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Abstract: Real-time programs must be logically correct and must complete without timing errors. Errors due 
to overloaded resources are exposed very late in a development process, and often at run-time. Specifically, 
when a set of tasks are found to be overloaded and not schedulable, the developers usually remedied these 
problems by manual-intensive operations such as instrumentation, measurement, code tuning and 
eventually redesign. Such operations are slow and uncontrollable. We propose a semi-automatic alternative 
to this manual process, based on the task restructuring. Our approach is an extension of the one proposed 
by R. Gerber that only treats some monolithic and simple programs. It consists for the scheduling 
perspective, in restructuring real-time programs, which can be complex and contain a collection of 
procedures. This restructuring, by using the interprocedural program slicing concept and a finer dependence 
model, allows to make flexible the deadline task and therefore, to improve its schedulability.  
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1 Introduction 

Real-time computer applications are increasingly 
being designed and used in every life. Moreover, these 
systems are often parts of critical applications. Typical 
real-time applications are control systems 
(manufacturing systems, robotics), monitoring systems 
(patient monitoring, air traffic) and communication 
systems. The correctness of a real-time system depends 
not only on how concurrent processes interact, but also 
on the time at which these interactions occur. In these 
systems, tasks are regularly performed to control 
physical processes and monitor functioning. They sample 
information to process in order to produce commands for 
actuators. Invocation of these typical tasks occurs 
periodically, every T time units. The most common 
requirement is that a task invocation must be completed 
within D time units after it is ready. The parameters T 
and D are called respectively the period and the deadline. 

Either a failure to perform a task at the appropriate 
time or a flaw in the control program's logic can yield 
catastrophic consequences in hard real-time systems. 
Thus, meeting the timing constraints is extremely 
important in such systems. To satisfy their deadlines, 
tasks must be appropriately scheduled. Algorithms for 
scheduling tasks in real-time systems typically assume 
that their worst-case execution times are known. Such a 
system is designed to ensure that all tasks can complete 

by their deadlines as long as no task in a system executes 
longer than its worst-case execution time. A task which 
overruns may lead to missed deadline and failure of the 
whole system. 

On the other hand, errors due to overloaded resources 
are exposed very late in a development process, and 
often at run-time. Specifically, any deadline violation 
makes tasks unschedulable; to realize schedulability, 
programmers usually remedied to these problems by 
manual-intensive operations such as instrumentation, 
measurement, code tuning and restructuring. Such a 
manual and costly process is slow and uncontrollable [1, 
2]. In certain cases, entire subsystems may have to be 
altogether redesigned. 

In this paper, we present a semi-automatic alternative 
to this process, based on two concepts: interprocedural 
slicing [3] and fixed priorities scheduling [4, 5]. A slice 
of program, with regard to a point p and a variable v, 
consists of statements of the program that can affect the 
value of v, at the point p [3]. Its behavior is identical to 
the initial program with regard to a given criterion. 
We can for example, isolate a slice with regard to a 
critical-instruction in the program, an instruction, 
which emits command to an actuator or an instruction of 
alarm in a control task.  

While respecting the different dependencies in the code 
of an unschedulable task, we ensure so that statements 
that influence the deadline are executed in the first place. 



 

The fragment of code that corresponds to a local 
computation can be deffered. This operation permits us 
to defer the execution of a part of the code, while 
preserving the initial semantic.  

In the scheduling perspective, Gerber and Hong [2] 
used program slicing to divide a program task. In a 
different context (the one of the maintenance), Gallagher 
and Lyles used slices in program decomposition [6]. 
However, the presented approaches treat only monolithic 
and simple programs. They are very restraining with 
regard to the reality of real-time system, where we often 
find structures of programs that contain procedures [14]. 

In contrast to these works [6, 2] and while developing 
a finer dependence model of program behavior, slices 
that we extract from the program can contain a collection 
of procedures. Furthermore, they are executable and 
precise. Since our transformed tasks are sequentially 
executed, all slicing decisions are taken statically before 

the application run-time. Such a static transformation 
type preserves the temporal determinism, which is 
essential in real-time systems. 

These interprocedural slices are the basis of our 
method of real-time program restructuring. Thus, we can 
restructure a program automatically by the displacement 
of its nontemporal fragment after the one (temporal slice) 
that directly influences the deadline. This process will 
help the programmer to achieve schedulability and to get 
a globally correct application. 

In the next section, we show how program 
dependencies are represented, and how to use this 
representation to extract temporal slices. In section 3, we 
presented our restructuring algorithms. Section 4 
presents the tool of Real-Time Task Restructuring 
(RTTR) that we conceived and implemented. Finally, the 
conclusion is presented in section 5.

 
Task Ti Ci Di  Schedulability of τ2  Schedulability of τ3 

τ1 80 20 80  S0=1(20)+1(80)=100 ms  S0=1(20)+1(80)+1(35)=135 ms 
τ2 150 80 150  S1=2(20)+1(80)=120 ms  S1=2(20)+1(80)+1(35)=155 ms 
τ3 200 35 200  S2=2(20)+1(80)=120 ms  S2=2(20)+2(80)+1(35)=235 ms 

Table 1 Example of three tasks           Table 2 Analysis of τ2                         Table 3 Analysis of τ3 
 

 
Fig.1a Execution behavior of the periodic task before restructuring.  

 

 
Fig.1b Execution behavior of the periodic task after restructuring.  
 

 
To show how we analyze the task set schedulability, 

consider the case of three tasks τ1, τ2, and τ3. Their 
characteristics are described in table 1. The line rank 
corresponds to the task priority. By applying of the above 
equations, for τ1, S0=20, S1=20, S0=S1, the worst-case 
completion time is equal to 20 ms (�80 ms), this task is 
then schedulable. For the task τ2, the schedulability 
analysis (table 2) shows that it is schedulable. Its worst-
case completion time is equal to 120 ms (�150 ms), 
while the schedulability of the task τ3 (table 3) is not 

guaranteed, since its worst-case completion time is equal 
to 235 ms (� 200 ms). 

 
 

2 Task Restructuring 
Our objective is to obtain flexible deadlines of tasks, 

because the schedulability is improved as one increases 
the flexibility of deadlines. This effect can result from 
the fact that one allows a task to go beyond of its 
deadline [15]. We can get this advantage by task 
restructuring to obtain two fragments. The first is a 
temporal fragment (noted FT) that must satisfy the 

 
 
 

(k-1)th (k) th (k+1) th (k+2) th

 
 
 
          (k-1)th                            (k) th                                (k+1) th                       (k+2) th 



 

deadline. The second is nontemporal fragment (noted 
FnT), which corresponds to a local computation that can 
tolerate a certain delay. Then, fragments will be 
sequentially recomposed, to constitute a new program of 
the task in question, which is semantically equivalent to 
the original task program.  

Fig.1a represents the execution behavior of a periodic 
task. Hatched Parts in figures 1a and 1b represent 
temporal components of the task program. At the (k+1)th 
period, the execution of this task goes beyond its 
deadline and becomes thus, unschedulable (fig.1a). 
However, in the case where temporal statements would 
complete within the prescribed period, the execution of 
the whole task is acceptable (fig.1b). Our restructuring 
approach uses the interprocedural slicing that is a 
fundamental operation of program behavior analysis [3, 
6]. 

On the other hand Program slicing [3] is a technique for 
automatically decomposing high-level programs by 
analyzing its control and data flow information. Static 
slicing techniques aim at extracting a minimal program that 
captures the behavior of a source-code program with 
respect to a specified variable and location; this problem is 
solved by a reachability analysis. Thus, we need an explicit 
representation of data and control flows. This is made by 
a Dependence Graph, which reduces program slicing into a 
graph walk problem [7]. A slice is computed by backward 
traversing the control and data dependence edges of the 
graph. The slice corresponds to the subgraph containing the 
reached vertices and edges. A monolithic program 
(program without procedure calls) is represented by a 
Procedure Dependence Graph (PDG). A program 
containing collection of procedures is represented by a 
System Dependence Graph (SDG) [8, 9].  

To represent the timing constraints, we propose by the 
analogy of the program dependence graph, to implement 
a graphical model, which consists of a set of vertices and 
edges. Vertices are associated with instructions or 
variables, while edges are associated with dependencies 
and real-time constraints [13].  

An instruction can be classified as an externally viewed 
instruction (EVI) or an internally viewed instruction 
(IVI) based on the effect of the instruction. The effect of 
IVI is limited to the internal computation, while an EVI 
changes the status of the control environment. For 
example, the variables defined as volatile in the C 
language [1] or commands to control robot or actuators 
are EVIs, and their execution must meet the timing 
constraints specified. Because EVIs may depend on 
values computed by IVIs, any such dependence also 
implies a relative timing constraint (execution order) 
which must be preserved. 

 
 

2.1 Dependence Representation  
A PDG is composed of vertices and edges representing 

respectively program statements and their dependencies. 
With the exception of call statements, a single vertex 
represents assignment statements, input statements and 
output statements, and the predicate of conditional (if) and 
while-loop statements. Additionally, there is a distinguished 
vertex called the entry vertex, and an initial-definition 
vertex for each variable that may be used before being 
defined. The source of a control dependence edge is either 
the entry vertex, a predicate vertex, or a call vertex. Each 
edge is labeled either true or false. A control dependence 
edge, from vertex v to vertex u, means that during 
execution, whenever the predicate represented by v is 
evaluated and its value matches the label on the edge to u, 
then the program component represented by u will 
eventually be executed, provided the system terminates 
normally. 

A data dependence edge from vertex v to vertex u means 
that the system’s behavior might change if the relative order 
of the components represent by v and u were reversed. 
There are two kinds of data dependence edges, flow 
dependence edges and def-order dependence edges. A flow 
dependence edge connects vertex v that represents an 
assignment to a variable x to a vertex u that represents a use 
of reached by that assignment. A def-order edge runs 
between two vertices, v and u that both represent 
assignments to variable x where both assignments reach a 
common use, and v lexically precedes u. 

To represent the multi-procedural program 
dependencies, we use a System Dependence Graph 
(SDG) [8]. It is composed by set of PDG, connected by 
edges that symbolize dependencies of calls and 
summaries (Figure 2). Summary edges represent 
transitive dependence due to the effects of procedure 
calls. A call statement is represented using a call vertex 
and four kinds of parameter vertices that represent 
parameter passing. On the calling side, parameter passing 
is represented by actual-in and actual-out vertices, which 
are control dependent on the call vertex. In the called 
procedure, parameter passing is represented by formal-in 
and formal-out vertices, which are control dependent on 
the procedure’s entry vertex. Actual-in and formal-in 
vertices are included for every parameter and global 
variable that may be used or modified as a result of the 
call. Formal-out and actual-out vertices are included for 
every parameter and global variable that may be 
modified as a result of the call.  

To address the calling context problem, the system 
dependence graph includes summary edges. A summary 
edge connects actual-in vertex v to actual-out vertex u if 
there a path in the SDG from v to u that respects calling 
context by matching calls with returns. We add three 
kinds of interprocedural edges: (1) A call edge connects 
each call vertex to the corresponding procedure-entry 



 

vertex. (2) Parameter-in edge connects each actual-in 
vertex at a call site to the corresponding formal-in vertex in 
the called procedure. (3) Parameter-out edge connects each 
formal-out vertex to the corresponding actual-out vertex at 
each call site on the program. The global variables are 
generally treated as supplementary actual parameters.  

 
2.2 Interprocedural Slicing  

In a perspective of restructuring for scheduling, we are 
concerned by imperative programming languages, 
containing real-time extensions. The program model that 
we used assumes the following properties: (1) a complete 
system consists in a main program (Main) and a 
collection of procedures, (2) parameters are passed by 
value-results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 SDG of the task program.  

 
Furthermore, to obtain precise and executable slices, 

we use an adapted and fine dependence model where (1) 
the element is an action on variable, (2) timing 
constraints are represented [13], and (3) slices are 
relative to several procedures. Our objective is obviously 
to produce the temporal component, represented by a 
precise and executable slice. The temporal component 
incorporates all instructions that influence a given 
criterion. The criterion is defined by line number and a 
variable. The line number can reference an output 
instruction or command transfer to an actuator, for 
example. This instruction corresponds to an EVI type [1, 
15]. 

On the other hand, an interprocedural slice of an SDG 
with respect to the vertex v is computed using two passes 
over the graph [16]. Summary edges are used to permit 
«moving across» a call site without having to descend 
into the called procedure; thus these is not need to keep 
track of calling context explicitly to ensure legal 
execution paths are traversed. Both passes operate on the 
SDG, traversing edges to find the set of vertices that can 
reach a given set of vertices along certain kinds of edges.  

The traversal in Pass 1 starts from all vertex v and goes 
backward (from target to source) along flow edges, 

control edges, call edges, summary edges, and 
parameter-in edges, but not along def-order or parameter-
out edges. The traversal in Pass 2 starts from all vertices 
reached in Pass 1 and goes backward along, flow edges, 
control edges, summary edges, and parameter-out edges, 
but not def-order, call, or parameter-in edges. The result 
of an interprocedural slice consists of the sets of vertices 
encountered during Pass 1 and pass 2 [16, 17]. 

 
 

3 Restructuring Algorithms  
Consider a real-time program called M that contains 

calls of a procedure P. SDG can be constructed 
automatically from the program [8]. We propose three 
algorithms to restructure a given task source code.  

Algorithm 3.1 produces the temporal slice with regard a 
given criterion. To do this, it performs pass 1 and pass 2 
treatment, described in the above section. It marks 
vertices corresponding to temporal statements (including 
procedure calls) of the main program (M) and of 
procedures. The silce obtained at his step can be 
nonexecutable. To make it executable, we perform the 
following actions: (1) add vertices that remove actual-in 
vertex mismatches; (2) add vertices that remove actual-
out vertex mismatches; and (3) produce a system from 

Cycle.39 

cfc.42 
pressure.41 pmax.46

Output().48 

pact.43 

pact.45

xin := cfc yin :=pressure  

pact(…).5

x:=xin 

y:=yin If.54 zout := z

cfc.44 
action3.47

action1 := zout 
xin := pmax yin =pressure action2:=zout 

pmax=xout 

x.58 
While.59 

x.60 

z.55 
z.57 

cfc=xout 

xout=x                  Data Flow 
                 Control Flow 
                Summary edge 
                Call edge, 
                Param. In, Param. Out 



 

the resulting set of vertices and the original system. This 
algorithm also marks every code line corresponding to a 
marked vertex in the SDG. Hatched Vertices in Fig.2, 
represent the temporal slice, obtained by application of 
our algorithm 3.1 on the example (Figure 3.a) with 
regard to the criterion {<48>,<action3>}. 

Algorithm 3.2 uses the result of the algorithm 3.1 
(treated SDG, marked code and procedures). In the 
program M, we erase all unmarked lines so that only 
temporal statements remain. We perform the same 

treatment on the procedure P, to get a temporal 
subprocedure that we call P1. 

Algorithm 3.3 uses the result of the algorithm 3.1 
(treated SDG, marked code and procedures) to compute 
the nontemporal fragment. Consider our example of real-
time program, called M. From the main program, we 
erase lines that correspond to marked vertices, except, 
the conditional statements, the while and the call of 
procedure. 

 
ALGORITHM 3.1. Identifies executable slice T(SDG,n). (n: Slicing criterion). 

Step 1, Start from n and go backward (from target to source) along flow edges, control edges, call edges, 
summary edges, and parameter-in edges, but not along def-order or parameter-out edges.  

Step 2, Start from every vertices reached in Step 1 and go backward along flow edges, control edges, 
summary edges, and parameter-out edges, but not along def-order, call, or parameter-in edges. 

Step 3, While there exists an actual-in vertex y, which mismatches with marked formal-in vertex, mark the 
vertex y. Perform the same treatment for the actual-out vertex. Mark all vertices (unmarked again) 
which depend (flow dependence) on vertices computed at step 2. 

 
ALGORITHM 3.2. Compute the temporal fragment FT(treated SDG, Task Program).  

Step 1, From the program M and every procedure P, erase lines corresponding to vertices not marked in 
the SDG, by the algorithm 3.1.  

Step 2, Replace each call of P, by a call to P1.  
The result represents the FT fragment. 

 
ALGORITHM 3.3. Compute the nontemporal fragment FnT (treated SDG, task program).  

Step 1, Do steps 2 & 3, for all S representing the main program and every procedure marked by the 
algorithm 3.1.  

Step 2, Erase from S, lines which are marked by the algorithm 3.1, except lines of conditional instruction 
and call of procedure.  

Step 3, Erase lines of conditional statements and calls of procedure which control an empty instruction set. 
Step 4, Replace every marked call of the procedure P, by a call of the subprocedure P2, and every no 

marked call of the procedure P, by a call of P1 followed by a call of P2.  
The result represents the FnT fragment. 

 
We perform the same treatment for the procedure P, to 

get a nontemporal subprocedures (P2). Because the 
procedure P is transformed in two subprocedures P1 and 
P2 (Figure 3), we replace then, every marked call of P in 
the remainder of the program M, by a call of P2. 

In order to only having two declarations for the 
procedure P, we replace every unmarked call of P, by a 
call of P1 followed by a call of P2. If P is not marked at 
all, we conserve this procedure in the non-temporal 
fragment. Figure 4b shows the two subtasks (FT and 
FnT). They are obtained by applying the algorithms 3.1, 
3.2 and 3.3 on our example (Figure 4a), and its SDG 
(Figure 2), with regard to criterion {<48 >, <action3>}. 
The above program fragment (Figure 4a) is inspired from 
the work of T. M. Chung and H. G. Dietz [1]. The code 
of task τ3, embodies timing constraint, and it could easily 
have been found in a real application.  

The construct cycle(200) in line 39 specifies the task 

period. Thus, the instructions in the block enclosed by 
{and} must be completed within 200 ms. The program 
fragment contains the code of the taskτ3. This task 
performs the following actions, every 200 ms: 

- Read a new measure on the pressure sensor  (line 41); 
Using the new reading data (pressure) and the current 

state (values of cfc and pmax), 
- Produce an actuator command (action at line 47) to 

reduce pressure. 
- Update the state; 
- Send command to the actuator before taking the next 

sensor reading (line 48). 
 
 
 
 
 



ANALYZER

GENERATOR 

EXTRACTOR 

Program of the task to 
restructure  

Transformed task  

SDG Instrumented Code 

1:   main()   
20:        •••  
39:     cycle: (200) /* task   period*/ 
40:     { 
41:     input(sensorP, pressure);  
42:     cfc=cfc+pmax/3; 
43:     pact(cfc, pressure, action1);  
44:     cfc=cfc-pmax/100; 
45:     pact(pmax,pressure,action2); 
46:     pmax=100; 
47:     action3=F(action1,action2); 
48:     output(actuator, action3);  
49:     } 
50:     pact(x, y, z);  
51:         float x, y; 
52:         char z; 
53:        { 
54:     if (x>y)  
55:       z=«cmdpress1»; 
56:     else 
57:       z=«cmdpress2»;  
58:     x=x+y;  
59:     while (x>y) 
60:             x=x-0.03; 
61:   }  
 

1:  main()     
20:        •••  
39:     cycle: (200)            /* task  period*/ 
40:     {  
41:     input(sensorP, pressure);  
42:     cfc=cfc+pmax/3; 
43’:    pact1(cfc, pressure, action1);  
45’:    pact1(pmax,pressure,action2); 
47:     action3=F(action1,action2); 
48:     output(actuator, action3);  
43»:   pact2(cfc, pressure); 
44:     cfc=cfc-pmax/100; 
45»:   pact2(pmax, pressure); 
46:     pmax=100; 
49:     }  
50’:     pact1(x, y, z);  
51’:         float x, y; 
52’:         char z; 
53’:        { 
54:     if (x>y)  
55:       z=«cmdpress1»; 
56:     else 
57:       z=«cmdpress2»;  
61’:   }  
50»:     pact2(x, y)  
51»:         float x, y; 
53»:        { 
58:          x=x+y; 
59:          while (x>y) 
60:             x=x-0.03; 
61»:   } 

Fig.4a Original Task Program          Fig.4b Restructured Task Program 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5 RTTR Structure. 
 
4 Restructuring Tool  

We have conceived and implemented a tool (Figure 5) 
of task restructuring, called RTTR (Real Time Task 
Restructuring). Based on the above-mentioned 
techniques, it has been developed on a processor 
Pentium-II, using the Visual C++ language. It is 
composed of three modules: the Analyzer, the Generator 
and the Extractor. From a given real-time program, the 
Analyzer performs a lexical, syntactic and semantic 
analysis to produces an instrumented code. From the 

instrumented code, which is a well-structured code, it 
constructs the SDG. The Generator module visualizes the 
instrumented source code (where each instruction is labeled 
by a single number (IdDep)) and gives measurements. The 
Extractor is exploited in interactive fashion. It offers 
to the user the means to extract the two fragments 
(FT & FnT) as well as the code of the task 
transformed. 

 
 
 



 

5 Conclusion 
In this paper, we presented a static approach to improve 

the real-time task schedulability. It is based on 
interprocedural program slices and fixed priorities 
scheduling techniques. Program slicing is a technique for 
restricting the behavior of a program to some specified 
subset of interest. Thus we have used slices to 
decompose a task into two fragments. The proposed 
approach, based on a fine representation model of 
functional and temporal program behavior, allows us to 
automatically compute a precise and executable slice, by 
analyzing data and control flow. Furthermore, since the 
transformations modify the instruction order, our 
modified slicing algorithm takes into account the outputs, 
the anti-dependencies and the flow dependencies. We 
note that we do not dynamically reconstruct the outputs 
of transformed tasks, because the generated output 
instructions are in only one slice and the local 
computation instructions are in another slice. By 
determining the timed-slice of a task, we have shown that 
we can restructure an initially unschedulable application 
to another one, which will be equivalent but schedulable.  

On the other hand, we have used the rate-monotonic 
scheduling algorithm, since it is among the best-known 
algorithms and more used by the real-time practitioners. 
Its analytical model allows performing a precisely 
temporal analysis, and it is simple to implement. 
Moreover, the traditional real-time model, while very 
simple, has the reference point for most advances in the 
area of real-time systems. It has been generalized to 
accommodate distributed systems, network protocols, 
shared databases, etc. 

To focus on the real time, we have treated in this 
article, constructs that are more used in real-time 
programming languages. Currently, we are studying the 
more complex temporal constructs and other constraints 
of scheduling techniques, such as precedence constraints 
between tasks and resource constraints.  

 
References 
[1]  T.M. Chung, H.G. Dietz. Language 

Constructs and Transformations for Hard 
Real-Time Systems, ACM SIGPLAN Notices, 
Vol.30, No11, November 1995. 

[2]  R. Gerber, S. Hong. Slicing Real-Time 
Programs for Enhanced Schedulability. ACM 
Trans. on Prog. Lang. and Sys. vol.19, n°3, 
May 1997, pp.525-555.  

[3] M. Weiser. Program Slicing. IEEE Trans. on 
Soft. Eng. vol.10, n°4, July 84, pp 352-357.  

[4]  C.L. Liu, J.W. Layland. Scheduling 
Algorithms for Multiprogramming in a Hard-
Real-Time Environment. ACM, vol.20, n°1, 
January 1973, pp.46-61. 

[5]  M. Klein, J. Lehoczky, R. Rajkumar. Rate-
Monotonic Analysis for Real-Time Industrial 
Computing, IEEE Computer, vol.27, n°1. Jan 
1994.  

[6] K. Gallagher and J. Lyle, Using Program Slicing 
in Software Maintenance, IEEE Transactions on 
Software Engineering, vol. 17, n° 8, p.751-761, 
1991. 

[7] K. Ottenstein, L. Ottenstein. The Program 
Dependence Graph in a Software 
DevelopmentEnvironment. ACM 
SIGSOFT/SIGPLAN, ACM Press, New York, 
1984, pp.177-184.  

[8] D. Binkley. Precise Executable 
Interprocedural Slices. ACM Letters on Prog. 
and Sys. vol.2, n°1-4, 1993, pp.31-45.  

[9] M.S. Bendelloul, Z.E. Bouras, S. Ghoul, T. 
Khammaci. Assistance à la Compréhension 
de Programme. Un Modèle et un Algorithme 
de Fragmentation. Génie Logiciel, n°45, Sep. 
1997, pp.32-42. 

[10] A. Burns, A. Wellings. Real-Time Systems 
and their Programming Language. Addison-
Wesley Publishing Company, Inc., 
Wokingham, England.1990. 

[11] A. Burns, K. Tindell, A. Wellings. Effective 
Analysis for Engineering Real-Time Fixed 
Priority Scheduling. IEEE Trans. Soft. Eng. 
Vol.21, No.5,.May 1995, pp.475-480. 

[12] T. Hamalainen, J. Siltanen, A Viinikainen, J. 
Joutsensalo, Adaptive Tuning of Scheduling 
Parameters, WSEAS Transactions on 
Computers, Vol.2, No. 1, January 2003. 

[13]  B. Dasarathy. Timing Constraints of Real-
Time Systems: Constructs for expressing 
them, Method for Validating them. IEEE 
Trans. On Soft. Eng; Vol.11, No 1, 1985, 
pp.80-86. 

[14] S. Tadamea, Y. Kishimoto, Program Code 
Analysis Focused on its Structure, WSEAS 
Transactions on Computers, Vol.2, No. 1, 
January 2003. 

[15] S. Hong, R. Gerber. Compiling Real-Time 
Programs into Schedulable Code. ACM 
SIGPLAN Notices. Vol.28, No 26. June 1993. 
pp.166-176. 

[16] S. Horwitz, T. Reps, D. Binkley. 
Interprocedural Slicing using Dependence 
Graph. ACM trans. Program. Lang. Syst. 
Vol.12, No 1, January 1990, pp.26-60. 

[17] F. TIP. A Survey of Programming Slicing 
Techniques. J. Program. Lang. Vol.3, No3, 
1995, pp.121-189. 


