
Software Restructuring to Improve Schedulability

Rachid Boudour*, Mohamed T. Kimour**
Department of Computer Science,

LRI, University of Annaba
Bp. 12, Annaba, Algeria

Algeria
Tel / Fax: 213-38-87-27-56

Abstract: Real-time programs must be logically correct and must complete without timing errors. Errors due
to overloaded resources are exposed very late in a development process, and often at run-time. Specifically,
when a set of tasks are found to be overloaded and not schedulable, the developers usually remedied these
problems by manual-intensive operations such as instrumentation, measurement, code tuning and
eventually redesign. Such operations are slow and uncontrollable. We propose a semi-automatic alternative
to this manual process, based on the task restructuring. Our approach is an extension of the one proposed
by R. Gerber that only treats some monolithic and simple programs. It consists for the scheduling
perspective, in restructuring real-time programs, which can be complex and contain a collection of
procedures. This restructuring, by using the interprocedural program slicing concept and a finer dependence
model, allows to make flexible the deadline task and therefore, to improve its schedulability.

Key-Words: Program Slicing, Real-time Constructs, Timing Constraints, Behavior Model, Task Scheduling.

1 Introduction

Real-time computer applications are increasingly
being designed and used in every life. Moreover, these
systems are often parts of critical applications. Typical
real-time applications are control systems
(manufacturing systems, robotics), monitoring systems
(patient monitoring, air traffic) and communication
systems. The correctness of a real-time system depends
not only on how concurrent processes interact, but also
on the time at which these interactions occur. In these
systems, tasks are regularly performed to control
physical processes and monitor functioning. They sample
information to process in order to produce commands for
actuators. Invocation of these typical tasks occurs
periodically, every T time units. The most common
requirement is that a task invocation must be completed
within D time units after it is ready. The parameters T
and D are called respectively the period and the deadline.

Either a failure to perform a task at the appropriate
time or a flaw in the control program's logic can yield
catastrophic consequences in hard real-time systems.
Thus, meeting the timing constraints is extremely
important in such systems. To satisfy their deadlines,
tasks must be appropriately scheduled. Algorithms for
scheduling tasks in real-time systems typically assume
that their worst-case execution times are known. Such a
system is designed to ensure that all tasks can complete

by their deadlines as long as no task in a system executes
longer than its worst-case execution time. A task which
overruns may lead to missed deadline and failure of the
whole system.

On the other hand, errors due to overloaded resources
are exposed very late in a development process, and
often at run-time. Specifically, any deadline violation
makes tasks unschedulable; to realize schedulability,
programmers usually remedied to these problems by
manual-intensive operations such as instrumentation,
measurement, code tuning and restructuring. Such a
manual and costly process is slow and uncontrollable [1,
2]. In certain cases, entire subsystems may have to be
altogether redesigned.

In this paper, we present a semi-automatic alternative
to this process, based on two concepts: interprocedural
slicing [3] and fixed priorities scheduling [4, 5]. A slice
of program, with regard to a point p and a variable v,
consists of statements of the program that can affect the
value of v, at the point p [3]. Its behavior is identical to
the initial program with regard to a given criterion.
We can for example, isolate a slice with regard to a
critical-instruction in the program, an instruction,
which emits command to an actuator or an instruction of
alarm in a control task.

While respecting the different dependencies in the code
of an unschedulable task, we ensure so that statements
that influence the deadline are executed in the first place.

The fragment of code that corresponds to a local
computation can be deffered. This operation permits us
to defer the execution of a part of the code, while
preserving the initial semantic.

In the scheduling perspective, Gerber and Hong [2]
used program slicing to divide a program task. In a
different context (the one of the maintenance), Gallagher
and Lyles used slices in program decomposition [6].
However, the presented approaches treat only monolithic
and simple programs. They are very restraining with
regard to the reality of real-time system, where we often
find structures of programs that contain procedures [14].

In contrast to these works [6, 2] and while developing
a finer dependence model of program behavior, slices
that we extract from the program can contain a collection
of procedures. Furthermore, they are executable and
precise. Since our transformed tasks are sequentially
executed, all slicing decisions are taken statically before

the application run-time. Such a static transformation
type preserves the temporal determinism, which is
essential in real-time systems.

These interprocedural slices are the basis of our
method of real-time program restructuring. Thus, we can
restructure a program automatically by the displacement
of its nontemporal fragment after the one (temporal slice)
that directly influences the deadline. This process will
help the programmer to achieve schedulability and to get
a globally correct application.

In the next section, we show how program
dependencies are represented, and how to use this
representation to extract temporal slices. In section 3, we
presented our restructuring algorithms. Section 4
presents the tool of Real-Time Task Restructuring
(RTTR) that we conceived and implemented. Finally, the
conclusion is presented in section 5.

Task Ti Ci Di Schedulability of τ2 Schedulability of τ3

τ1 80 20 80 S0=1(20)+1(80)=100 ms S0=1(20)+1(80)+1(35)=135 ms
τ2 150 80 150 S1=2(20)+1(80)=120 ms S1=2(20)+1(80)+1(35)=155 ms
τ3 200 35 200 S2=2(20)+1(80)=120 ms S2=2(20)+2(80)+1(35)=235 ms

Table 1 Example of three tasks Table 2 Analysis of τ2 Table 3 Analysis of τ3

Fig.1a Execution behavior of the periodic task before restructuring.

Fig.1b Execution behavior of the periodic task after restructuring.

To show how we analyze the task set schedulability,

consider the case of three tasks τ1, τ2, and τ3. Their
characteristics are described in table 1. The line rank
corresponds to the task priority. By applying of the above
equations, for τ1, S0=20, S1=20, S0=S1, the worst-case
completion time is equal to 20 ms (�80 ms), this task is
then schedulable. For the task τ2, the schedulability
analysis (table 2) shows that it is schedulable. Its worst-
case completion time is equal to 120 ms (�150 ms),
while the schedulability of the task τ3 (table 3) is not

guaranteed, since its worst-case completion time is equal
to 235 ms (� 200 ms).

2 Task Restructuring
Our objective is to obtain flexible deadlines of tasks,

because the schedulability is improved as one increases
the flexibility of deadlines. This effect can result from
the fact that one allows a task to go beyond of its
deadline [15]. We can get this advantage by task
restructuring to obtain two fragments. The first is a
temporal fragment (noted FT) that must satisfy the

(k-1)th (k) th (k+1) th (k+2) th

 (k-1)th (k) th (k+1) th (k+2) th

deadline. The second is nontemporal fragment (noted
FnT), which corresponds to a local computation that can
tolerate a certain delay. Then, fragments will be
sequentially recomposed, to constitute a new program of
the task in question, which is semantically equivalent to
the original task program.

Fig.1a represents the execution behavior of a periodic
task. Hatched Parts in figures 1a and 1b represent
temporal components of the task program. At the (k+1)th
period, the execution of this task goes beyond its
deadline and becomes thus, unschedulable (fig.1a).
However, in the case where temporal statements would
complete within the prescribed period, the execution of
the whole task is acceptable (fig.1b). Our restructuring
approach uses the interprocedural slicing that is a
fundamental operation of program behavior analysis [3,
6].

On the other hand Program slicing [3] is a technique for
automatically decomposing high-level programs by
analyzing its control and data flow information. Static
slicing techniques aim at extracting a minimal program that
captures the behavior of a source-code program with
respect to a specified variable and location; this problem is
solved by a reachability analysis. Thus, we need an explicit
representation of data and control flows. This is made by
a Dependence Graph, which reduces program slicing into a
graph walk problem [7]. A slice is computed by backward
traversing the control and data dependence edges of the
graph. The slice corresponds to the subgraph containing the
reached vertices and edges. A monolithic program
(program without procedure calls) is represented by a
Procedure Dependence Graph (PDG). A program
containing collection of procedures is represented by a
System Dependence Graph (SDG) [8, 9].

To represent the timing constraints, we propose by the
analogy of the program dependence graph, to implement
a graphical model, which consists of a set of vertices and
edges. Vertices are associated with instructions or
variables, while edges are associated with dependencies
and real-time constraints [13].

An instruction can be classified as an externally viewed
instruction (EVI) or an internally viewed instruction
(IVI) based on the effect of the instruction. The effect of
IVI is limited to the internal computation, while an EVI
changes the status of the control environment. For
example, the variables defined as volatile in the C
language [1] or commands to control robot or actuators
are EVIs, and their execution must meet the timing
constraints specified. Because EVIs may depend on
values computed by IVIs, any such dependence also
implies a relative timing constraint (execution order)
which must be preserved.

2.1 Dependence Representation
A PDG is composed of vertices and edges representing

respectively program statements and their dependencies.
With the exception of call statements, a single vertex
represents assignment statements, input statements and
output statements, and the predicate of conditional (if) and
while-loop statements. Additionally, there is a distinguished
vertex called the entry vertex, and an initial-definition
vertex for each variable that may be used before being
defined. The source of a control dependence edge is either
the entry vertex, a predicate vertex, or a call vertex. Each
edge is labeled either true or false. A control dependence
edge, from vertex v to vertex u, means that during
execution, whenever the predicate represented by v is
evaluated and its value matches the label on the edge to u,
then the program component represented by u will
eventually be executed, provided the system terminates
normally.

A data dependence edge from vertex v to vertex u means
that the system’s behavior might change if the relative order
of the components represent by v and u were reversed.
There are two kinds of data dependence edges, flow
dependence edges and def-order dependence edges. A flow
dependence edge connects vertex v that represents an
assignment to a variable x to a vertex u that represents a use
of reached by that assignment. A def-order edge runs
between two vertices, v and u that both represent
assignments to variable x where both assignments reach a
common use, and v lexically precedes u.

To represent the multi-procedural program
dependencies, we use a System Dependence Graph
(SDG) [8]. It is composed by set of PDG, connected by
edges that symbolize dependencies of calls and
summaries (Figure 2). Summary edges represent
transitive dependence due to the effects of procedure
calls. A call statement is represented using a call vertex
and four kinds of parameter vertices that represent
parameter passing. On the calling side, parameter passing
is represented by actual-in and actual-out vertices, which
are control dependent on the call vertex. In the called
procedure, parameter passing is represented by formal-in
and formal-out vertices, which are control dependent on
the procedure’s entry vertex. Actual-in and formal-in
vertices are included for every parameter and global
variable that may be used or modified as a result of the
call. Formal-out and actual-out vertices are included for
every parameter and global variable that may be
modified as a result of the call.

To address the calling context problem, the system
dependence graph includes summary edges. A summary
edge connects actual-in vertex v to actual-out vertex u if
there a path in the SDG from v to u that respects calling
context by matching calls with returns. We add three
kinds of interprocedural edges: (1) A call edge connects
each call vertex to the corresponding procedure-entry

vertex. (2) Parameter-in edge connects each actual-in
vertex at a call site to the corresponding formal-in vertex in
the called procedure. (3) Parameter-out edge connects each
formal-out vertex to the corresponding actual-out vertex at
each call site on the program. The global variables are
generally treated as supplementary actual parameters.

2.2 Interprocedural Slicing

In a perspective of restructuring for scheduling, we are
concerned by imperative programming languages,
containing real-time extensions. The program model that
we used assumes the following properties: (1) a complete
system consists in a main program (Main) and a
collection of procedures, (2) parameters are passed by
value-results.

Fig.2 SDG of the task program.

Furthermore, to obtain precise and executable slices,

we use an adapted and fine dependence model where (1)
the element is an action on variable, (2) timing
constraints are represented [13], and (3) slices are
relative to several procedures. Our objective is obviously
to produce the temporal component, represented by a
precise and executable slice. The temporal component
incorporates all instructions that influence a given
criterion. The criterion is defined by line number and a
variable. The line number can reference an output
instruction or command transfer to an actuator, for
example. This instruction corresponds to an EVI type [1,
15].

On the other hand, an interprocedural slice of an SDG
with respect to the vertex v is computed using two passes
over the graph [16]. Summary edges are used to permit
«moving across» a call site without having to descend
into the called procedure; thus these is not need to keep
track of calling context explicitly to ensure legal
execution paths are traversed. Both passes operate on the
SDG, traversing edges to find the set of vertices that can
reach a given set of vertices along certain kinds of edges.

The traversal in Pass 1 starts from all vertex v and goes
backward (from target to source) along flow edges,

control edges, call edges, summary edges, and
parameter-in edges, but not along def-order or parameter-
out edges. The traversal in Pass 2 starts from all vertices
reached in Pass 1 and goes backward along, flow edges,
control edges, summary edges, and parameter-out edges,
but not def-order, call, or parameter-in edges. The result
of an interprocedural slice consists of the sets of vertices
encountered during Pass 1 and pass 2 [16, 17].

3 Restructuring Algorithms
Consider a real-time program called M that contains

calls of a procedure P. SDG can be constructed
automatically from the program [8]. We propose three
algorithms to restructure a given task source code.

Algorithm 3.1 produces the temporal slice with regard a
given criterion. To do this, it performs pass 1 and pass 2
treatment, described in the above section. It marks
vertices corresponding to temporal statements (including
procedure calls) of the main program (M) and of
procedures. The silce obtained at his step can be
nonexecutable. To make it executable, we perform the
following actions: (1) add vertices that remove actual-in
vertex mismatches; (2) add vertices that remove actual-
out vertex mismatches; and (3) produce a system from

Cycle.39

cfc.42
pressure.41 pmax.46

Output().48

pact.43

pact.45

xin := cfc yin :=pressure

pact(…).5

x:=xin

y:=yin If.54 zout := z

cfc.44
action3.47

action1 := zout
xin := pmax yin =pressure action2:=zout

pmax=xout

x.58
While.59

x.60

z.55
z.57

cfc=xout

xout=x Data Flow
 Control Flow
 Summary edge
 Call edge,
 Param. In, Param. Out

the resulting set of vertices and the original system. This
algorithm also marks every code line corresponding to a
marked vertex in the SDG. Hatched Vertices in Fig.2,
represent the temporal slice, obtained by application of
our algorithm 3.1 on the example (Figure 3.a) with
regard to the criterion {<48>,<action3>}.

Algorithm 3.2 uses the result of the algorithm 3.1
(treated SDG, marked code and procedures). In the
program M, we erase all unmarked lines so that only
temporal statements remain. We perform the same

treatment on the procedure P, to get a temporal
subprocedure that we call P1.

Algorithm 3.3 uses the result of the algorithm 3.1
(treated SDG, marked code and procedures) to compute
the nontemporal fragment. Consider our example of real-
time program, called M. From the main program, we
erase lines that correspond to marked vertices, except,
the conditional statements, the while and the call of
procedure.

ALGORITHM 3.1. Identifies executable slice T(SDG,n). (n: Slicing criterion).

Step 1, Start from n and go backward (from target to source) along flow edges, control edges, call edges,
summary edges, and parameter-in edges, but not along def-order or parameter-out edges.

Step 2, Start from every vertices reached in Step 1 and go backward along flow edges, control edges,
summary edges, and parameter-out edges, but not along def-order, call, or parameter-in edges.

Step 3, While there exists an actual-in vertex y, which mismatches with marked formal-in vertex, mark the
vertex y. Perform the same treatment for the actual-out vertex. Mark all vertices (unmarked again)
which depend (flow dependence) on vertices computed at step 2.

ALGORITHM 3.2. Compute the temporal fragment FT(treated SDG, Task Program).

Step 1, From the program M and every procedure P, erase lines corresponding to vertices not marked in
the SDG, by the algorithm 3.1.

Step 2, Replace each call of P, by a call to P1.
The result represents the FT fragment.

ALGORITHM 3.3. Compute the nontemporal fragment FnT (treated SDG, task program).

Step 1, Do steps 2 & 3, for all S representing the main program and every procedure marked by the
algorithm 3.1.

Step 2, Erase from S, lines which are marked by the algorithm 3.1, except lines of conditional instruction
and call of procedure.

Step 3, Erase lines of conditional statements and calls of procedure which control an empty instruction set.
Step 4, Replace every marked call of the procedure P, by a call of the subprocedure P2, and every no

marked call of the procedure P, by a call of P1 followed by a call of P2.
The result represents the FnT fragment.

We perform the same treatment for the procedure P, to

get a nontemporal subprocedures (P2). Because the
procedure P is transformed in two subprocedures P1 and
P2 (Figure 3), we replace then, every marked call of P in
the remainder of the program M, by a call of P2.

In order to only having two declarations for the
procedure P, we replace every unmarked call of P, by a
call of P1 followed by a call of P2. If P is not marked at
all, we conserve this procedure in the non-temporal
fragment. Figure 4b shows the two subtasks (FT and
FnT). They are obtained by applying the algorithms 3.1,
3.2 and 3.3 on our example (Figure 4a), and its SDG
(Figure 2), with regard to criterion {<48 >, <action3>}.
The above program fragment (Figure 4a) is inspired from
the work of T. M. Chung and H. G. Dietz [1]. The code
of task τ3, embodies timing constraint, and it could easily
have been found in a real application.

The construct cycle(200) in line 39 specifies the task

period. Thus, the instructions in the block enclosed by
{and} must be completed within 200 ms. The program
fragment contains the code of the taskτ3. This task
performs the following actions, every 200 ms:

- Read a new measure on the pressure sensor (line 41);
Using the new reading data (pressure) and the current

state (values of cfc and pmax),
- Produce an actuator command (action at line 47) to

reduce pressure.
- Update the state;
- Send command to the actuator before taking the next

sensor reading (line 48).

ANALYZER

GENERATOR

EXTRACTOR

Program of the task to
restructure

Transformed task

SDG Instrumented Code

1: main()
20: •••
39: cycle: (200) /* task period*/
40: {
41: input(sensorP, pressure);
42: cfc=cfc+pmax/3;
43: pact(cfc, pressure, action1);
44: cfc=cfc-pmax/100;
45: pact(pmax,pressure,action2);
46: pmax=100;
47: action3=F(action1,action2);
48: output(actuator, action3);
49: }
50: pact(x, y, z);
51: float x, y;
52: char z;
53: {
54: if (x>y)
55: z=«cmdpress1»;
56: else
57: z=«cmdpress2»;
58: x=x+y;
59: while (x>y)
60: x=x-0.03;
61: }

1: main()
20: •••
39: cycle: (200) /* task period*/
40: {
41: input(sensorP, pressure);
42: cfc=cfc+pmax/3;
43’: pact1(cfc, pressure, action1);
45’: pact1(pmax,pressure,action2);
47: action3=F(action1,action2);
48: output(actuator, action3);
43»: pact2(cfc, pressure);
44: cfc=cfc-pmax/100;
45»: pact2(pmax, pressure);
46: pmax=100;
49: }
50’: pact1(x, y, z);
51’: float x, y;
52’: char z;
53’: {
54: if (x>y)
55: z=«cmdpress1»;
56: else
57: z=«cmdpress2»;
61’: }
50»: pact2(x, y)
51»: float x, y;
53»: {
58: x=x+y;
59: while (x>y)
60: x=x-0.03;
61»: }

Fig.4a Original Task Program Fig.4b Restructured Task Program

Fig. 5 RTTR Structure.

4 Restructuring Tool

We have conceived and implemented a tool (Figure 5)
of task restructuring, called RTTR (Real Time Task
Restructuring). Based on the above-mentioned
techniques, it has been developed on a processor
Pentium-II, using the Visual C++ language. It is
composed of three modules: the Analyzer, the Generator
and the Extractor. From a given real-time program, the
Analyzer performs a lexical, syntactic and semantic
analysis to produces an instrumented code. From the

instrumented code, which is a well-structured code, it
constructs the SDG. The Generator module visualizes the
instrumented source code (where each instruction is labeled
by a single number (IdDep)) and gives measurements. The
Extractor is exploited in interactive fashion. It offers
to the user the means to extract the two fragments
(FT & FnT) as well as the code of the task
transformed.

5 Conclusion
In this paper, we presented a static approach to improve

the real-time task schedulability. It is based on
interprocedural program slices and fixed priorities
scheduling techniques. Program slicing is a technique for
restricting the behavior of a program to some specified
subset of interest. Thus we have used slices to
decompose a task into two fragments. The proposed
approach, based on a fine representation model of
functional and temporal program behavior, allows us to
automatically compute a precise and executable slice, by
analyzing data and control flow. Furthermore, since the
transformations modify the instruction order, our
modified slicing algorithm takes into account the outputs,
the anti-dependencies and the flow dependencies. We
note that we do not dynamically reconstruct the outputs
of transformed tasks, because the generated output
instructions are in only one slice and the local
computation instructions are in another slice. By
determining the timed-slice of a task, we have shown that
we can restructure an initially unschedulable application
to another one, which will be equivalent but schedulable.

On the other hand, we have used the rate-monotonic
scheduling algorithm, since it is among the best-known
algorithms and more used by the real-time practitioners.
Its analytical model allows performing a precisely
temporal analysis, and it is simple to implement.
Moreover, the traditional real-time model, while very
simple, has the reference point for most advances in the
area of real-time systems. It has been generalized to
accommodate distributed systems, network protocols,
shared databases, etc.

To focus on the real time, we have treated in this
article, constructs that are more used in real-time
programming languages. Currently, we are studying the
more complex temporal constructs and other constraints
of scheduling techniques, such as precedence constraints
between tasks and resource constraints.

References
[1] T.M. Chung, H.G. Dietz. Language

Constructs and Transformations for Hard
Real-Time Systems, ACM SIGPLAN Notices,
Vol.30, No11, November 1995.

[2] R. Gerber, S. Hong. Slicing Real-Time
Programs for Enhanced Schedulability. ACM
Trans. on Prog. Lang. and Sys. vol.19, n°3,
May 1997, pp.525-555.

[3] M. Weiser. Program Slicing. IEEE Trans. on
Soft. Eng. vol.10, n°4, July 84, pp 352-357.

[4] C.L. Liu, J.W. Layland. Scheduling
Algorithms for Multiprogramming in a Hard-
Real-Time Environment. ACM, vol.20, n°1,
January 1973, pp.46-61.

[5] M. Klein, J. Lehoczky, R. Rajkumar. Rate-
Monotonic Analysis for Real-Time Industrial
Computing, IEEE Computer, vol.27, n°1. Jan
1994.

[6] K. Gallagher and J. Lyle, Using Program Slicing
in Software Maintenance, IEEE Transactions on
Software Engineering, vol. 17, n° 8, p.751-761,
1991.

[7] K. Ottenstein, L. Ottenstein. The Program
Dependence Graph in a Software
DevelopmentEnvironment. ACM
SIGSOFT/SIGPLAN, ACM Press, New York,
1984, pp.177-184.

[8] D. Binkley. Precise Executable
Interprocedural Slices. ACM Letters on Prog.
and Sys. vol.2, n°1-4, 1993, pp.31-45.

[9] M.S. Bendelloul, Z.E. Bouras, S. Ghoul, T.
Khammaci. Assistance à la Compréhension
de Programme. Un Modèle et un Algorithme
de Fragmentation. Génie Logiciel, n°45, Sep.
1997, pp.32-42.

[10] A. Burns, A. Wellings. Real-Time Systems
and their Programming Language. Addison-
Wesley Publishing Company, Inc.,
Wokingham, England.1990.

[11] A. Burns, K. Tindell, A. Wellings. Effective
Analysis for Engineering Real-Time Fixed
Priority Scheduling. IEEE Trans. Soft. Eng.
Vol.21, No.5,.May 1995, pp.475-480.

[12] T. Hamalainen, J. Siltanen, A Viinikainen, J.
Joutsensalo, Adaptive Tuning of Scheduling
Parameters, WSEAS Transactions on
Computers, Vol.2, No. 1, January 2003.

[13] B. Dasarathy. Timing Constraints of Real-
Time Systems: Constructs for expressing
them, Method for Validating them. IEEE
Trans. On Soft. Eng; Vol.11, No 1, 1985,
pp.80-86.

[14] S. Tadamea, Y. Kishimoto, Program Code
Analysis Focused on its Structure, WSEAS
Transactions on Computers, Vol.2, No. 1,
January 2003.

[15] S. Hong, R. Gerber. Compiling Real-Time
Programs into Schedulable Code. ACM
SIGPLAN Notices. Vol.28, No 26. June 1993.
pp.166-176.

[16] S. Horwitz, T. Reps, D. Binkley.
Interprocedural Slicing using Dependence
Graph. ACM trans. Program. Lang. Syst.
Vol.12, No 1, January 1990, pp.26-60.

[17] F. TIP. A Survey of Programming Slicing
Techniques. J. Program. Lang. Vol.3, No3,
1995, pp.121-189.

