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Abstract: The partial conjunction/disjunction function (PCD) integrates conjunctive and disjunctive features in 
a single function. Special cases of this function include the pure conjunction, the pure disjunction, and the 
arithmetic mean. PCD enables a continuous transition from the pure conjunction to the pure disjunction, using 
a parameter that specifies a desired level of conjunction (andness) or disjunction (orness). In this paper, we 
investigate and compare various approaches to organize the PCD function. Our goal is to specify the most 
important necessary conditions that the PCD should satisfy. The next step would then be to derive the best 
version of PCD and use it to create other compound continuous logic functions. 
 
Key-Words: - Continuous logic, preferences, andness, orness, partial conjunction/disjunction, andor, orand 
 
1   Introduction Continuous logic models based on PCD are a 

generalization of the binary Boolean logic. The 
classic Boolean logic is based on binary values 

}1,0{=B
yx

 and three basic operations: conjunction 
),min( yx=∧ , disjunction , and 

negation 
),max( yxyx =∨

xx −= 1 . The basic operations are used for 
making compound functions, such as implication 

y∨xyx =→ , nand y∧xyx =∧ , nor yxyx ∨=∨ , 
exclusive or )()( yxyxy ∧∨x ∧=⊕ , and equiva-
lence )() yxy(xy~x ∧∨∧= . 

PCD is a mapping , n>1, that has 
properties similar to logic functions of conjunction 
and disjunction. The level of similarity is adjustable 
using a parameter α  called the conjunction 
degree (andness), it its complement , that is 
called the disjunction degree (orness) [3,4]. If 

, then the PCD behaves as the pure 
conjunction. Similarly, if 

],[],[: 1010 →nλ

],[ 10∈
ω

01 =

α−= 1

01 == ωα ,
= αω , , then the PCD 

behaves as the pure disjunction. 
     The binary set B can be replaced by the unit 
interval ]1,0[=I . If Ix ∈  and  the same logic 
operations (min, max, and ) can be used to 
get the traditional continuous logic. 

Iy ∈
x−1x a

PCD is used in variety of decision problems. The 
main application areas for PCD function are: 

(1) System evaluation: preference modeling, 
system comparison, selection, and optimiza-
tion. In this paper, we are interested in continuous 

logic functions that are suitable for building multiple 
criteria decision models [1]. Suppose that a criterion 
for system evaluation consists of m requirements 
that a system is expected to satisfy. So, we have m 
input variables  that reflect 
the level of satisfaction of m specific requirements. 
Consequently,  is interpreted as the degree of truth 
in the statement asserting that the i

miIxxx im ,...,1,,,...,1 =∈

ix

mxx ,...,1

IyxxL m ∈

th requirement is 
completely satisfied. We call  elementary 
preferences. Our problem is to create a model that 
uses elementary preferences to compute the global 
preference y = ),,...,( 1  that reflects the 
global satisfaction of requirements. More precisely, 
the global preference is interpreted as the degree of 

(2) Classification (pattern matching): object 
recognition, and information retrieval 
(search). 

These two areas have different specific requirements 
that PCD must satisfy. In some cases, PCD is 
interpreted as a logic connective used to aggregate 
logic variables and compute the resulting degree of 
truth [3,4,5,6]. In other cases, PCD is interpreted as 
the averaging operator [11,12,15,16,17,18]. 

In this paper, we focus on applications where 
PCD is interpreted as a logic connective and used to 
create compound continuous logic functions, such as 
partial absorption [6], and other more complex logic 
functions [7]. These functions are frequently used in 
the area of system evaluation. 
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truth in the statement that a complex system 
completely satisfies all requirements.  

A related problem is to find functions that are 
suitable for building the decision model . 
These functions must be suitable for modeling logic 
relationships between individual requirements. 
These relationships include simultaneity, replace-
ability, various combinations of mandatory, desired, 
and optional features, etc. 

IIL m →:

If preferences are interpreted as degrees of truth, 
then the mathematical logic is a natural environment 
for creating system evaluation models. The 
corresponding continuous preference logic (CPL) 
should reflect those aspects of human decision 
making that include adjustable level of andness, 
orness, and relative importance (weights) [5,6]. 

 
 

2   Basic Sensitivity Features 
The global satisfaction of requirements regularly 

increases when we increase the satisfaction of 
component requirements: 0/ >∂∂ ixy . This is the 
main reason why traditional continuous logic 
functions that are only combinations of min, max, 
and  operators cannot be suitable for 
building decision models for system evaluation and 
comparison. With these operators, the condition 

 holds only for a small subset of input 
preferences (those that have extreme values in their 
groups; for example, in a group of n, if 

, then 

xx −1a

0>ix

xx ,...,min( 1

/ ∂∂y

y = kn x=) 0/, =∂∂ ixy>∀ ki xx ). 
In the majority of cases, this is not acceptable 
because it implies the inability to improve a system 
by improving its components. 

This problem can be solved if instead of pure 
conjunction (min) and pure disjunction (max), we 
use a partial conjunction/disjunction , 

, that includes min and max as extreme special 
cases. Let 

II n →:λ
1>n

),...,1,(,,...,1 niIxxx in =∈  be input 
preferences, and let  be the necessary orness of 
input preferences. Let  be an 
output preference computed using the PCD function 
λ.  The basic PCD properties are: 

I∈ω
xxy n= ),;,...,( 1 ωλ Iy ∈

1 1 1

1 1 1

( ,..., ; 0) ... min( ,..., )
( ,..., ;1) ... max( ,..., )

n n

n n

n

n

x x x x x x
x x x x x x

λ
λ

= ∧ ∧ =
= ∨ ∨ =

 

Since PCD is a mix of conjunctive and disjunctive 
properties (and includes conjunction and disjunction 
as special cases), it can be called “andor” or 
“orand”. More specifically, the name andor can be 
used for , (α>ω) and orand for 

, (α<ω). We also use the symbol 
5.00 << ω

15.0 << ω ◊  for the 
andor/orand operator, assuming that it corresponds 

to specific level of orness (therefore, 
);,...,( 1 ωλ nxxy =  and nxxxy ◊◊◊= ...21

ni ,...,1,1 =

 are equivalent 
notations). 

0,10 <<< ω

0

0

n xx ∨∨≤

;,...,(

;,...,(

1

1

∂
∂

∂
∂

λ

λ
ω

n
i

n

xx
x

xx

nxx ≤∧∧ ...); 1ω(...1 λ

∑
=

n

i
iiii xFx

1
)()(

i

F
iΦ

1=






iii xF )(

R∈

If xi< , then PCD has 
the following sensitivity features: 

)

)

>

>

ω

ω
 

The last condition means that generally a system can 
be improved if we improve any of its components.  

 
 

3   Means as Logic Functions 
All means satisfy the fundamental PCD property 

nxx ,...,1 . 
Consequently, some means can be interpreted as 
logic functions and the PCD can be organized as a 
mean. Of course, the theory of means offers a wide 
spectrum of candidate mathematical models [9,14], 
and the question is which mean is the best material 
for building the PCD function. Obviously, the most 
suitable are those means that have adjustable 
parameters enabling easy adjustment of or-
ness/andness and continuous transition from the 
pure conjunction to the pure disjunction. 

We investigated this problem in  [3,4] using a 
general framework of Losonczi means [13]: 











= ∑

=

−
ii

n

i
n xFxx

1

1
1 )(),...,( ΦΦλ   

The mean uses weight functions Φ  
and a strictly monotone function . In a 
special case of constant weights , 

+∪→ RI }0{:
RI →:

0, >= ii WW
...,,...,1 1 ++= nWWni , the Losonczi mean 

reduces to the weighted quasi-arithmetic mean: 






= ∑

=

−
n

i
n WFxx

1

1
1 ),...,(λ  

Of course, even in this simplified case, there is a 
spectrum of possible F functions.  

A variety of means and generate results between 
the pure conjunction and the pure disjunction [9]. 
However, the PCD must have an adjustable 
parameter that enables a continuous transition 
between the pure conjunction and the pure 
disjunction. This condition simplifies the selection 
of the F function  

The simplest form of the F function is the power 
function . This selection yields 
traditional weighted power means [9,14]:  

rxxF r= ,)(
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The values of α  and ω  can be obtained using 
numerical integration.  Since 
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it follows that α and ω can be constant if the andor 
function is defined in the following linear form: 

))(1()()()( 2121212121 xxxxxxxxxx ∨−+∧=∨+∧=◊ ααωα  
This form of andor function is convenient for 
understanding the concepts of andness and orness. 
Unfortunately, the linear form does not satisfy some 
of desired PDF properties and its use is limited.  
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 In system evaluation practice, decision makers 
specify desired constant levels of andness and 
orness. Suitable definitions for constant andness and 
orness, proposed in [3,4], can be based on mean 
values, as follows: 

The advantage of weighted power means is that their 
properties are well known in mathematics, because 
their special cases are harmonic mean ( 1−=r ), 
geometric mean ( ), arithmetic mean (0=r 1=r ), 
and quadratic mean ( 2=r ). 

ωαω −=
∧−∨
◊−∨

=
∧−∨

∧−◊
= 1,

2121
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2121
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xxxx
xxxx

xxxx
xxxx  

The following example illustrates the computation 
of andness and orness for the geometric mean 

1 2x x , i.e., for n = 2 and W1 = W2 = ½ : Another option is to use the exponential func-
tion  and the weighted exponential 
mean: 
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For these means, the andness and orness are 
functions of the parameter r. 
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4   Andness and Orness 
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 Let us first consider a case of two variables and the 

andor function . The andness α is a 
measure of similarity between the andor function 
and the pure conjunction. Similarly, the orness ω is a 
measure of similarity between the andor function 
and the pure disjunction. They can be defined as 
follows:  

21 xxy ◊=

Using a similar approach [3], in the case of n 
variables we have: 
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According to this definition, α and ω depend on  
and . Their mean values 

1x

2x α  and ω  are: 
These definitions show that now α and ω depend on 
n. For example, for the geometric mean the andness 
is 

     ∫∫∫∫ ==
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In the case of power means and exponential means α 
and ω also depend on the parameter r: 

. Similarly, r can be 
computed from the desired value of α or ω: 

),(,),( rnrn ΩΑ == ωα

ωωρααρ
ωραρ
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In [12] Larsen proposed the following approxima-
tion: 

)(2/1,11)( orandr n ≤−=== α
αα

ωαρ  

Exact numeric values of parameter r for n=2 and 
nine characteristic levels of andness and orness are 
shown in Table 1. Larsen’s approximation yields a 
satisfactory accuracy: , 1)5.0(2 =ρ 67.1)375.0(2 =ρ

+∞=)0(
, 

, , and . A more 
precise numerical approximation is: 

3)25.0(2 =ρ 7= ρ)125.0(2ρ 2

10,
)1(

937.3729.4363.3742.0 32
≤≤

−
+−+−

= ω
ωω

ωωωr  

 
Table 1. The values for power means and 
exponential means 

)(2 αρ=r

   Andness     Orness Symbol
Level α Level ω 

r for  
power
mean 

r for  
expo. 
mean 

D Min 0 Max 1 +∞ +∞ 
D+ Very 

Low 
0.125 Very  

High 
0.875 9.53 14.0 

DA Low 0.25 High 0.75 3.93 5.40 
D- Medium 

Low 
0.375 Medium  

High 
0.625 2.02 2.14 

A Medium 0.5 Medium 0.5 1 0 
C- Medium  

High 
0.625 Med  

Low 
0.375 0.26 -2.14

CA High 0.75 Low 0.25 -0.72 -5.40
C+ Very  

High 
0.875 Very  

Low 
0.125 -3.51 -14.0

C Max 1 Min 0 -∞ -∞ 
 

The exponential mean satisfies )1()( 22 αραρ −−= . It 
provides an alternative to the power means for the 
cases where the mandatory property (Section 6) is 
not desirable.  
 
 
5   Weights and Relative Importance 
In the MCDM area, there is no consensus on the 
meaning of weights. Choo et al. [2] identify 13 
different interpretations of weights in MCDM. These 

interpretations include weights as degrees of relative 
importance of component criteria. Weights can also 
express the level of confidence, the level of 
evaluator’s expertise, etc. 

In PCD models, weights are used to express 
relative importance of input preferences, and this 
interpretation is used in the paper. Traditionally, 
relative importance is considered constant. In a 
general case, however, weights can depend on 
preferences and Losonczi means [13] provide a 
convenient mechanism for realizing this property. 

In PCD models, we assume the independence of 
weights and andness/orness. Indeed, in system 
evaluation practice, evaluators independently think 
about the relative importance of individual inputs, 
and about the desired level of their simultaneity 
(andness). In this area, we sometimes encounter the 
“low weight – high andness paradox”. The low 
weight is interpreted as low importance. However, 
the high andness means the requirement for high 
simultaneity, which indirectly means that all 
components are necessary and consequently very 
important. So, a low weight (e.g. less than 5%) and 
high andness (e.g. more than 75%) in a general case 
can be considered a contradiction, and should be 
avoided. 

There are two approaches to modeling weights: 
• multiplicative approach 
• implicative approach  

The multiplicative approach is used in power means 
and in exponential means, where weights multiply 
satisfaction degrees as in the case of arithmetic 
mean: 

nn xWxWxWy +++= ...2211  
Weights mean importance because they determine 
both the level of penalty for a low satisfaction and 
the level of reward for a high satisfaction. High level 
of penalty/reward for an input can obviously mean 
only one thing: the input is important.  

The implicative approach is based on the concept 
that it is not acceptable that something is important 
and it has low satisfaction: 

( )( )max 1 ,i i i i i i i iW x W x W x W x→ = ∧ = ∨ = −  
where x  denotes the standard negation, 1x x= − . 
This as same as requiring, for all , i ix  to be high if 
it is important. Hence, the implicative importance 
weighted aggregate is, for the pure and, (cf. [11]): 

( ) ( )1 1 n ny W x W x∧ = ∨ ∧ ∧ ∨L  

and, through duality [12], for the pure or:  
( ) ( ) ( ) (1 1 1 1n n n ny W x W x W x W∨ = ∨ ∧ ∧ ∨ = ∧ ∨ ∨ ∧L L )x  

By the IAWA operators [12],  and  are 
obtained for andness 1 and 0 respectively, with ∨  
and 

y∧ y∨

∧  in the importance weighting functions, 
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i iW x∨  and W , chosen as the dual t-conorms 
and t-norms algebraic sum and product. The IAWA 
operators provide implicative importance weighting 
(in [12] just called “importance weighting”) for all 
degrees of andness in I, through, essentially, an 
andness-orness weighted sum of the importance 
weighting functions at andness 1 and 0. At andness 
½, the AIWA operator represents the weighted 
arithmetic mean. 

i x∧
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6   Mandatory Requirements  
In the area of system evaluation, we regularly have 
the situation where one or more of inputs represent 
mandatory requirements. Suppose that in the case of 
computer evaluation the final stage of aggregating 
preferences includes two components: hardware ( ) 
and software ( ). The global preference of the 
evaluated computer is 

1x

21 xxy ◊= . If =0 (inappro-
priate hardware) we must reject such a computer 
(the andor function must generate the result y=0). 
Similarly, if =0 (e.g. no software), then again 
y=0. Obviously, both good hardware and good 
software are mandatory requirements that all 
computers must satisfy. Therefore, we need a PCD 
function that satisfies the condition 

 (rejection of system that does not 
satisfy mandatory requirements).  

1x

0 2◊ x

Unfortunately, in this case, the pure conjunction 
 cannot be used, because such a 

rigid criterion would not be acceptable in regular 
cases where  and . Indeed, the majority 
of evaluators would not accept the equality 

 that claims that a system with 
an average hardware and software is equivalent to 
the system having perfect hardware and an average 
software. In other words, instead of pure conjunction 
we need a partial conjunction that satisfies the 
following mandatory requirements conditions: 

2 x=

1∧=

02 >x

0,011

1

>>+
=

axax
x

 

For example, the geometric mean 21xx

0≤

 obviously 
satisfies these conditions, and so do the weighted 
power means  for .  );,..., rxn r

In addition to the use of mandatory requirements 
in PCD, this property is indispensable for generating 
the partial absorption function [6], and other more 
complex logic function [7].  

Exponential means  do not satisfy 
the mandatory requirements conditions. However, 
this is a desirable feature in other applications, 

where the missing satisfaction of one criterion 
should not eliminate the evaluated object, such as in 
object recognition and information retrieval.  

);,...,( 1 rxx neλ

 
 
7   Sufficient Requirements 
If we take a function that is dual to a partial 
conjunction that satisfies the mandatory require-
ments conditions, we get a partial disjunction 
(orand) that satisfies the following sufficient 
requirements conditions: 

0,1,)(
111

1111

12

><<−◊
=◊=◊

axxaxx
xx

 

For example, since the geometric mean satisfies the 
mandatory requirements conditions, it follows that 

 satisfies 
the sufficient requirements conditions. However, 
such requirements occur seldom in practical 
problems.  

n
nn xxxxx /1

211 )]1(...)1)(1[(1... −−−−=∇∇

 
 
8   De Morgan’s PCD Functions 
De Morgan’s law is a convenient mechanism for 
creating PCD functions that have various specific 
properties. Let  denote partial conjunction (andor) 
and let 

∆
∇ denote partial disjunction (orand). These 

are special cases of the PCD : if α>1/2 then ◊ ◊  
becomes , and if ω>1/2 then  becomes ∆ ◊ ∇ . De 
Morgan’s laws can be written as follows: 

    
)1(...)1(1...
)1(...)1(1...

11

11

nn

nn

xxxx
xxxx

−∇∇−−=
−−−=∇∇

∆∆
∆∆

These formulas show how to make a conjunctive 
partial absorption if we have a model of disjunctive 
partial absorption and vice versa. In addition, if 

 is a partial conjunction with andness α=c, 
then 

nxx ∆∆ ...1

1(1 )1(...)1 nxx −−− ∆∆  is the partial disjunction 
with orness ω=c. For example, if the partial 
conjunction is modeled using the geometric mean 
then the corresponding (dual) partial disjunction can 
be modeled as follows: 

    
n

nn

n
nn

xxxxx

xxxxx
/1

211

/1
211

)]1(...)1)(1[(1...

)...(...

−−−−=∇∇

=∆∆

The first function can be used to model the 
mandatory requirements (  yields y=0, and it is 
necessary to have  to produce y>0). 
Similarly, the second function can be used to model 
the sufficient requirements (it is sufficient to have 

0=ix
i ,...,1= nxi ,0>

},..,1{,1 nixi ∈= , to produce y=1). The same 
effects, at a higher level of andness/orness, can be 
achieved using the harmonic mean: 
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If we want to avoid mandatory and sufficient 
requirements we could use the quadratic mean to 
model the orand and andor, as follows: 
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In this case neither orand can model sufficient 
requirements, nor can andor model mandatory 
requirements. 

Generally, De Morgan’s PCD functions are 
defined as follows: 

2
1or
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Of course, such functions always satisfy De 
Morgan’s laws. 

Some PCD functions do not satisfy De Morgan’s 
laws. One such example is the PCD based on 
weighted power means [4]; however, the corre-
sponding errors are sufficiently small so that the 
function is suitable for practical applications.  

De Morgan’s approach can be used to define 
functions that satisfy De Morgan’s laws, e.g.: 
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This function has the property: if α  then it 
satisfies mandatory requirements, and if <α

3/2=

, it 
does not satisfy the mandatory requirements. For 
example, the andness α  can be achieved using 
the geometric mean 21xxy =

41.2,])1(5.0)1(5.0[1 /1
21 =−+−−= rxxy rrr

; in this case, the 
mandatory requirements are satisfied. The same 
level of andness (but without mandatory require-
ments) can be achieved using the function 

. 
 

9 Functions with Constant Andness 
Means that don’t have adjustable parameter can be 
interpreted as logic functions with constant andness. 
For example, the Losonczi mean in the case where 

 generates the antiharmonic 
mean [7] where the weight of each variable equals 
its value: 

iiiii xxFx == )()(Φ

     . 0),/()(),( 2121
2
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2
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Such weights emphasize the importance of large 
values.  This is a typical disjunctive property, and 
the corresponding orness is ω=0.77. By using De 

Morgan’s law we can easily create a dual function 
that has andness α=0.77: 
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10   Associativity and Distributivity 
Errors in weight assessment increase with increasing 
number of aggregated inputs [8]. Associativity 
( )()()( 321321321 xxxxxxxxx ◊◊=◊◊=◊◊ ) is a desirable 
algebraic property that helps reducing the errors in 
weight assessment by grouping input preferences in 
small groups of up to 5 inputs. Similarly, transfigu-
rations of preference aggregation structures are 
possible if the partial conjunction and the partial 
disjunction are mutually distributive, e.g. 

  
)()()(
)()()(

3121321

3121321

xxxxxxx
xxxxxxx

∇∇=∇
∇=∇
∆∆

∆∆∆

Andor functions based on weighted power means 
do not satisfy algebraic properties of distributivity 
and associativity. According to [5], the errors are not 
significant: (1) if the andness/orness are 0, ½, or 1, 
these errors are 0, and (2) the average distributivity 
error is 1.4%, and the average associativity error is 
regularly less than 1%. This level of errors is not 
significant because errors in estimating preferences, 
andness, and weights are regularly significantly 
larger [8].  
 
 
11   Pseudo averaging operators 
This paper is focused on applications of PCD 
operators in logic decision models, with emphasis 
on system evaluation. Such models use the “quality 
range relation” (the basic property of means) 

nnn xxxxxx ∨∨≤≤∧∧ ...);,...,(... 111 ωλ

xx );,...,( ωλ
Ixx ∈

 that reflects the 
concept that the quality of system cannot be better 
than the quality of its best component, or worse than 
the quality of its worst component. This directly 
yields the idempotency  and insensi-
tivity 

x=

=∂∂ ωωωλ ,0/);,...,( . 
      It is well-known these properties are only 
satisfied by mean (over averaging) operators.  Thus 
the intersection operators (t-norms) and the union 
operators (t-conorms) do not have these properties, 
but have other properties, such as associativity and 
the existence a neutral (identity) element (namely 1 
and 0, respectively), see, for instance, [17].   
       Some authors propose to combine intersection 
and union operators to obtain averaging like 
operators with  adjustable levels of andness/orness. 
The idea of such models is either a linear (additive) 
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       A certain advantage of the OWA family is that 
it for all degrees or orness in (0, 1) allows us to 
construct multiple averaging operators with 
different properties.  For instance, the following 
OWA weighing tuples (illustrated with n = 5) all 
have orness = 0.5:  

combination  or a 
multiplicative form , 

 where q plays the role of orness and 1-q the 
role of andness.  

),)(1()( 212121 xxqxxqxx ∆−+∇=◊
q xxxxx ∇=◊ 2121 ()( qx −1

21 )∆
10 ≤≤ q

        Such operators, proposed by Zimmermann and 
Zysno [19], are qq xxxxxx −−=◊ 1

212121 )()1(  (based on 
geometric mean) or ))( 21xxq−

21122 xxc

1()1( 2121 xxqxx +−=◊

211021 xcxccxx

 
(based on the arithmetic mean). Pseudo averaging 
models of the form +++=◊  
are frequently used in the utility theory [1,10]. 

 ( )1 ,1 ,1 ,1 ,1n n n n n    (arithmetic mean) 
 ( )0,0,1,0,0       (median) 
 ( )0,1 3,1 3,1 3,0      (olympic mean) 
OWA operators are further characterized by the 
dispersion of there OWA weights.  The dispersion 
is, in its normalized form, defined by: 

 
 

( ) ( )1 1 1, , ln ln lnn ndisp v v v v v v n= − + +K L n  12   Fuzzy Logic Averaging Operators 
For instance, the dispersion of the above shown 
three OWA weighting vectors are, respectively, 1, 
0, and 0.683.   

In fuzzy logic, the term “averaging operators” for 
mappings  that are monotonic 
increasing in all its arguments, continuous, 
symmetric in all its arguments, and idempotent. We 
notice that PCD functions satisfy these requirements 
and therefore also are averaging operators. 

1,]1,0[]1,0[: >→ nH n

An extension to (implicative) importance 
weighted OWA operators is analyzed in [11] and 
presented in [12] in a form that represents the 
weighted arithmetic mean for orness 0.5.  There are 
several other extensions and properties of OWA 
operators described in the literature, but the above 
brief introduction will suffice for the scope of this 
paper.    

A particular interesting family of averaging 
operators are the OWA (ordered weighted averag-
ing) operators [11,12,15,16,18]. An OWA operator 
is characterized by a vector of positional weights 
( )1, , n

nv v I∈K  that satisfies v . The 
aggregate y of an argument vector 

1 1nv+ + =L

( )1, , n
nx x I∈K  is 

defined by:    

An iterative approach to order weighted like PCD 
operators was proposed in [7]. Let the input 
preferences be sorted so that  If n=2 
the iterative model is 

.0,1 >≤ + ixx ii

( ) ( )1 1 n ny v x v x= + +L  
21212121 )()( xxxxxxxxy ωαωα +=∨+∧=◊= .  

where  is an index permutation such that 

)

( )⋅

(( )1 nx x≥ ≥L .  The orness of such an operator is a 
function of the OWA weighting tuple, namely: 

In the case of 3 variables, the function 321 xxxy ◊◊=  
is defined by the following iterative procedure: 
 
while( ε>− 13 xx )                  //   ε = a small error 1 2( 1) ( 2) ...

1
nv n v n vorness

n
−− + − + +

=
−

1  { 

      
;;;

;;;

233132121
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xxxxxxxxx

====
+=+=+= ωαωαωαThe andness is defined, as usual, by andness = 1 – 

orness, that is, 
2 1... ( 2) ( 1)

1
n nv v n v nandness

n
−+ + − + −

=
−

 } 
 

From this definition, if v n , the 
OWA operator represents the arithmetic mean, with  
orness=andness=1/2; if v

1/ , 1,...i i= =

1 1

n

=  ,it 
represents the pure or (the max operator), with 
orness = 1; if  ,it represents 
the pure and (the min operator), with orness = 0. If 
n=2, then  and a  (the weight 
of the larger argument represents the orness and the 
weight of the smaller argument represents the 
andness). The measures of orness and andness can 
be shown to comply with the measures defined in 
Section 4.   

( )10 for iv i= >

( )0 for v i n= <

2ndness v=

1nv =

1s v=

i

ornes

This procedure can be expressed in a matrix form as 
follows: 
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 The resulting PCD for 3 variables is: 
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By expanding this procedure for 4 variables we have 
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This process can be continued in a similar way to 
generate the PCD for more than 4 variables.  

The iterative order weighted PCD is consistent 
with OWA averaging operators for ; 
however it uses the “a priori andness/orness” that is 
different from the OWA approach and the mean 
value approach. 

1,5.0,0=α

 
 

13   Conclusions and future work 
The PCD operators can be organized, interpreted, 
and used in a variety of ways. We focused on 
interpretations in continuous preference logic, and 
briefly introduced the fuzzy logic averaging operator 
interpretation. The organization of the PCD 
operators based on weighted power means is shown 
to be the most attractive for interpretations in 
preference logic and applications in system 
evaluation. We proposed a new PCD organization 
based on exponential means. We introduced a 
distinction between two kinds of importance 
weighting, namely multiplicative and implicative. 
These new concepts deserve future research. 
Comparison of various approaches to definition of 
andness and orness, as well as new forms of PCD 
based on Losonczi means, also deserve future 
research.   

We have presented and discussed several proper-
ties of PCD operators. As means all the functions 
satisfy the quality range relation, and are commuta-
tive, monotonic, continuous, and idempotent.  For 
the usability of such operators, the level of 
andness/orness should be easily adjustable. The 
importance of criteria (or, rather, of satisfying 
criteria) should be easily adjustable through weights. 
      The weighted operators should provide a 
generalization of the unweighted operator, such that 
the latter is retained when the criteria are evenly 
weighted. The two kinds of importance weighting 
generalizations, multiplicative and implicative, 
should be supported; the choice between these kinds 
depends on the kind of the decision problem. The 
multiplicative form is primarily applied for 
estimating the level of satisfaction of requirements, 
as applied in, for instance, system evaluation. The 

implicative form primarily is applied for ranking of 
options according to their satisfaction of joint 
criteria (constraints), as applied in selection, 
classification, and recognition problem solving. 

An often required property in system evaluation 
is the mandatory requirements property. This says 
that, regardless of the andness and the (positive) 
importance weights, the aggregate must evaluate to 
zero, if at least one of the criteria is not satisfied at 
all. For other kinds of problems, absence of the 
mandatory property may be required; for instance, in 
recognition, where the failure to satisfy a single 
criterion should not invalidate the option, but just 
“punish”, depending on the importance of satisfying 
the criterion.   

Associativity and distributivity are not properties 
of PCD operators. However, similar properties may 
be computationally useful and is indeed possible, 
with an ignorable small error, with weighted power 
means. The De Morgan duality applying to PCD 
operators (around the andness 0.5) may also be 
computationally useful. 

Finally, for multiplicative importance weighted 
PCD operators, we need the sensitivity property 

0/ >∂∂ ixy . In addition, assuming that all inputs are 
not equal, the condition , where 0/ >∂∂ ωy ω  is the 
orness, must be satisfied. The property 0>/ ∂∂ ωy  
does not hold in general for implicative importance 
weighting. 

We have seen that the (multiplicative) weighted 
power means provide a useful set of properties; the 
mandatory property is obtained for non-positive 
values of the parameter r, yielding andness degree 
above about 2/3. The lowest andness for which the 
mandatory property is obtained is the geometric 
mean (r = 0) with andness between 0.667 (at n = 2) 
and 0.632 (n>>1). If absence of the mandatory 
property is required with multiplicative weighting 
for all degree of andness, then a possible choice is 
the exponential mean. A nice feature of the 
exponential mean is it symmetry: for r=0 it 
generates the arithmetic mean, and the andness for r 
equals the orness for –r. 

The implicative importance weighting is pro-
vided by the IAWA operators [12] that are based on 
the power means. These operators do not have the 
mandatory requirements property.  

The PCD function emerges in various forms in 
system evaluation, classification, recognition, and in 
other areas. In the continuous logic it is interpreted 
as a model of adjustable simultaneity and replace-
ability. In the fuzzy logic it is interpreted as the 
averaging operator. Various application areas 
generate a rich spectrum of desired and achieved 
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PCD forms and properties. Our goal was to present 
various forms and interpretations of PDF in a 
unifying and comparative way that might cause 
more convergence in the future research.  

All components of decision models (input prefer-
ences, weights, and andness) are determined by 
experts who frequently make substantial errors [8]. 
Training of experts and the use of appropriate 
software tools can reduce such errors, but will never 
eliminate them. Consequently, the necessary 
precision of decision models is limited by the 
precision of decision makers who specify inputs and 
parameters. Therefore, in the area of system 
evaluation (and possibly in other related areas), the 
perfection of logic decision models is desirable but 
not necessary.  
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