Assistance to Program Understanding 10

Aspect Mining Using
A Specification Driven Program Slicing Approach

Nora Bounour
Institute of computer science
University of Annaba
B.P. 12, Annaba, 23000

ALGERIA

FADILA ATIL
Institute of computer science
University of Annaba
B.P. 12, Annaba, 23000

ALGERIA

Said Ghoul

Institute of computer science
University of Philadelphia
P.O. 1101 Sweilah,Amman,11910

JORDAN

Abstract: The evolution of programs in order to adapt them to new needs, or to migrate them to new environments has consequently created a new discipline called Re-engineering in the software engineering domain. Re-engineering starts with an existing system and the development process for the replacement is based on understanding and transformation of the original system.
In the object-oriented paradigms, the crosscutting concerns such as synchronization and scheduling, are not localized in objects but rather they tend to be tangled across classes. Aspect orientation is concerned with providing mechanisms for explicitly capturing crosscutting concerns, and enhancing modularity and reuse. It builds upon previous technologies including procedural programming and object oriented programming. Aspect oriented programming AOP does for concerns that are naturally crosscutting what object oriented programming does for concerns that are naturally hierarchical.

Therefore existing software would benefit in readability and reusability if some of their aspects were extracted from original code. This task, which is very fastidious to do manually, could be automated. In this paper, we are interested in automatic extraction of aspects from Java programs.

We suggest an approach based on program slicing to identify the code that needs to be turned into an aspect. The slicing process is driven by the specification of the aspect to be extracted. We use AspectJ as our target language in which aspects would be described.

Key-words: Aspect oriented programming, Aspect Mining, Concurrency, Crosscutting Concerns, Re-engineering, Synchronization aspect, Slicing program, Migration.

1 Introduction

Software evolution is an evitable process for software systems keeping their usefulness in the real world. From a technical perspective, software re-engineering may appear to be a solution to the software evolution. Re-engineering starts with an existing system and the development process for the replacement is based on understanding and transformation of the original system.

Software systems comprise a diverse functional and non-functional requirement, which makes them hard or even impossible to reuse and maintain. Synchronization constitutes one of the most intricate problems, because it implies concurrent threads execution, which is difficult to deal with. A way to improve the comprehensibility and maintainability of these legacy systems is the separation of the crosscutting concerns existing in the code. Aspect oriented programming is a promising approach that provides the user the ability to modularize the representation of crosscutting concerns in order to ensure flexibility of the software system.

We are interested by re-engineering java programs. The extraction of code, which implements crosscutting concerns will improve comprehensibility and reusability. This task, which is very fastidious to do manually, could be automated. The process for capturing aspects permits the migration of object-oriented programs to aspect oriented environments such as AspectJ[2].

In this paper, we suggest a new approach for isolating code fragments implementing non-functional abstractions such as synchronization. This approach is based on program slicing by using the specification of the aspect to extract.

To give a clear view, we illustrate our approach by using the example of bounded buffer that implements the producer-consumer protocol. We consider a buffer component with a limited size, and we want to synchronize access to it in a multithreaded environment. In other words, there will be clients that run in different threads and access the buffer to put elements in and to get elements from. Since the buffer is a shared resource, the access of the different clients to it has to be synchronized.

Synchronization constraints (Table1) are the main crosscutting requirements that control access to the bounded buffer.

	R1: The buffer shall have a limited capacity.

	R2: Items in the buffer shall be accessed via get and put methods.

	R3: The system shall allow more than one reader to access the buffer at the same time.

	R4: The system shall allow one writer to access the buffer at a certain time.

	R5: The buffer shall Block all requests when a writer is accessing the buffer.

	R6 :The buffer shall block get requests when it is Empty.

	R7 The buffer shall block put requests when it is Full.

Table 1. Synchronization Constraints for the bounded buffer

The synchronization aspect will be an abstract class which state synchronization constraints.

In the next section, we present our approach for extracting aspects. In the section 3, we evaluate our approach by comparing it with similar work. We terminate our paper with a conclusion.

2 The approach for aspect extraction

In this section, we introduce our approach to localize and extract aspects. It is apparent that the code related to a crosscutting concern is spread over a number of different classes. Extracting the relevant lines into a single class may enhance the modularity and maintainability of the code. Therefore, data that is used for concurrency and synchronization will be localized in abstract class aspect together with methods that access and manipulate it.

While some of hidden concerns are intuitive to identify, others have complicated patterns. So the approach uses the specification of the aspect to be localized. The identification of the micro architectural elements that constitute the skeleton of a crosscutting concern is even more important for its extraction. These cannot be achieved without the knowledge about the aspect to extract. Therefore, we suggest a program slicing approach driven by the specification of the aspect to be localized.

We would implement the bounded buffer in one piece of code, and express the synchronization aspect in a separate piece of code. The bounded buffer synchronization aspect would be a reusable piece. It would state some synchronization constraints; such as you should not put and take elements at the same time. You should wait with a put if the buffer is full, you should wait with a take if the buffer is empty.

In the original monitor solution [11, 12, 14], more than half of the code of the methods put() and get() deals with synchronization. The basic idea is to extract synchronization conditions for statements separately from the actual application code. Otherwise, the methods put() and get() might actually be reduced to the following few lines (Fig.1).

	Void put(int x) { Int get() {

Buff[p]=x; Int x = buff[g];

p=p+1 %M g=g+1 %M

} Return x }

Fig1. Expression of methods put and get without information on synchronization

The process for isolating aspects is based on program slicing. Program slicing [20] is a powerful method for automatically decomposing a program by analyzing its control and data flow. In the weiser’s definition a slicing criterion of a program P is a pair <Sout, Vout>; where Sout is a statement in P and Vout is a subset of variables in P. A slice of a program P on slicing Criterion <Sout,Vout> consists of all the statements and predicates of P that might affect the values of the variables in the Vout just before the statement Sout is executed.

However, the main problem in using program slicing for the identification of the code fragments implementing a crosscutting concern, such as synchronization, is the setting up of a suitable slicing criterion for the extraction of slices implementing a crosscutting aspect. This cannot be achieved without the knowledge on the aspect to be isolated. We suggest a specification of aspect with the format below (Fig. 2.).

	Aspect name:

{

Precondition: {Synchronized methods} <> Ø;

Postcondition: Vout ={Shared object} <> Ø;

Implies

 Point cut ={Calls to synchronized methods};

 Advices = {Slices};

}

 Fig.2. Specification of synchronization aspect

.

Each call of a synchronized method will generate a pointcut for the aspect extracted. In the slicing criterion <Vout, Sout>, Vout will be the list of shared variables. Each statement, which defines or references shared variables in synchronized methods is candidate to be a statement in Sout. Two advices could be generated for each point cut which are before and after. The before advice is obtained by a forward slicing. But the after advice consists in the backward slice.

From the source code of the program, a static analyzer produces a program representation based on control and data flow (Fig.3).

Fig.3. The architecture of the aspect mining tool

The problem of finding aspect is based on the aspect anatomy. The slicing criterion finder uses the aspect specification for determining the Vout and Sout sets which constitutes the slicing criterion. For example, Vout contains the shared variables found in the source code. Each statement, which defines or reference shared variables in synchronized methods is candidate to be a statement Sout of the slicing criterion.

The slicing criterion constitutes the input for aspect generator, which generate for each call of synchronized methods a point cut. Each slice constitutes an advice for a point cut.

	Aspect synchronization

{

Point cut putting(): Call bb.put(int)

Point cut getting(): Call bb.get(int)

/* Advices definition */

Before putting () {};

After putting () {};

Before getting () {};

After getting () {};

}

Fig.4. Synchronization aspect for bounded buffer expressed in aspectJ

4 Related work

Diverse works have treated the aspect mining by suggesting semi automatic tools. First, Grisswold implement an aspect browser [7]. This tool use textual pattern matching. The crosscutting concerns identified are highlighted in the program files with a specific color. A second tool is Aspect mining tool AMT [8], which is a query based aspect mining. It support discovery of aspects in existing code by using a multi-modal analysis framework. It provides type based and text based analysis techniques. The tool allows user defined queries based on type usage and regular expressions, displaying matching lines in specific colors. If a line matches more than one criterion, it will be separated into two or more differently colored parts.

Other work uses dynamically analyze existing Java software to find aspect. The approach suggests a visualization tool for chopping and slicing called AnChoVis [9].

5 Conclusion

This paper has presented a knowledge-based approach for identifying and extracting aspect from java programs. It is based on program slicing technique. Otherwise, the slicing criterion is calculated by using the aspect specification. This specification ives information about the micro architectural elements that constitute the skeleton of a crosscutting concern.

References:
[1] AspectJ homepage: htttp:// www.AspectJ.org
[2] The AspectJ Team. The AspectJ Programming Guide, 2001.

[3] James Gostling, Bill Joy, Guy Steele and Gilad Bracha. The JavaTM Language Specification, Second edition, ISBN 0-201-31008-2,2002.

[4] G. Kiczales. Aspect-oriented Programming. Proceedings of European Conference on object-oriented Programming (ECOOP), Finland. Springer-Verlag LNCS 1241, June 1997.

[5] K. Cczarnecki, U. W. Eisenecker. Generative Programming-Methods, Tools, and Applications. Addison-Wesley, 2000. ISBN 0201-30977-7.

[6] Neil Loughran, Awais Rashid. Mining Aspects, workshop on early aspects: Aspect-oriented requirements Engineering and Architecture Design, Enschede, The Netherlands, 2002. AOSD Satellite workshop.

[7] William G. Griswold, Y. Kato, and J.J. Yuan. Aspect browser: Tool support for Managing Dispersed Aspects. Technical Report CS99-0640, Department of computer Science and Engineering, University of California, San Diego, December 1999.

[8] J.Hannemann and G. Kiczales. Overcoming the prevalent decomposition of legacy code. In proc. Workshop on advanced separation of concerns, IEEE, 2001.

[9] S.Breu and J.Krinke. Aspect mining using dynamic analysis. In workshop on Software-Reengineering, Bad Honnef, 2003.

 [10] A. Cimitile, A. De Lucia, and M. Munro. Identifying reusable functions using specification driven program slicing: A case study. Proceedings of international Conference on Software Maintenance, Opio(Nice), France, IEEE Cs Press, 1995, pp. 124-133.

[11] Zhenqiang Chen And Baowen Xu. Slicing Concurrent Java Programs. AcM Sigplan Notices, 2001,vol 36 No.4, pp41-47.

[12] J.Zhao. Slicing Concurrent Java Programs. In Proc. Seventh IEEE International Workshop on Program Comprehension, pp.126-133, May 1999.

[13] J.Zhao. Applying Program Dependence Analysis to Java Software. In Proc. Workshop on Software Engineering and Database Systems, 1998 International Computer Symposium, pp. 162—169, December 1998.

[14] J.Zhao,J.Cheng, K. Ushijima. Static Slicing of concurrent Object-oriented Programs. IEEE Transaction on software Engineering, pp 312-320, 1996.

[15] K. B. Gallagher, J. R. Lyle. Using program slicing in software maintenance. IEEE Transaction on software Engineering, Vol.17, No.1, pp.26-60, 1990.

[16] L. D. Larsen, M. J. Harrold. Slicing Object-oriented software. In Proceeding of the 18th International Conference on Software Engineering, German, March, 1996.

[17] M. D. Ernst, J. Cockrell, William G. Griswold, Member, IEEE, and D. Notkin. Dynamically discovering Likely Program Invariants to support Program Evolution. IEEE Transactions on Software Engineering , Vol.27, No.2, pp. 99-123, 2001.

[18] F.Tip. A Survey of Program Slicing Techniques. Journal of Programming Languages, Vol.3, No.3, pp.121-189, September, 1995.

[19] G. Vilavicencio. Program Analysis for the Automatic Detection of Programming Plans Applying Slicing. Fifth European Conference on Software Maintenance and Reengineering, March 2001,pp.188-191.

[20] M.Weiser. Program Slicing. IEEE Transaction on Software Engineering, Vol.10, No.4, pp.352-357, 1984.

Aspects

Get

Isempty

Isfull

buffer

Put

Thread

Thread

Aspects

Specification

Aspect generator

Slice Criterion

Program Representation

Source code

Analyser

Slicing criterion Finder

