

Deriving Object Models in Embedded Systems:
A Hierachical Modular Component-Based Approach

Mohamed T. Kimour, Djamel Meslati

Department of Computer Science,
LRI, University of Annaba

Bp. 12, Annaba, Algeria
Algeria

Tel / Fax: 213-38-87-27-56

Abstract: Embedded systems are predominantly control dominated systems and usually designers specify them

using state-oriented models, such as FSMs or Petri Nets [13]. However, for modeling more aspects of the systems
namely, data and function, it is critical to consider the use of multiple-view models. Especially, identifying and
modelling objects are a key activity which is hard and critical, since there is no one-to-one mapping between use
cases and objects. In this paper, we provide a new approach that firstly build an hierarchical modular components for
the system, and secondly based on simple procedure we how to derive and model the collaborating objects. We argue
that our approach enables enriching the use case model and producing more complete requirements.

Key-Words: Use cases, Requirements specification, Statechart, Object model.

1 Introduction
Embedded systems are predominantly control

dominated systems and usually designers specify them
using state-oriented models, such as FSMs or Petri Nets
[1,3,4,7,13]. However, for modeling more aspects of the
systems namely, data and function), it is critical to
consider the use of multiple-view models. For this
purpose UML [1] was adopted, since it is a notation that
covers the most relevant aspects of systems and is an
industrial standard.

UML is a general purpose modeling language for
specifying, visualizing, constructing and documenting
the artefacts of computer-based systems, as well as for
business modeling and other non-software systems
[3,5,6,8,9].

UML presents many advantages for modeling
embedded systems at the system-level
[17,22,21,16,15,4] . It is a standard, can be used
communicate with the customer, is suitable to object
oriented design, is totally platform independent, and
possesses an extension mechanism to deal with non-
standard modeling issues that is being used to define
various UML application-domain profiles.

Among its disadvantages, UML can be criticized for
having too many diagrams, to not have a precise
semantics, and for introducing a new layer in the project
[11,12,15,14,18,19,20].

In this paper we provide an approach to identify
objects using the architecture component approach, by
providing a more encompassing perspective in which
design of engineering systems takes place. The levels of

system specification provide a way to understand what
design is about, namely going from behavior to
structure. We found that use-cases can be viewed as a
means to identify coherent subsets of the I/O behavior
that we desire for the to-be-constructed system.

An architecture for embedded systems suggested four
types of objects that need to be in most engineering
designs (state, interface, coordination and control
objects) and that these objects carry out a process by
which sensory information from the environment is
processed and analyzed in an upward direction and
becomes the basis for decisions that flow downward by
successive decomposition of higher level goals into
actuatable commands.

 We saw that knitting these objects together via
collaboration diagrams was, in effect, providing the
coupled system specification that we need in order to
specify the structure of the system.

This representation facilitates a hierarchical
decomposition of the system during analysis, and based
on this decomposition, a hierarchical, stage-wise
construction process, during design and implementation
[13]. We discuss a graphical representation technique
that supports such hierarchical decomposition. Then we
show how to combine this architectural approach with
UML concepts as an alternative approach to integrating
systems methodology and object orientation.

The rest of the paper is organized as follows: section
2 describes our approach to identify objects using the
concept of hierarchical modular decomposition of the
system, and provide an evaluation of this approach with

respect to some related works. Finally, we conclude and present the future work at section 3.

2 Systems Hierarchical Modular
 Composition Framework

The framework deals with components, or parts, of
system. Such components are to be implemented as
modules. Modules evidence modularity, by which we
mean that modules are self contained and can stand
alone or be incorporated, as components into a larger
system. There are two types of components: atomic
modules and coupled modules.

• Atomic modules are taken off the shelf or are
developed in code they are the ground level
elements from which all systems built. They have
input and output ports.
• Coupled modules are constructed from atomic
modules by coupling them together using their
input and output ports.

Coupled modules have the same input and output
port interfaces as atomic modules and can be treated in
the same manner as far as their external relations to
other components. In particular, coupled modules can
become components in larger systems, just as atomic by
adding in a coupling specification to a set of modules,
we get a coupled module. By using this module as a
component in a larger system with our components, and
adding coupling information, we get a hierarchical
coupled module. The hierarchical modular approach to
the elevator control system defines the atomic modules,
DoorControl, MotorControl, elevator and coordinator.
Input ports, such as floorStatusIn, designate particular
locations where inputs can arrive and be processed by a
module. Output ports are locations from which a module
can send messages. Ports can be typed as well, so that
e.g., floorStatusIn, can handle data in the form of an
integer indicating the last floor at which the elevator
stopped.

All interaction with the outside world or other
modules is required to occur through the modules input
and output ports. This requirement allows a module to
be truly modular in that it can stand alone as an
independent object. On the other hand, a module can be
incorporated into a larger system by coupling its ports
with those of other components. Such coupling involves
connecting output ports to input ports,. e.g., the
elevStatusOut output port of the elevator, is coupled to
the input port elevStatusIn, showing that elevator status
information is passed on to the coordinator through the
latters input port.

The hierarchical modular decomposition/construction
approach is applicable in principle to design any
system. When applied to software it gains
computational advantages in combination with object
oriented technology. The combination comes about by

adopting the hierarchical approach to derive the initial
breakdown of the system and then assigning objects to
realize the required behaviors of the components.

To see how this works, let’s recall the four types of
objects that form the basis of engineering systems
design. As illustrated in Figure 4, the primary
information flow among these objects is as follows:

• state information objects record raw data
derived from sensors

• result objects process and store more
refined information derived from the state
objects needed for planning and control

• planning objects further process the
information derived from result objects and
formulate plans for system operation to meet
given goals

• control model objects carry out the plans
by issuing the appropriate commands to
actuators.

In initial analysis it is helpful to develop a table
(table 1) in which objects are categorized according in
the preceding manner along with their particular
responsibility in the overall design. Table 1 illustrates
this idea for the elevator example. Based on the
hierarchical decomposition and using table we derive the
object model depicted in figure 2. This was done by
applying a separation of concerns principle [10].

3 Conclusion
In this paper we have presented a systematic

approach for transition from the use cases to the object
model in the embedded systems area. Our approach
presents a technique for converting use cases into
statecharts and uses the latter as a means to identify
objects. The semi-formal nature of statecharts allows for
discovering the necessary objects and their properties
(operations and attributes), which are needed for
realizing the use case. The derived statecharts allow the
developers for uncovering ambiguities, omissions,
impreciseness, and inconsistency that may be present in
the natural language description of the use case.

In this way, while preserving the advantages of the
use cases’ natural language description (expressivity and
ease to use), we also allow for using existing tools to
verify and prove some properties of an embedded
system.

Currently, besides the development of a supporting
tool for our approach, we are investigating the subject of
modifying the XMI DTD to represent our extended
statechart by means of XML documents, in order to
automate the transition between the use case model and
the interaction diagrams via statecharts.

Table 1 Object categorization and responsibility table

object Category
{sensor = se
actuator = ac
state info object = sio
result object = ro
planning object = po
control model object

= cmo
}

Responsibility

Door sensor se sense position of door
Floor sensor se sense location of

elevator
FloorButtons se provide open Calls
CallButtons se provide

DestinationFloors
DoorStatus info sio record state:

open/closed or blocked
ElevatorFloor sio record current floor
ElevatorStatusInfo ro compute

last floor,
stopped or moving
direction (up/down)
from ElevatorFloor,

DoorStatus and motor
OpenCalls po provide destinations

called from outside
DestinationFloors po provide destinations

called from inside
DoorControl cmo send commands to

door
MotorControl cmo send commands to

motor
Coordinator cmo decides on direction

and next floor/when to
depart

LightSwitches ac button lights provide
information to passengers

Motor ac drives the elevator
Door ac opens/closes door

References:
[1] G. Booch, J. Rumbaugh, I. Jacobson, The

Unified Modeling Language User’s Guide, Addison
Wesley, 1999.

[2] A. Cockburn, Structuring Use Cases with
Goals, Journal of Object-Oriented Programming,
September-October 1997 (part I) and November-
December 1997 (part II).

[3] B. P. Douglass, Real-Time UML: Developing
Efficient Objects for Embedded Systems, Addison-
Wesley, 2nd Edition, 2000.

[4] J. M. Fernandes, R. J. Machado, From Use
Cases to Objects: An Industrial Information Systems
Case Study Analysis, OOIS’01 (7th International
Conference on Object-Oriented Information
Systems), Springer-Verlag, 2001, pp. 319–328.

[5] M. Glinz, S. Berner, S. Joos, J. Ryser, The
ADORA Approach to Object-Oriented Modeling of
Software, CAISE’01 (13th Conference on Advanced
Information Systems Engineering) LNCS, Interlaken,
Vol. 2068, June 2001, pp.76-92.

[6] H. Gomaa, Designing Concurrent,
Distributed, and Real-Time Applications with UML,
Addison-Wesley, 2000.

[7] D. Harel, Statecharts: A Visual Formalism for
Complex Systems, Science of Computer
Programming, Vol. 8, 1987, pp. 231-274.

[8] I. Jacobson, G. Booch, J. Rumbaugh, The
Unified Software Development Process, Addison-
Wesley, 1999.

[9] I. Jacobson, M. Christerson, P. Jonsson G.,
Övergaard, Object-Oriented Software Engineering:
A Use Case Driven Approach, Addison-Wesley,
1992.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C.V.Lopes, J.-M. Loingtier, J. Irwin,
Aspect-Oriented Programming, ECOOP’97 (11th
European Conference Object-Oriented
Programming), LNCS, Vol. 1241, 1997, pp. 140–
149.

[11] Y. Liang, From Use Cases to Classes: a
Way of Building Object Model with UML,
International Journal of Information Software and
Technology, Vol. 45, No 2, 2003, pp. 163-180.

[12] D. Liu, K. Subramaniam, B.H. Far,
A.Eberlein, Automatic Transition from Use Cases to
Class Model, IEEE/CCGEI’03, Montréal, Canada,
May 2003.

[13] L. Maciaszeck, Requirements Analysis and
System Design, Addison-Wesley, 2001.

[14] D. Rosenberg, K. Scott, Use Case Driven
Object Modeling with UML: A Practical Approach,
Addison-Wesley, 1999.

[15] J. Rumbaugh, M. Blaha, W. Premerlani, F.
Eddy, W. Larenson, Object-Oriented Modeling and
Design, Prentice Hall, 1991.

[16] J. Ryser, M. Glinz, A Scenario-Based
Approach to Validating and Testing Software
Systems Using Statecharts, ICSSEA’99 (12th
International Conference on Software and Systems

«timer»
:doorTimer <e>

timeValue: Time

setTimer()
«entity»

:elevStatusPlan <e>

elevatorNo: integer
elevStatus: {idle, moving, stop}
floorToVisit: list

getStatus()
updateStatus()
addRequest()
delFloor()
otherRequest()
determDirection()
checkStopElev()

«coordination»
:elevRequestCoordinator

timeOutDoorOpen()
requestElevator()
notifyFloorArrival()
servicingElevator()

«interface»
:elevInterface <e>

moveUp()
moveDown()
stop()

«interface»
:doorInterface <e>

closeDoor()
openDoor())

«interface»
:sensInterface <f>

getFloorNo()

«control»
:scheduler

determSuitElev()

Fig.1 The derived object model.

Engineering and their Applications), CNAM, Paris,
France, 1999.

[17] B. Selic, Using UML for Modeling
Complex Real-Time Systems, LNCS, No 1474,
1998, pp. 250-262.

[18] S.S. Somé, Beyond Scenarios: Generating
State Models from Use Cases, ICSE’2002
(International Workshop on Scenarios and State
Machines: Models, Algorithms and Tools), Orlando,
May 2002.

[19] I. Sommerville, Software Engineering, 6th
Edition, Addison-Wesley, 2001.

[20] R.S. Wahano, B.H. Far, A Framework for
Object Identification and Refinement Process in
Object-Oriented Analysis and Design, ICCI’02 (1st
International Conference on Cognitive Informatics),
Calgay, Canada, 2002.

[21] M. Sveda, R. Vrba, Embedded System
Specifications Reuse by a Case-Based Reasoning
Approach, WSEAS Transactions on Computers,
Vol.2, No.1, January 2003.

[22] M. Goudarzi, Dh. Hessabi, Synthesis of
Object-Oriented Descriptions Modeled at
Functional-Level, WSEAS Transactions on
Computers, Vol.2, No.1, January 2003.

