilized to comput, Cr, ... , Cn_» in O(logn)

PGCP stands for Parallel Generation of Chebyshev POIyﬂsmISarallel arithmetic steps while using(n®) processors in paral-

It is described as follows: . o o .
lel, where matrix multiplication is the associative binayera-

The PGCP Algorithm tion employed in the algorithm. As result, the PGCP alganith

input. n,d = |2, To(x), XS, Ta(x), ande. computes the Chebyshev polynomials@ilogn) parallel time
with O(n*) parallel processors.

Output. Ta(x), T3(X), ..., Tn(X).

Step 1. Compute in parallel the diagonal entri§, ... ,X°. 3 Related Work

Step 2. Form then—1 (d+1) x (d+ 1) matricesMg, My, ..., __ ) ) ) )
M Egecidjlu and Ko¢ presented in [5] a sequential algorithm and its
n—2-

parallel version to construct an orthogonal family of palymials
Step 3. Compute in parallel the—1(d + 1) x (d+ 1) matrices p;j(x) for 0 <i < n with respect to a given discrete inner product
Co, Cq,...,Cho2. given by

Step 4. Formthen—1(d+1) x 1 column vector¥p, Y1, ..., Yh—2
by taking the last column d%g, Cy, ...,C,_2, respectively.

(009 V() = 5 Wi W),
u(x), v(x J;)wjux,vx,

Step 5. Use the Construc®.algorithm to form the matrixe. .
and a three-term recursion formula
Step 6. Get To(x), T3(X), ..., Ta(X) by applying the following

equation:Ti(x) = T}_o Sk Pir1(X) = (X—ai)pi(X) = Bipi-1(X) ,

At the end of Step 6, all the Chebyshev polynomials are gengj-0 < i < n— 1 while havingp_1(x) = 0 andpo(x) = 1. The

ated. constants; andf3; are determined as follows
Theorem 1 The new PGCP algorithm require3(logn) parallel o — XPO).Pi(x) B — (pi (X),pi (X))

. . . . P pi0.ei) 0 F T {pima(¥).pica(x))
arithmetic operations to compute theHi Chebyshev polynomi-

als T(x), Tu(X), ... , T(x) with O(n%)
parallel.

processors working in the generated polynomials are monic polynomials. This-algo
rithm generates both the coefficients and values, thatis) for

i , . 0 <, j < n, of the orthogonal polynomials. However, the input
Proof. An inspection of the PGCP algorithm reveals that only ) i
_ ) to the parallel algorithm is dependent on the use of two detta s
two steps involve computations, namely, Step 1, and Stem 3. | o . )
. of n+1 distinct values representing the node poijtsind pos-
Step 1,n—1 concurrent processors can compute therlast di- ] ] ] )
] o ] ] itive weightsw; for 0 < j < n, respectively. Furthermore, this
agonal entries of matri8in [log(n—1)] parallel arithmetic steps. ) ) o
) ) 1 parallel algorithm does not employ the prefix computatioftsn
Since, the sef2,2<,... ,2" "} is to be calculated here, a parallel thodol
methodology.
prefix algorithm can be used where all the inputs to the dlgrit o

are equal to 2, and multiplication is employed as the asticeia Other related work involved polynomial interpolation. pope

binary operation. Likewise, Step 3 basically calculateparal- we are givem+ 1 pairs of numbergx;, i), i =0,1,...,nand an
lel then— 1 prefix matrix products of the— 1 (d+1) x (d+ 1) arbitrary real-valued functiof, such that
matrices of the sefMg,M1,... Mh_2}. The output is equal to
the set{Cy,Cy,... ,Ch_2}. It is known that the product of two

n x n matrices can be achieved @(logn) time while having

1. f is defined on the; over an intervala, b],

2.y = f(x),and
O(n®) processors workng in parallel [2]. Furthermore, it is well

known that then input parallel prefix computation is performed 3. a<Xxg <X <X < ... <X, <h.
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