
SOFTWARE DESIGN OF STORE AND FORWARD PAYLOAD FOR A
MICROSATELLITE

V.Vaidehi, S.Muthuselvam, R.Srinivasan, Praveen Kumar, V.Nirmal Kumar
Dept. of Electronics Engineering, Madras Institute of Technology, Anna University,

 Chennai-600044, India

Abstract

Store and forward via satellite is an esteemed method of communication. This paper focuses on the design
of software modules for store and forward payload for a polar microsatellite developed by Anna University,
the ANUSAT. This paper describes several aspects of software design for Store and Forward payload,
which includes memory manager, file manager, scheduler, I/O handler and Data Link layer protocol
modules. This paper also discusses the use of a multi tasking real time kernel for task scheduling and
development of mail client software for the ground users.

1. Introduction
ANUSAT is a polar micro satellite developed at
Anna University. The primary payload of
ANUSAT is store and forward, used to transfer
electronic mail among ground terminals in the
footprint of the satellite. In such a system the
originating ground station sends a message to the
LEO satellite, the satellite stores the message in
an on-board storage system, and delivers this to
the destination ground station in a later time. If
source and destination terminals are situated
within the footprint at the same time, then
message delivery can be made almost immediate.
But if they are not in the same footprint then
message delivery time can vary from a several
minutes to hours depending on user’s location
and satellite’s orbit. Between the storage and the
retrieval of the message, the LEO satellite moves
around its orbit and the Earth rotates on its axis.
These movements change the location of the
satellite’s footprint, and the satellite effectively
carries the message from one station to the other.
On a successful transfer, the mail is deleted from
the memory. If not, it is retained on the memory
to provide it again at the next visibility cycle. It
should be noted that the source and destination
users can be anywhere on the earth provided they
are in the foot print of the satellite. The
significance of this method is that it is one of the
best modes for non real-time communication of
information. Applications which can tolerate
delay, but which require inexpensive global
networking are well-served by this system. It
provides a communication link which would be
otherwise very expensive or impossible to
establish. It enables to form a store and forward
network which can be assembled quickly and
inexpensively. It is particularly attractive in areas
in which conventional terrestrial communication

systems were not available. Some typical
contexts are communicating with military units
abroad, geographical expedition teams, disaster
relief teams, etc.

In this paper section 2 introduces the protocol
stack of ANUSAT. Section 3 briefs the various
Modules of S & F Payload
Software. Section 4 presents the memory
management scheme used in the design. Section
5 discusses the results.

2. Protocol Stack of ANUSAT
ANUSAT protocol suite is specially designed for
highly transparent error free transmission. The
protocol suite is looked as a three layer network
model. The block diagram of the layer model is
given in the figure 1.It is necessary to look at the
overview of various layers before going into the
design of the S & F payload.

 User Satellite

Application Layer
(Embedded

Application Layer
(Mail client)

2.1 Physical Layer
The physical layer is the layer which takes care
of the communication medium, mode of
communication, speed, etc. The communication
medium used is free space. The mode of
communication is full-duplex. The raw data rate
is 9.6 kbps. The modulation scheme used is FSK.

Physical Layer
(Transceiver)

Link Layer
(HDLC)

Link Layer
(HDLC) Wireless

Link

Physical Layer
(Transceiver)

Figure 1 Layer model

2.2 Link Layer
The link layer is responsible for fragmentation of
data, flow control, error control, etc. on a point to
point basis. The flow control and error control is
achieved through sliding window technique and
Go-back-N ARQ respectively [2]. The medium
access control protocols adopted at this layer are
polling and reservation scheme. The link
protocol used at this layer is HDLC.

2.3 Application Layer
The functionality of all the above layers is same
for both satellite and ground terminals. But the
application layer behaves differently at the
satellite and the ground terminals side. At the
satellite, the application layer has embedded
software to handle the operations concerned with
store and forward. In the user side, the mail
client application running on a PC enables the
user to send and receive mails between the
satellite and user.

3. Modules of S & F Payload
 Software
The software for S & F Payload is alienated into
two modules, the data link layer module and the
other is the Application layer module. The data
link layer module is responsible for data transfer,
flow control and error control between the
satellite and the users. The application layer
module is responsible to perform the following
tasks such as memory management, file
management, scheduling, and I/O handling in a
multitasking environment.

3.1 Data link Layer Design
The data link layer design consists of a MAC
layer and a logical link control layer. The MAC
layer in the design allows to access the link on a
reservation based polling scheme. Where as the
logical link layer is organized into three different
phases they are Directory Broadcast Phase,
Allocation Phase, Data transfer Phase. The data
link layer protocol that is adopted for the design
is HDLC [5]. The communication from the user
to the satellite and vise versa is through
exchange of frames organized according to the
different phases of operation.

3.1.1 Directory Broadcast Phase
Once the satellite comes to the visibility of a
group of users, a directory broadcast frame
(DBF) frame is broadcasted to all users. This
frame informs the mail status of the users in the
on-board memory. Each bit in the information
field of the DBF frame is allotted for a single

user. By setting or resetting this single bit the
design informs the user about their mail status on
– board.

3.1.2 Service Request Phase
After receiving the DBF, the users have to send a
request frame to request for service. The uplink
is shared between multiple ground terminals in
the same footprint, so the satellite polls
individual users in the footprint to receive their
request. In response to the poll each user will
send a request frame. The request frame content
will inform the satellite whether the user has
only mails to be received or have only mails to
be sent or have mails to both send and receive or
neither send nor receive mails. It
also gives the information about the file size the
user wants to send. This information will be used
in the satellite for schedule preparation in the
reservation phase.

3.1.3 Reservation Phase
In the reservation phase a schedule is prepared
based on the information available in the satellite
and information collected from the Request
frames received from contenting users.
Following preferences are taken into account
while preparing the schedule; the ground station
is given the highest priority. The user with both
mails to send & receive will be given the next
highest priority. The mail size to be sent from the
satellite is the next priority parameter as more
free space can be obtained on – board. The
visibility period is the next priority parameter.
The user with only mail to send will be given
least priority.

3.1.4 Allocation Phase
In this phase the satellite sends an allocation
frame with the user address for whom the time
slot is allocated. On receiving the allocation
frame the specific user responds with data
transfer.

3.1.5 Data transfer
The user who has received the allocation frame is
allowed to use the channel for data transfer to and
from the satellite. This phase continues either till the
data to be transferred is completed or till the
maximum allocated time per user is exceeded.

3.2 Process Scheduler
 The various phases discussed above are all
grouped into a set of tasks for real time
scheduling. Tasks are scheduled on a preemptive
priority based real time kernel using µcos – II
RTOS [4]. Each task is assigned a priority ID.

The task with the lowest numbered ID is given
the highest priority. Based on the above scheme
the design assigns the priority as shown in
Table 1.

 The ‘memory initialization’ task is executed,
if it is the first time of S&F being switched ON
or when a ‘reset memory’

Table 1: Priority order

Telecommand (TC) is received. Then this task is
deleted. So the next priority task ‘SendDBF’ is
scheduled and complete the Directory Broadcast
phase and get suspended by itself. The task
‘Schedule’ with priority 2 is invoked after
SendDBF task gets suspended. After completion
of schedule task, it delete by itself. Now the task
‘Allocation’ with priority 3 gets executed. After
the completion of this task, it suspend by itself.
So the next higher priority task, ‘Data transfer’
with priority 4 is scheduled.

When data transfer task completes execution, it
resumes the Allocation task.

Figure 2 Task Flow Graph

The allocation task sends allocation frame if
there is a user waiting for service and suspend
itself to schedule the data transfer task. But if
there is no users left and if the visibility time
remains then it resumes the task SendDBF. Else
if the satellite is out of visibility then it delete the
SendDBF task and delete itself. Then the next
higher priority task ‘Housekeep’ is scheduled, it
construct the Telemetry Frames which carry the
performance parameters of Store-and-forward
payload. The system goes to the idle state when
the S&F off telecommand is received.

Name of the
Task

Allotted Priority
Values

Memory
initialization

0

Send DBF 1
Schedule 2

Allocation 3

4 Memory Management
The on board memory is divided into three major
regions. They are File table area, free block
manager area, Message storage area.

Figure 3 On-Board Memory Split up

4.1 User Addressing
 In any type of network, there should be an
addressing scheme which would `uniquely
identify the users on the network. It is needed
here also. ANUSAT will serve at the maximum
255 users on a whole. In ANUSAT 1 byte is
used for addressing which allows 256 address
spaces which are sufficient for addressing all the
users in the network. Out of these 256 addresses,
2 addresses are used to convey special meaning
as broadcast mail and ground control station.
Address”11111111” i.e. 0x255 is allotted for
broadcast address and the address”00000000”
i.e. 0x00 is assigned for the ground control
station. So, the addresses from 1 – 254 can be
assigned to the users.

4.2 Block Access Method
 The entire memory is divided into various zones
as mentioned earlier. The message storage area is
divided into blocks of equal size. The block size
in this design is 256bytes. The simplest unit that
can be accessed in the message storage area is a
block. So, the addressing for the message storage
area is in block addressing mode. It has to be
noted that if actual addressing mode is used then
an address would need 22bits. Instead, if we go
for block addressing, then an address size is
16bits. This will help us to reduce the overhead

Data Transfer 4
Housekeep 5

File Table Area

Free Block Manager
Area

Message Storage

Area

0x00000

FBMBA

MSABA

0xFFFFF

Out of
visibility

Completed

Completed

Completed/
Timeout

Users waiting to be
served & visibility
remains

Users
served &
visibility
remains

Completed

Idle
Completed

S & F ON
TC

Init Mem
TC

Initialize
memory

Data Transfer

SendDBF

Allocation

Schedule

House keep

size. As a message may be more than 256 bytes
in size, it may need multiple blocks to store that
message. So, a method should be provided for
accessing the files in multiple blocks. This
design makes use of the linked list structure for
this purpose. The first 254 bytes in the block is
used to store the message file’s segment and the
last two bytes are used for chaining on to the
next block. These two bytes store the address of
the next block if any or a null address if it is the
last block of that message file.

A translator is needed to translate the block
number to physical address. The expression used
by the translator is

 PA = BN * 256 + MSABA (1)
Where

PA is Physical Address.
BN is Block Number.
MSABA is Message Storage Area Base Address

This translator translates only the block
addresses and an explicit offset value is needed
to access any location in the memory. So, the
offset value is maintained explicitly and summed
with the physical address generated by the
translator to get the exact location in the
memory.

4.3 Bit Vector Technique
The bit vector technique is used for free block
management which is one of the most efficient
and successful scheme. In this method, each
storage unit is mapped to a bit. The bit value is
‘1’ if the storage unit is occupied and the bit
value is ‘0’ if the storage unit is free. In this
design, the storage unit is a block. Each block
has a corresponding usage status bit indicating
the usage statistics of the block.

 If there are N blocks in the message storage
area, then the number of bytes needed for the
free space manager area (M) is given by the
formula

M = ceil (N/8) (2)
Where ceil (x) is the smallest possible integer
which is greater than or equal to x.
The bits in the bit vector are addressed in normal
addressing i.e. starting from 0, and they are in
the order of LSB to MSB incremental. The
addressing of bits is in a zigzag fashion. The
main idea behind mapping is to find out the
address of the bit corresponding to a block
address and vice-versa. This job is done by the
free block manager mapping unit. The block
address (BA) corresponding to a bit in the bit

vector is achieved by the following formula

BA = ByA*8 + BiA (3)
Where

ByA is the byte address of the location of the bit
from the FBMBA.

BiA is the bit address of the bit starting from the
LSB.

 Similarly, a reverse mapping unit is needed to
reverse map a block address to a bit in the bit
vector. The formula used for reverse mapping to
find the bit address corresponding to a block
address is given below.

 ByA = floor (BA / 8) (4)

 BiA = BA mod 8 (5)
Where, floor (x) is the greatest possible integer
lesser than or equal to x.

x mod y is the remainder of the division of x by
y.

4.4 Managing File Table
Any operating system which uses file should
have a file table which stores the details of the
files present in the disk. This design also needs a
file table for this purpose. But it is different from
the conventional operating systems in the sense
that, in conventional operating systems, the files
are stored in the secondary memory of the
system as some magnetic disks or so. But in our
case, the files are stored in the semiconductor
memory.

A key assumption is made while designing the
file table structure. It is that a user doesn’t have
more than twenty concurrent mails in the
memory. This is decided by taking into account
the average traffic for a user and also the transfer
speed and visibility time. If this is wanted to be
changed in future, the design is so flexible to
accommodate the change into it.

Figure 4 File table Area

The file table of this design is a fixed sized one.
It is composed of file table entries. Each user has

a file table entry corresponding to him. Each
entry is capable of holding 20 file addresses in
block addressing mode. The first slot is of 1 byte
size which stores the user address which the file
table entry corresponds to. The next 20
consecutive slots are of size 2 bytes each which
is used to store the block address of the first
block where the file is being stored in the
memory. If there is no file exists for the user,
then a slot should store a null address which
indicates that the slot doesn’t store any file’s
address. As 0x0000 is a valid block address in
this design, we can’t use this as null address. But
the address 0xffff is not possible in this design.
So, this is used as the null address here. If a slot
has 0xffff in it, then it is an empty slot and it can
be used to store a new file’s address. Each user
has a separate file table entry. So, we need 256
file table entries each of size 41 bytes. It should
be noted that there is an entry for the broadcast
address also. So this makes the size of the file
table area as 256 * 41 (10496) bytes.

Thereby each user’s file table is accessed by
using the formula UA*41. This will give the
starting address of the file table entry. The
address of the slots for files 1, 2, 3… 20 is given
by UA*41+1, UA*41+3, UA*41+5…
UA*41+19

The slots are used in a queue model. The first file
address is stored in the first slot, second file
address in second slot and so on. When a
message arrives, for storing the block address of
the file, the first free slot is found i.e. the slot
with null address and the block address is stored
in that slot. Similarly when deleting a file, the
block address is overwritten by the block address
of the next slot and the other slots are moved one
step ahead. This makes that the first came
message is available in the first slot and so on.

4.5 File Handling
When a user sends mail to other user or
broadcasts a mail, a file creation is needed. File
creation can be of two kinds based on the mail
type. It is different for single destined messages
and broadcast mails.

The file creation in this design falls into two
categories they are normal file creation and
broadcast file creation. Normal mails are the
mails destined to a single user. The process of
creating normal mails is given as follows. When
a new mail arrives, the destination address of the
mail is looked up from the mail. The first free
block is found using the routines from the free
block manager. The address of the first free

block is added to the file table of the
corresponding user. The method for adding a
new file to the file table entry is as follows. The
first slot for the given address is examined. If it
is not null, then it implies that there is already
one or more files are present for that user. Then
the file table entry is traversed to find the first
free slot i.e. slots with 0xffff and the file’s
address is stored in that slot. If no free slot exists
for a given user, then an exception is raised.
Once the file entry is made, then the mail is
started to store in sequence. A counter is kept
which is incremented for each byte transfer.
Once the 254 bytes are stored in that block, a
new block should be allocated and the new
block’s address is chained in the previous
block’s chaining bytes. This is repeated till the
mail ends. If a new block can’t be allocated in
the meantime, then no space exception is raised.
And also if the transfer is incomplete, then
incomplete transfer exception is raised.

As mentioned the mails that are larger than 254
bytes in size are stored in multiple blocks and are
kept track using the chaining bytes in the block.
While allocating a new block, the chaining bytes
are nullified by storing the null block address
0xffff to it. This helps us to avoid the garbage
chaining if any value is already present in those
bytes.

As discussed earlier, the broadcast mails are the
mails that are destined to all the users in the
satellite. So, a single copy of the mail is kept in
the memory and entries are replicated in all users
file tables. Hence, the procedures are almost
same as for normal mail creation. The main
difference is that for these mails, apart from
adding an entry to 0x255, entries are made to all
users. This makes that every user has reference
to that mail and only one copy of the mail being
physically existing in the memory. Files should
be retrieved when the user requests them. In this
design, the files can be retrieved only in the
order that they are arrived. When a user requests
his mail, the file table entry of the user is located
and the first slot is examined. If it is not null,
then it means that the user has one or more
mails. The first slot’s value gives the block
address of the first mail. The physical address is
got by using the address translator. The offset
value is initialized to 0. Byte by byte transfer of
data is done by incrementing the offset. Once the
offset is reached 254, the next block is accessed
from the chaining information. This is done till
the entire message is accessed by looking for the
EOF. File deletion is done when the mail is

successfully delivered to the destination and an
acknowledgement is received. File deletion also
falls under two categories. Deletion of normal
files and deletion of broadcast files. When
normal files are to be deleted, the entry in the file
table as well as the bit in the free block manager
corresponding to the message in the memory is
deleted. To delete a mail, first all the blocks
containing the mail are marked as free by
traversing through the blocks. Then the entry is
removed from the file table entry. Broadcast file
deletion is same as normal file deletion except
that the mail is not removed from the memory
instead only the file table entry is removed.
When a user x acknowledges a broadcast mail,
only the entry for the user x is removed and the
broadcast mail still remain in the memory.

5 Results and Discussions
The entire design is implemented in C, which is
easier to migrate to other environment and also
easy to maintain. The entire design is simulated
in the personnel computer environment by using
a portion of the RAM as the satellite’s memory.
The communication between the user and the
satellite is achieved using the com ports available
in the Personnel computer. An RTOS is used for
achieving a multitasking environment and to
ensure the timeliness of the system. All possible
logical paths are exercised and the design is
tested for stability. Both the satellite and the
client are modeled as per the real-time
specifications and a wired link is used as the
communication medium.

Figure 5 File Table Area after Memory

Initialization
The figure 5 shows the file table area after
initialization of the on board memory. The first
byte (element) in the above figure has a value
‘00’ indicating the address of user zero. The next
consecutive 40 bytes are used as sizes of 2 bytes
each to store the block number of the first block
of each mail being stored in the memory. These
locations are initialized to 0xFF FF to indicate
that there is no mail for user ‘0’.Similarly ‘01’ in
the third row indicates the address of the user
one and its mail status.

Figure 6 Free Block Manager

The figure 6 shows the memory dump of free
block manager on memory initialization. The
‘00’ in all the locations indicate that no memory
block is occupied in the memory storage area.

The figure 7 shows the memory dump of file
table area after saving a mail in the onboard
memory for user 1. This can be viewed in the
row with the starting address 0x0000001E. The
values ‘0’ in the next Consecutive 2 bytes
indicate that the starting block number for the
first mail of user 1 is 0.

Figure 7 File Table Area after storing a Mail

The figure 8 shows the status of the free block
manager after a mail is stored in the on board
memory.

Figure 8 Free Block Manager After Storing a

Mail
The row with the address 0x000028BC has an
entry 0x0F (binary equivalent being 00001111)
which indicates that first 4 blocks are occupied
in the mail storage area for storing the mail
received.
The figure 9 shows the mail storage area in the
on board memory after storing the mail received.
The row with the starting address 0x000030BA
shows the starting of the mail storage in the
hexadecimal format. The column in the right side
of the figure 9 shows the exact mail content that
is stored in the mail storage area of the satellite.

cknowledgements
evelopment of this software design for Store-

 of a micro satellite has

A
D
and Forward Payload
been made possible through sponsorship by the
Indian Space Research Organisation (ISRO).
Any opinions and conclusions or
recommendations expressed in this materials are
those of the authors and do not necessarily
reflect the views of the ISRO. The authors wish
to thank the experts of ISRO for their feedback
in the development of this system. And also wish
to thank all of whom provided wise opinions and
astute suggestions.

References l

Figure 9 Mail Storage Area after Storing a Mai
yT . Ward “Microsatellites for global
tronic mail networks”, Electronics

2
ite and Hybrid Communication

3
uest (ARQ) Performance on

4
s, 2002

,

6
rce Sharing

u
7

ntrol in the

he 14th and the 15th b te of the row with the
address 0x000031C2 are the chaining bytes. The
value shows the chaining

The figure 10 shows the status of the
file table area after sending the mail for user 6
and a new mail received for user 7. After the
mail has been received by user 6 the
corresponding file table entry is reset to 0xFFFF.
This can be seen in the row starting with the
address 000000E7. Looking into the row with
starting address 00000104 it is found that user 7
has a mail to receive and the starting block
number is 4.

Figure 10 File Table After Sending The Mail

Conclusion
per the design and implementation In this pa

issues of typical store-and-forward software
system for ANUSAT has been outlined. This
paper also provides explanation for using a
simple yet powerful scheme for mail transfer, on
board memory management and mail retrieval
mechanism. The data link layer protocol of this
design has adopted a reservation based MAC.
The development team has made significant
progress in developing a software design for
Store and forward payload. This design balances
simplicity with the performance required for
University-based micro satellite mission. To
date, the system has been implemented and
functionalities are verified.

1 J.W
elec
and Communications Engineering
Journal, IEE, December 1991, pp 267-
272.
D. Friedman, “Error Control for
Satell
Networks, M.S. Thesis, Un. of
Maryland, 1995, (CSHCN Techn. Rep.
MS 95-l).
A. R. K. Sastry. Improving Automatic
Repeat-req
Satellite Channels under High Error
Rate Conditions. IEEE Transactions on
Communications, April 1975.
Jean J. Labrosse, “MicroCOS II : The
Real Time Kernal”, CMP Book

5 William Stallings,” Data & Computer
Communications”, Sixth edition
Prentice Hall, Nov 1999.
Kahn, R.E., and W.R.Crowther, ‘Flow
Control in a Resou
Computer Network,’ IEEE Transactions
on Comm nication, 1972
Kamalini Martin, V.Venkatesan and
U.N.Das, ‘Data Link Co
LEO satellite store and forward
network’, IEEE TENCON 2003
Conference, 2003

