
A note about binary finite fields multiplication on FPGA
F. Garcia Crespi, F. Vicedo, R. Gutiérrez , Katya G. Llamazares, P. Garrido, S. Alcaraz

Departamento de Fı́sica y Arquitectura de Computadores
Universidad Miguel Hermnandez

Elche, 03202, Spain

A. Grediaga
Universidad de Alicante

Dep. Tecnologı́a Inform,ática y Computación
Ap. 99,Alicante, Spain

J.J. Climent
Dep. Ciencia de la Computació e Inteligencia Artificial

Ap. 99,Alicante, Spain

ABSTRACT
This paper present a notes about a hardware architecture
over FPGAs for multiplication in binary fieldsGF (2m) us-
ing a matrix representation of the elements ofGF (2m).

KEY WORDS
Finite Field Arithmetic, cryptography, finite field multipli-
cation

1 Introduction

Finite fields are increasingly important for many applica-
tions in cryptography and algebraic coding theory [5]. Cer-
tain properties of the binary finite fieldGF (2m) like its
“carry-free” arithmetic make it very attractive for hard-
ware implementation. Another advantage ofGF (2m) is
the availability of different equivalent representationsof the
field elements, e.g. polynomial bases, normal bases, or dual
bases.

According to the different basis representations, a va-
riety of algorithms and architectures for multiplication in
GF (2m) have been proposed. Efficient implementation of
the field arithmetic inGF (2m) depends enormously on the
particular basis used for the finite field.

From an architectural point of view, a polynomial
basis multiplier can be realised in a bit-serial, digit-
serial, or bit-parallel fashion. For area-restricted devices
like smart cards, the bit-serial architecture offers a fair
area/performance trade-off.

In this paper we presents a method for multiplication
in GF (2m), where the fields elements are represented as
matrices.

2 Finite Fields Arithmetic

2.1 Representation of the Field Elements

Abstractly, a finite field (or Galois field) consists of a finite
set of elements together with the description of two opera-
tions (addition and multiplication) that can be performed on

pairs of field elements. These operations must possess cer-
tain properties — associativity and commutativity of both
addition and multiplication, distributivity, existence of an
additive identity and a multiplicative identity, and existence
of additive inverses as well as multiplicative inverses. The
order of a finite field is the number of field elements it con-
tains, and it is traditional to denote a finite field of orderm

asGF (m). GF (2) is the smallest possible finite field; it
just contains the integers 0 and 1 as field elements. Addi-
tion and multiplication are performed modulo 2, therefore
the addition is equivalent to the logical XOR, and the mul-
tiplication corresponds to the logical AND.

GF (2m) is called acharacteristic two field or a bi-
nary finite field. It can be viewed as a vector space of di-
mensionm over the fieldGF(2). That is, there existm
elementsx0, x1, x2, . . . , xm−1 in GF (2m) such that each
elementx ∈ GF (2m) can be uniquely written in the form:
x = a0x0 + a1x1 . . . + am−1xm−1 whereai ∈ GF (2).

The binary finite fieldGF (2m) contains 2m elements,
wherebym is a non-zero positive integer. Each of these 2m

elements can be uniquely represented with a polynomial of
degree up tom-1 with coefficients from GF(2). For exam-
ple, if a(x) is an element inGF (2m), then one can have

a(x) =
m−1
∑

i=0

aixi

2.2 Addition and Multiplication

Such a set{ x0, x1, x2 . . . xm−1} is called abasis of
GF (2m) overGF(2). Given such a basis, a field element
x can be represented as the bit string(a0a1 . . . am−1). Ad-
dition of field elements is performed by bit-wise XOR-ing
the vector representations. The multiplication rule depends
on the basis selected. There are many different bases of
GF (2m) over GF(2). Some bases lead to more efficient
software or hardware implementations of the arithmetic in
GF (2m) than other bases. The most popular two kinds of
bases used are the polynomial bases and the normal bases.

In the polynomial bases, the field arithmetic is im-
plemented as polynomial arithmetic modulof(x). In

this representation, addition and multiplication ofa(x) =
(a0a1 . . . am−1) andb(x) = (b0b1 . . . bm−1)

• Field Addition:a(x) + b(x) = (c0c1 . . . cm−1) where
ci = ai + bi whereai ∈ GF (2)

• Field Multiplication: a(x).b(x) = (r0r1 . . . rm−1)
where the polynomial(r0+r1 . . . rm−1) is the remain-
der of the division of the polynomial result of multiply
a(x).b(x). That is,c(x) = a(x).b(x) (mod) f(x).

Another possibility of representing the elements of
GF (2m) is given by means of matrices. In general, the
companion matrix of a monic polynomialf(x) = a0 +
a1x + . . . + an−1x

n−1 + xn of positive degree n over field
is defined to be the n x n matrix:















0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

...
...

...
...

...
0 0 0 · · · 1 −an−1















It is well known in linear algebra thatA satisfies the
equationf(A) = 0; that isa0I +a1A+ . . .+an−1A

n−1 +
An = 0 wheeI is thenxn identity matrix. Thus, ifA
is the companion matrix of a monic irreducible polyno-
mial f(x)overFpofdegreen, thenf(A) = 0, and there-
fore A can play the role of root off(x). The polynomial
in AoverFp of degree less thann, yield a representation of
the elements ofFp.

With Fp given in this way, calculation in this finite
field are then carried out by the usual rules of matrix al-
gebra, the sum and the multiplication decreases to the sum
and multiplication of matrices, without necessity of reduc-
ing modulof(x), so we can multiply two elements of the
field and the result is an element of the field too.

3 Previous Work

A number of software and hardware implementations have
been reported for the computation ofGF (2m) multiplica-
tion, which is the basic operation used by elliptic curve
cryptographic systems. Among the most significant hard-
ware implementations are [1, 3, 4, 5].

The implementations in [1, 3, 5] use normal basis
representation. They use bit-serial multipliers, which re-
quire about m clock cycles to compute a multiplication in
GF (2m) and compute squares with cyclic shifts.

The hardware implementation documented in [4] uses
standard basis representation. This implementation is suit-
able for composite fieldsGF ((2u)v) whereu · v = m. Its
core-processing element is a hybrid multiplier which com-
putes a multiplication in v clock cycles.

3.1 Classical Methods for Multiplication

Multiplication using the polynomial representation of
field elements is somewhat more difficult. To compute
a(x).b(x) (mod) f(x), we take the remainderr(x) of the
product(a0 + a1x + . . . + am−1x

m−1).(b0 + b1x + . . . +
bm−1x

m−1) when divided byf(x), so first of all, we have
c(x) = a(x).b(x) and then the remainder of the division of
c(x) by f(x).

Algorithm 1 in Handel-C:

unsigned int 1 A[16],B[16],C[16];
unsigned int i,j,m;

m = 16;
for(i=0; i<m; ++i)

for(j=0; j<m; ++j)
C[i+j] += A[i]*B[j];

// then we get the remainder of c(x)/f(x)

3.2 Bit-Serial The Shift-and-Add Method

Multiplication of field elements uses the same shift-and-
add algorithm as is used for multiplication of integers, ex-
cept that the ’add’ is replaced with ’xor’. Algorithm 2 in
Handel-C:

unsigned int 16 A,B,C,F;
unsigned int 16 IGUAL1[17];
unsigned int i,j;

A = 12;
B = 23;
F = 5;
C = 0;

//for(i=0;i<=7;i++) IGUAL1[i] = 1<<i;

for(i=0;i<=7;i++) {
if(A & IGUAL1[i]) C = C ˆ B;
B = B << 1;
}

• Addition and subtraction inGF (2) is a logical XOR.

• Multiplication consists of logical AND, logical XOR
and 1-bit left-shift operations.

4 Proposed method

In this section we describe a reconfigurable hardware im-
plementation of an algorithm for multiplication inGF (2m)
using the matrix representation explain in 2 and Handel-C

4.1 Reconfigurable Hardware

Usually, the measure of the performance for hardware im-
plementations of the arithmetic operations in the Galois
field GF(2m) is the space and time complexities.

• Main performance criteria

• Space complexity

• Number of AND gates

• Number of XOR gates

• Time complexity

• Circuit’s total gate delay

This work propose a hardware architecture over FP-
GAs for multiplication in binary fieldsGF (2m). One of its
key features is its suitability for reconfigurable hardware.
Unlike traditional VLSI hardware, reconfigurable devices
such as Field Programmable Gate Arrays (FPGA) do not
possess fixed functionality after fabrication but can be re-
programmed during operation.

4.2 DK1 Design Suite and Handel-C

Handel-C is a high level programming language designed
to enable compilation of programs directly in to hardware,
which is implemented on Field Programmable Gate Array
(FPGA). Handel-C is a programming language designed to
enable the compilation of programs into synchronous hard-
ware. Handel-C is not a hardware description language
though; rather it is a programming language aimed at com-
piling high level algorithms directly into gate level hard-
ware. Handel-C is based on the syntax of conventional C
(ANSI C), with additional extensions to take advantage of
the features of hardware. As Handel-C is high level it is
possible to convert a Software Algorithm in to a hardware
implementation with the greatest of ease.

If Hardware Definition Languages are thought of as
the Assembly Language equivalent in Hardware Design.
Then Handel-C represents the equivalent of a High Level
Language in Hardware Design. The Handel-C compiler
and some detailed examples of its usage are described in
the Handel-C Compiler Reference Manual.

Handel-C provides special constructs, which enable
expressions to be evaluated in parallel. It also provides the
ability to specify the width of a data variable.

int 3 a,b;
// a and b are integers of 3 bit

Sequential Expressions (this executes the two statements,
one after the other sequentially)

.....
a = 1;
b = 2;
.....

Parallel Expressions (this executes both statements in par-
allel)

par {
a = 1;
b = 2;
}

The Celoxica DK1 design suite is a unique C direct-
to-hardware solution that enables software engineers to mi-
grate concepts directly to hardware without requiring the
generation, simulation, or synthesis of hardware descrip-
tion languages. The DK1 design suite focuses on the de-
sign, validation, iterative refinement and implementationof
complex algorithms in hardware. It includes built-in design
entry, simulation and synthesis, driven directly by Handel-
C. The output of the compiler is an architecture optimised
EDIF netlist for FPGA’s, or RTL VHDL for existing tool
suites.

More information about Handel-C and DK1 in [2].

4.3 The Method

The matrix productC = AB is formed by multiplying ev-
ery row ofA with every column ofB, in the way described
above. The resulting numbers are arranged in a new ma-
trix: themth row in A times thenth column inB gives the
number at position(m, n) in AB.

Algorithm 3 in Handel-C:

set clock = external "P35";

/*
* Function main
*/

void main(void)
{
// A, B and C are
// matrix_{4x4} of elements of one bit

unsigned 1 A[4][4];
unsigned 1 B[4][4];
unsigned 1 C[4][4];

A[0][0] = 1; A[1][0] = 1;
A[0][1] = 0; A[1][1] = 1; //....;
B[0][0] = 0; B[1][0] = 1;
B[0][1] = 1; B[1][1] = 0; //....;

par {
C[0][0]=A[0][0]&B[0][0]
|A[0][1]&B[1][0]
|A[0][2]&B[2][0]
|A[0][3]&B[3][0]

.....
C[3][3]=A[3][0]&B[0][3]
|A[3][1]&B[1][3]
|A[3][2]&B[2][3]

|A[3][3]&B[3][3]
}
// & is the AND operation and

| is the XOR operation
}

This algorithm reduce the CPU time to2 cycles.

5 Results

Using Celoxica DK1, we implemented the three algo-
rithms, and in debug mode simulates them. The result is
the number of nand gates using by the algorithms.

alg1 alg2 alg3
m cycles gates cycles gates cycles gates
2 8 660 2 341 2 28
4 16 1350 4 523 2 98
8 32 2666 8 975 2 384
16 64 4486 16 4499 2 2866

Table 1. Results

6 Conclusion

We presented an architecture for parallel multiplication in
the binary fieldGF (2m). However, in the literature we
have not found anything paper adopting a technique simi-
lar to ours for performing finite field multiplication using
Handel-C.

As we can see in Table 1, the first algorithm use4m

clock cycles and the second algorithm usem clock cycles.
The third multiplier algorithm is fastest, so the utilization
of this multiplier in a cryptography co-processors would
increase their speed of operation.

References

[1] G.B. Agnew, R.C. Mullin, and S.A. Vanstone. An
implementation of elliptic curve cryptosystems over
F2155 . IEEE Journal on Selected Areas in Commu-
nications, 11(5):804-813, June 1993.

[2] Handel-C and DK1 manual available at
http://www.celoxica.com

[3] [GSS99] L. Gao, S. Shrivastava, and G. Sobelman.
Elliptic curve scalar multiplier design using FPGAs.
In C. Koc and C. Paar, editors, Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES
’99), volume LNCS 1717. Springer-Verlag, August
1999.

[4] M. Rosner. Elliptic curve cryptosystems on reconfig-
urable hardware. Master’s thesis, ECE Dept., Worces-
ter Polytechnic Institute, Worcester, USA, May 1998.

[5] S. Sutikno, R. Enendi, and A. Surya. Design and im-
plementation of arithmetic processor F2155 for el-
liptic curve cryptosystems. In the 1998 IEEE Asia-
Pacific Conference on Circuits and Systems, pages
647-650, November 1998.

