
A New Parallel Algorithm For Fast Generation of Discrete Chebyshev
Polynomials

BELGACEM BEN YOUSSEF
School of Interactive Arts and Technology

Simon Fraser University
2400 Central City, 10153 K. G. Highway

Surrey, British Columbia, V3T 2W1
CANADA

Abstract

We present a new parallel algorithm for the fast generation of

discrete Chebyshev polynomials. By fast we mean that the time

complexity of the obtained parallel algorithm is of orderO(logn),

wheren is the degree of the(n+1)st polynomial to be generated,

and the number of available processors is assumed to be equal

to a polynomial order of the input size. The parallel algorithm

makes extensive use of parallel algorithms for the well-known

prefixcomputation problem. The parallel generation of orthogo-

nal polynomials has numerous applications in approximation the-

ory, interpolation, and numerical analysis.

Key-Words: -Parallel algorithms, parallel prefix computation,

matrix multiplication, discrete Chebyshev polynomials.

1 Introduction

1.1 Definition and Properties

The Chebyshev polynomials were discovered more than a century

ago by the Russian mathematicianPafnouty Lvovitch Chebyshev.

Denoted byTi(x) for i ≥ 0, they satisfy the orthogonality relation-

ship given by,
∫ 1

−1
Ti(x)Tj(x)w(x)dx= 0 ,

for i 6= j, and
∫ 1

−1
T2

i (x)w(x)dx=

〈 π
2 , for i 6= 0,

π , for i = 0,

while assuming a weighting functionw(x) = (1− x2)−
1
2 [4].

These polynomials can be obtained by using the following three-

term recursion relation

Ti+1(x) = 2xTi(x)−Ti−1(x) , (1)

where i ≥ 1, T0(x) = 1, andT1(x) = x. Below, we list the first

seven Chebyshev polynomials

T0(x) = 1 ,

T1(x) = x ,

T2(x) = −1+2x2 ,

T3(x) = −3x+4x3 ,

T4(x) = 1−8x2 +8x4 ,

T5(x) = 5x−20x3 +16x5 ,

T6(x) = −1+18x2−48x4 +32x6 .

(2)

We also observe the following:

• SinceTi(−x) = (−1)i Ti(x), this makesTi(x) an even func-

tion of x when i is even, and an odd function ofx when i is

odd.

• The nonzero coefficients ofTi(x) are integers that alternate

in sign whereas the leading coefficient, that is the coefficient

of xi in Ti(x), is always a positive integer.

• The leading coefficient ofTi(x) is equal to 2i−1 for i > 0 and

1 otherwise.

• Any Ti(x), i ≥ 0, is determined by⌊ i
2 + 1⌋ nonzero coeffi-

cients.

Thus, the Chebyshev polynomials aresimplein the sense that any

Ti(x) is completely specified by a finite number of coefficcients.

It is this finiteness that makes these polynomials particularly suit-

able as approximations to more complicated functions [15].

1

S=





















1 0 0 0 0 0 0
0 1 0 0 0 0 0

−1 0 2 0 0 0 0
0 −3 0 4 0 0 0
1 0 −8 0 8 0 0
0 5 0 −20 0 16 0

−1 0 18 0 −48 0 32





















Figure 1: The matrixSwhenn = 6.

Let S= [Si,k] be an(n+1)×(n+1) matrix in which the(i+1)st

row consists of the coefficients ofTi(x), i.e.,

Ti(x) =
i

∑
k=0

Si,k xk
,

and whereSi,k represents the(k+ 1)st coefficient ofTi(x). We

note thatS is a lower triangular matrix whose entries satisfy a

doubly-indexed recursion relation given by

Si+1,k = 2Si,k−1−Si−1,k , (3)

for 0 ≤ k < i ≤ n− 1 and assuming thatSi,−1 = S−1,k = 0 for

0 ≤ i,k ≤ n. From the previous discussion, the diagonal entries

of matrixS— which correspond to the leading coefficients of the

Chebyshev polynomials — are then yielded as follows

Si,i =

{

2i−1, if i > 0 ,

1, if i = 0.
(4)

Furthermore, starting with a nonzero diagonal,Sis found to depict

alternating zero and nonzero subdiagonals . This is due to the odd-

even property of these polynomials mentioned earlier. Figure 1

displays the matrixS for n = 6.

1.2 Parallel Prefix Computation

The prefix computation problem is to compute alln initial prod-

uctsq1 ◦q2 ◦ · · · ◦qi , for 1≤ i ≤ n of a setQ of n elements{q1,

q2, . . . , qn}, where◦ is an associative binary operation on the set

Q. The prefix computation is a powerful and common operation

that is used in many algorithms. It occurs in the evaluation and

generation of polynomials, general Horner expressions, and gen-

eral arithmetic formulae. In addition, its utilization canbe seen

in the solution of linear recurrences, carry look-ahead circuits,

ranking and packing problems, and scheduling problems. In ad-

dition, it is extensively used in the design of parallel algorithms,

partly because it is useful in reallocating processors to subprob-

lems [6, 7, 8]. Aparallel prefix algorithmrepresents the result of

the parallelization of the prefix computation problem. We present

without proof the following lemma [12].

Lemma 1 The n input parallel prefix computation can be per-

formed in⌈logn⌉ time with n processors1.

Below, we present a detailed description of the parallel prefix

algorithm and summarize the required computations.

PROCEDURE Parallel.Prefix(n,q)

FOR j := 0 TO ⌈logn⌉−1 DO

FORALL i ∈ {2 j +1, . . ., n} DO IN PARALLEL

newq[i] := q[i]◦q[i −2 j]

END FORALL

FORALL i ∈ {2 j +1, . . ., n} DO IN PARALLEL

q[i] := newq[i]

END FORALL

END FOR

END PROCEDURE {q[i] containsq1◦q2◦ · · · ◦qi}.

We observe that the outerFOR-DOloop is executed⌈logn⌉ times

whereas the two innerFORALL-DO-IN-PARALLELloops are

each executed once every pass. We assume that identical arith-

metic processors, each of which can perform any one of the bi-

nary operations of+, −, ×, or ÷ in unit time, are available and

may be reused. Moreover, a floating-point arithmetic operation is

assumed to take a single step while all issues related to memory

access and programming models are ignored.

2 Parallel Generation

Given a particular value forn, our objective is to generate the

set of all Chebyshev polynomialsT0(x), T1(x), . . . , Tn(x). Since

T0(x), and T1(x) are known in advance, our task is then re-

duced to the calculation of then− 1 Chebyshev polynomials:

T2(x),T3(x), . . . ,Tn(x).

2.1 Derivation of the Parallel Algorithm

Using the fact thatS is a lower triangular matrix in conjunction

with Equation (3) and Equation (4) yields the following

Si,k = 0 , for 0≤ i < k≤ n .

The zero subdiagonals are then given by

Si,i−1 = Si,i−3 = · · · = Si,i−δ = 0 ,

1Throughout this paper logn = log2 n, unless stated otherwise.

2

for 1≤ i ≤ n andδ = 2α+1, where 0≤ α ≤ ⌊n
2⌋ if n is odd; and

0≤ α ≤ ⌊n
2 −1⌋ if n is even. On the other hand, the entries in the

first nonzero subdiagonal conform to

Si,i−2 = 2Si−1,i−3−Si−2,i−2 , (5)

for 2 ≤ i ≤ n. We also note that the entries in thekth nonzero

subdiagonal are equal toSi,i−2k, where 2k≤ i ≤ n.

Let X0 be a column vector of lengthn+ 1 containig all the

diagonal entries. It follows that the(i + 1)st entry ofX0 is equal

to

X0
i = Si,i , (6)

wherei varies from 0 ton. Next, we defineX1 to be a column

vector that contains then−1 entries of the first nonzero subdiag-

onal in matrixS. Thus, the first two entries in this subdiagonal are

now given by

{

X1
i−2 = Si,i−2 ,

X1
i−3 = Si−1,i−3 ,

where 2≤ i ≤ n. Consequently, by substituting the above equal-

ities into Equation (5) and shifting up the indices by two, a new

equivalent equation can be written as follows

X1
i = 2X1

i−1−X0
i , (7)

for 0≤ i ≤ n−2. We observe that Equation (7) is similar to afirst-

order linear recurrencerelation. Similarly, the second nonzero

subdiagonal ofShas entries that satisfy the following formula

Si,i−4 = 2Si−1,i−5−Si−2,i−4 , (8)

for 4≤ i ≤ n. The last term in the above equation is equal toX1
i−4,

which represents the(i−3)rd entry in the first nonzero subdiago-

nal. We then defineX2 as a column vector that contains then−3

entries of the second nonzero subdiagonal and allow for the first

two terms in Equation (8) to be redefined as follows

{

X2
i−4 = Si,i−4 ,

X2
i−5 = Si−1,i−5 .

As a result, the following relation is obtained after appropriately

shifting up the indices

X2
i = 2X2

i−1−X1
i , (9)

for 0≤ i ≤ n−4. Since the termX1
i is given by Equation (7), it is

substituted into the above equation to yield

X2
i = 2X2

i−1−2X1
i−1 +X0

i
= −2X1

i−1 +2X2
i−1 +X0

i .
(10)

It can be shown that the coefficient matrixShas exactlyd = ⌊n
2⌋

nonzero subdiagonals. Thus, we need to generalize the aformen-

tioned results. In order to do this, we allow the column vector

Xi to denote the vector containing the entries of theith nonzero

subdiagonal, whereasXi
j corresponds to the(j + 1)st element in

that particular subdiagonal. It follows that the remainingnonzero

subdiagonals of matrixShave their entries satisfying the follow-

ing equations

X3
i = 2X3

i−1−X2
i

= 2X3
i−1−2X2

i−1 +2X1
i−1−X0

i
= 2X1

i−1−2X2
i−1 +2X3

i−1−X0
i ,

X4
i = 2X4

i−1−X3
i

= 2X4
i−1−2X3

i−1 +2X2
i−1−2X1

i−1 +X0
i

= −2X1
i−1 +2X2

i−1−2X3
i−1 +2X4

i−1 +X0
i ,

...

and

Xd
i = 2Xd

i−1−Xd−1
i

= 2Xd
i−1−2Xd−1

i−1 +2Xd−2
i−1 −·· ·+2X1

i−1−X0
i

= 2Xd
i−1−2Xd−1

i−1 + · · ·+2X2
i−1−2X1

i−1 +X0
i .

(11)

We note that the algebraic signs of the coefficients of the terms on

the right hand side depend solely on the value ofd. That is, ifd is

even, then the coefficient ofX1
i−1 is negative; otherwise it is pos-

itive. By incorporating the± and the∓ symbols, Equation (11)

can be written as

Xd
i = 2Xd

i−1−2Xd−1
i−1 +2Xd−2

i−1 −·· ·±2X1
i−1∓X0

i
= ±2X1

i−1∓2X2
i−1±2X3

i−1∓·· ·+2Xd
i−1∓X0

i .

The main point, here, is to notice that the coefficients of theterms

on the right hand side of the equation of anyX j
i do alternate in

sign, while the firstd coefficients ofX j
i−1 in the same equation

are always equal to 2 in the absolute-value sense. These vector

recursion relations allow us to calculate all theXi ’s for 1≤ i ≤ d

provided that the vector containing all the diagonal entries, X0,

is available. The length of all column vectorsX0,X1, . . . ,Xd is

assumed to be equal ton+1.

3

The above recurrence formulae can be conveniently put in a

matrix form as


























X1
i

X2
i

X3
i

X4
i

X5
i
...

Xd
i
1



























=



























2 0 0 · · · 0 −X0
i

−2 2 0 · · · 0 X0
i

2 −2 2 · · · 0 −X0
i

−2 2 −2 · · · 0 X0
i

2 −2 2 · · · 0 −X0
i

...
...

. .. · · ·
...

...
±2 ∓2 ∓2 · · · 2 ∓X0

i
0 0 0 · · · 0 1





















































X1
i−1

X2
i−1

X3
i−1

X4
i−1

X5
i−1
...

Xd
i−1
1



























.

We observe that the entryX0
i of the above square matrix is pre-

ceded by a minus sign wheneverd is odd, and vice versa. We

let Yi denote the column vector on the left hand side of the previ-

ous equation. This is a(d+1)×1 vector containing as its firstd

elements theith entry of each nonzero subdiagonal. Its(d+ 1)st

entry is equal to 1. It follows that the other(d + 1)× 1 vector

appearing on the right hand side of the same equation is equalto

Yi−1. Furthermore, we allowMi to be the square matrix of rank

d+1 shown in the above equation. This matrix can be easily ob-

tained, for the entries in the last column are known in advance,

and are given by Equation (6). A new and more concise equation

is defined as follows

Yi = Mi Yi−1 . (12)

Because it is known that, for a given value ofn, the number

of entries in the diagonal of matrixS is equal ton+1, and since

a zero subdiagonal — ofn zeros — precedes the first nonzero

subdiagonal (as one proceeds downward from the diagonal), then

the first nonzero subdiagonal has exactlyn−1 entries. Since no

other nonzero subdiagonal contains more elements, we conclude

that the indexi in Equation (12) varies from 0 ton− 2 to yield

the needed entries of thed nonzero subdiagonals. Moreover, we

assume thatSi,−1 = S−1,k = 0 for 0≤ i,k≤ n. This implies that

Y−1 =



























X1
−1

X2
−1

X3
−1

X4
−1

X5
−1
...

Xd
−1
1



























=



























0
0
0
0
0
...
0
1



























.

Hence,Y−1 can be readily obtained at no computational cost. By

repeatedly applying Equation (12) for 0≤ i ≤ n−2, we obtain the

following results

Y0 = M0Y−1 ,

Y1 = M1M0Y−1 ,

Y2 = M2M1M0Y−1 ,

...

Yn−3 = Mn−3Mn−4 . . . M2M1M0Y−1 ,

and

Yn−2 = Mn−2Mn−3 . . . M2M1M0Y−1 . (13)

Therefore, in addition toY−1, n−1 square matrices —M0, M1,

. . . , Mn−3, Mn−2 — are needed as inputs for the computation of

the entries in the nonzero subdiagonals ofS. LetCi be a(d+1)×

(d+1) matrix such that

Ci = Mi Mi−1 . . . M2M1M0 ,

for 0 ≤ i ≤ n− 2. Consequently,Yi = Ci Y−1 where i varies

from 0 to n− 2. The computation ofC0, C1, . . . , Cn−3, and

Cn−2 essentially calculates then−1 prefix products of the set of

(d+1)×(d+1) matrices{M0, M1, M2, . . . ,Mn−3, Mn−2}. More-

over, we observe that sinceY−1 is equal to a column vector ofd

zeros, and a last entry of 1, the final multiplication ofY−1 with Ci

to calculateYi for 0≤ i ≤ n−2 is not needed. This is because the

vectorsY0, Y1, . . . , andYn−2 can be determined by just taking the

last column inC0, C1, . . . , andCn−2, respectively.

2.2 Construction of the Matrix S

As mentioned earlier,Yi yields the(i +1)st entries in each of the

possible nonzero subdiagonals. Due to the fact that the number

of subdiagonal entries linearly decreases from right to left (i.e.,

going from columnn to column 0 and starting from the diagonal),

not all of the entries in theYi ’s are going to be used to generate the

Chebyshev polynomials. Therefore, onceY0, Y1, . . . , andYn−2 are

computed, we are left with the task of determining the matrixS in

order to obtain the coefficients of all the Chebyshev polynomials.

The following is an algorithm for constructingS.

The Construct.SAlgorithm

Input. n, d = ⌊n
2⌋, andYi for 0≤ i ≤ n−2.

Output. The(n+1)× (n+1) coefficient matrixS.

Step 1. SetSi,k = 0, for 0≤ i < k≤ n.

4

Step 2. SetSi,i = X0
i , for 0≤ i ≤ n.

Step 3. Use the following procedure to set the entries in the zero

subdiagonals equal to 0.

FOR i = 1 TO n STEP 2 DO

IF i ≤ n THEN DO

BEGIN

FOR j = 0 TO n− i DO

Si, j = 0

i = i +1

END FOR

END {of if-then}

END FOR

The following two steps allow us to obtain the nonzero en-

tries of matrixSfrom the calculated vectorsY0,Y1, . . . ,Yn−2.

Step 4. If n is even, then:

4.1 The firstd elements ofY0 are the first entries of thed

nonzero subdiagonals.

• The following code gives the procedure to extract

the firstd entries ofY0.

FOR j = 1 TO d DO

S2 j,0 = Y0(j)

END FOR

4.2 Extract the firstd−1 entries of bothY1, andY2, where

Y1 (Y2) has the second (third) entries of the remaining

d−1 nonzero subdiagonals.

• Extraction procedure fromY1 :

FOR j = 1 TO d−1 DO

S2 j+1,1 = Y1(j)

END FOR

• Extraction procedure fromY2 :

FOR j = 1 TO d−1 DO

S2 j+2,2 = Y2(j)

END FOR

4.3 Repeat 4.2 by replacingY1 andY2 with Y3 andY4, and

d−1 with d−2, etc. . . until Yn−2 is reached (the en-

tries inSare represented byS2 j+3,3 andS2 j+4,4, respec-

tively).

Step 5. If n is odd, then:

5.1 The firstd entriesY0 (Y1) are the first (second) entries of

thed nonzero subdiagonals.

S=





















X0
0 0 0 0 0 0 0
0 X0

1 0 0 0 0 0
Y0(1) 0 X0

2 0 0 0 0
0 Y1(1) 0 X0

3 0 0 0
Y0(2) 0 Y2(1) 0 X0

4 0 0
0 Y1(2) 0 Y3(1) 0 X0

5 0
Y0(3) 0 Y2(2) 0 Y4(1) 0 X0

6





















Figure 2: Illustration of the algorithm Construct.S when S is a
7×7 matrix (n = 6).

• This code constitutes the procedure needed to ex-

tract the firstd entries ofY0.

FOR j = 1 TO d DO

S2 j,0 = Y0(j)

END FOR

• This is the procedure needed to extract the firstd

entries ofY1.

FOR j = 1 TO d DO

S2 j+1,1 = Y1(j)

END FOR

5.2 Use only the firstd−1 entries of bothY2, andY3, where

Y2 (Y3) has the third (fourth) entries of the remaining

d−1 nonzero subdiagonals.

• Extraction procedure fromY2 :

FOR j = 1 TO d−1 DO

S2 j+2,2 = Y2(j)

END FOR

• Extraction procedure fromY3 :

FOR j = 1 TO d−1 DO

S2 j+3,3 = Y3(j)

END FOR

5.3 Repeat 5.2 by replacingY2 andY3 with Y4 andY5 and

d− 1 with d− 2, etc . . . until Yn−2 is processed (the

entries inS are represented byS2 j+4,4 andS2 j+5,5, re-

spectively).

At the end, the matrixS is obtained.

Example 1 Figure 2 illustrates the use of the Construct.S algo-

rithm in the case of n= 6, d = 3, and having Y0, Y1, . . . , Y4 avail-

able.

5

2.3 The Parallel Algorithm and its Complexity

We call our new parallel algorithm thePGCP Algorithm, where

PGCP stands for Parallel Generation of Chebyshev Polynomials.

It is described as follows:

The PGCP Algorithm

Input. n, d = ⌊n
2⌋, T0(x), X0

0 , T1(x), andX0
1 .

Output. T2(x), T3(x), . . . ,Tn(x).

Step 1. Compute in parallel the diagonal entriesX0
2 , . . . ,X0

n .

Step 2. Form then−1 (d + 1)× (d + 1) matricesM0, M1, . . . ,

Mn−2.

Step 3. Compute in parallel then−1(d+ 1)× (d+ 1) matrices

C0, C1, . . . ,Cn−2.

Step 4. Form then−1(d+1)×1 column vectorsY0,Y1, . . . ,Yn−2

by taking the last column ofC0, C1, . . . ,Cn−2, respectively.

Step 5. Use the Construct.Salgorithm to form the matrixS.

Step 6. Get T2(x), T3(x), . . . , Tn(x) by applying the following

equation:Ti(x) = ∑i
k=0Si,k xk.

At the end of Step 6, all the Chebyshev polynomials are gener-

ated.

Theorem 1 The new PGCP algorithm requiresO(logn) parallel

arithmetic operations to compute the n+1 Chebyshev polynomi-

als T0(x), T1(x), . . . , Tn(x) with O(n4) processors working in

parallel.

Proof. An inspection of the PGCP algorithm reveals that only

two steps involve computations, namely, Step 1, and Step 3. In

Step 1,n−1 concurrent processors can compute the lastn−1 di-

agonal entries of matrixSin ⌈log(n−1)⌉ parallel arithmetic steps.

Since, the set{2,22, . . . ,2n−1} is to be calculated here, a parallel

prefix algorithm can be used where all the inputs to the algrithm

are equal to 2, and multiplication is employed as the associative

binary operation. Likewise, Step 3 basically calculates inparal-

lel then−1 prefix matrix products of then−1 (d+1)× (d+1)

matrices of the set{M0,M1, . . . Mn−2}. The output is equal to

the set{C0,C1, . . . ,Cn−2}. It is known that the product of two

n× n matrices can be achieved inO(logn) time while having

O(n3) processors workng in parallel [2]. Furthermore, it is well

known that then input parallel prefix computation is performed

in ⌈logn⌉ time with n processors. Hence, by combining these

two well known results, we deduce that the parallel prefix algo-

rithm can be utilized to computeC0, C1, . . . , Cn−2 in O(logn)

parallel arithmetic steps while usingO(n4) processors in paral-

lel, where matrix multiplication is the associative binaryopera-

tion employed in the algorithm. As result, the PGCP algorithm

computes the Chebyshev polynomials inO(logn) parallel time

with O(n4) parallel processors.

3 Related Work

Eǧeciǒglu and Koç presented in [5] a sequential algorithm and its

parallel version to construct an orthogonal family of polynomials

pi(x) for 0≤ i ≤ n with respect to a given discrete inner product

given by

〈u(x),v(x)〉 =
n

∑
j=0

w ju(x j)v(x j) ,

and a three-term recursion formula

pi+1(x) = (x−αi)pi(x)−βi pi−1(x) ,

for 0 ≤ i ≤ n− 1 while havingp−1(x) = 0 andp0(x) = 1. The

constantsαi andβi are determined as follows

αi = 〈xpi(x),pi(x)〉
〈pi(x),pi(x)〉

, βi = 〈pi(x),pi(x)〉
〈pi−1(x),pi−1(x)〉

.

The generated polynomials are monic polynomials. This algo-

rithm generates both the coefficients and values, that ispi(x j) for

0 ≤ i, j ≤ n, of the orthogonal polynomials. However, the input

to the parallel algorithm is dependent on the use of two data sets

of n+ 1 distinct values representing the node pointsx j and pos-

itive weightsw j for 0 ≤ j ≤ n, respectively. Furthermore, this

parallel algorithm does not employ the prefix computation inits

methodology.

Other related work involved polynomial interpolation. Suppose

we are givenn+1 pairs of numbers(xi ,yi), i = 0,1, . . . ,n and an

arbitrary real-valued functionf , such that

1. f is defined on thexi over an interval[a,b],

2. yi = f (xi), and

3. a≤ x0 < x1 < x2 < .. . < xn ≤ b.

6

The problem ofpolynomial interpolationis that of creating a

polynomial pn(x) of degreen using the pairs(xi ,yi) such that

pn(xi) = yi for i = 0,1, . . . ,n. In the Newton’s interpolation

method, such polynomial is obtained by using thedivided differ-

encesof f . The other type of interpolation scheme is called the

Hermiteinterpolation, wherein the aim is to construct thenth de-

gree polynomialpn(x) that interpolatesf (x) from the give values

of

f (xi), f (1)(xi), f (2)(xi), . . . , f (ni−1)(xi) ,

for i = 0,1,2, . . . ,n, where f (j)(xi) denotes thej th derivative of

f (x) at x = xi . This method uses thegeneralized divided differ-

encesof f to obtain the approximating polynomialpn(x). The

reader is referred to [6], [7], [9], and [13] for more information on

both of these interpolation methods and their associated parallel

algorithms. In comparing our parallel algorithm to other parallel

algorithms based on these two methods, we note the following

• Our parallel algorithm does not requirei + 1 distinct data

values for each Chebyshev polynomialTi(x) as inputs. It

only needsT0(x) andT1(x), which are readily available.

• Our parallel algorithm is not an approximation to the Cheby-

shev polynomials as interpolation is. It is an exact construc-

tion of them.

• While all three parallel algorithms depend heavily on paral-

lel prefix computations, they differ on the type of associa-

tive biary operation used. Our parallel algorithm uses matrix

multiplication whereas the other two make extensive use of

floating-point number addition or multiplication [7].

4 Conclusions

In this paper, we introduced a new parallel algorithm for thefast

generation of discrete Chebyshev polynomials. We also discussed

its time and space complexity. The algorithm was designed totake

advantage of the parallel prefix computation method. Futurework

will include the design of parallel algorithms for the evaluation of

these types of orthogonal polynomials first at a single data point

and then at multiple data points and their implementation ona

parallel machine with a limited number of processors.

Acknowledgment

This work is partially supported by a start-up research grant from

Simon Fraser University.

References

[1] A. Abd Elsamea, H. Eldeeb, and S. Nassar, PC Cluster as a
Platform for Parallel Applications,Fourth WSEAS Interna-
tional Conference on Information Science, Communications
and Applications,Miami, FL, USA, April 21-23, 2004.

[2] S. G. Akl, Parallel Computation: Models and Methods,
Prentice Hall, Inc., 1997.

[3] G. Blelloch, Scans as Primitive Parallel Operations,Pro-
ceedings of the IEEE International Conference on Parallel
Processing,1987, pp. 355–362.

[4] T. S. Chihara,An Introduction to Orthogonal Polynomials,
Gordon and Breach Science Publishers, Inc., 1978.

[5] Ö. Eǧeciǒglu and Ç. K. Koç, A Parallel Algorithm for Gen-
erating Discrete Orthogonal Polynomials,Parallel Comput-
ing, Vol. 18, No. 6, 1992, pp. 649–659.

[6] Ö. Eǧeciǒglu, E. Gallopoulos, and Ç. K. Koç, A Parallel
Method for Fast and Practical High-Order Newton Interpo-
lation,BIT, Vol.30, No.2, 1990, pp. 268–288.

[7] Ö. Eǧeciǒglu, E. Gallopoulos, and Ç. K. Koç, Fast Compu-
tation of Divided Differences and Parallel Hermite Interpo-
lation,Journal of Complexity,Vol.5, No.4, December 1989,
pp. 417–437.

[8] Ö. Eǧeciǒglu, Ç. K. Koç, and A. J. Laub, A Recursive Dou-
bling Algorithm for Solution of Triadiagonal Systems on
Hypercube Multiprocessors,Journal of Computational and
Applied Mathematics,Vol.27, No.1+2, 1989, pp. 95–108.

[9] F. B. Hildebrand,Introduction to Numerical Analysis,sec-
ond edition, McGraw-Hill Publishing Company, 1974.

[10] C. P. Kruskal, L. Rudolph, and M. Snir, The Power of Paral-
lel Prefix,IEEE Transactions on Computers,Vol. 34, No.10,
October 1985, pp. 965–968.

[11] R. E. Ladner and M. J. Fisher, Parallel Prefix Computation,
Journal of the ACM,Vol.27, No.4, 1980, pp. 831–838.

[12] S. Lakshmivarahan and S. K. Dhall,Analysis and Design
of Parallel Algorithms: Arithmetic and Matrix Problems,
McGraw-Hill Publishing Company, 1990.

[13] S. Lakshmivarahan and S. K. Dhall,Parallel Computing Us-
ing the Prefix Problem,Oxford University Press, 1994.

[14] E. L. Leiss,Parallel and Vector Computing: A Practical In-
troduction, McGraw-Hill, Inc., 1995.

[15] T. J. Rivlin, Chebyshev Polynomials: from Approximation
Theory to Algebra and Number Theory,John Wiley & Sons,
Inc., second edition, 1990.

7

