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Abstract:− This paper introduces several new least mean-square (LMS) algorithms based on error 
normalization procedure. Different minimization approaches and techniques were used in developing the 
proposed algorithms. Some of these algorithms are selected and applied to an adaptive noise canceller setup 
with different stationary noise power levels. Simulation results, carried out using a real speech, clearly 
demonstrate the superiority of the proposed algorithms over other standard LMS algorithms. Smaller values 
of steady-state excess mean-square error and better tracking capabilities are obtained using these new 
algorithms. 
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1   Introduction 

The LMS algorithm is a stochastic gradient 
algorithm in that it iterates each tap weight of the 
transversal filter in the direction of the 
instantaneous gradient of the squared error signal 
with respect to the tap weight in question. The 
simplicity of the LMS algorithm coupled with its 
desired properties, has made it and its variants an 
important part of the adaptive techniques.  

Because of the successful use of the LMS 
algorithm in modeling unknown systems [1,2], in 
linear prediction [3,4], in adaptive noise canceling 
[5,6], in adaptive antenna systems [7], in channel 
equalization [8], and in many other areas [9–11], 
improvements of the algorithm are constantly being 
sought. The present work introduces several new 
algorithms based on the introduction of the error 
norm. 

 
 

2   Least-Perturbation Approach 
     The relation 

 
e(i) = d(i) − x(i) w(i−1)       (1) 

 
 is defined as the a priori output error, and 

 
eps= d(i) − x(i) w(i)      (2) 
 
is defined as the a posteriori output error (i ≥ 0). 
Furthermore, we define the following quantities: d(i) 
is the desired signal, the data x(i) = [x(i) x(i−1)  …    
x(i−N+1)] is a row vector, and the filter coefficients 
w(i)=[w0(i) w1(i) … wN-1(i)]T  is a column vector. 
   If we apply the following minimization problem 
[11]: 
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we obtain the error normalized LMS algorithm:  
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where     
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and  e(i) = [e(i) e(i−1) … ]T
  is a continuous 

increasing in length vector or a vector with varying 
energy but constant length N. If we had introduced 
the constraint:       
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we would have obtained the following error-data 
normalized LMS algorithm: 
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3   Regularization Method 

To develop the regularized Newton method we 
add a positive constant to the Hessian matrix and, 
hence the recursive equation becomes [11]:  
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      (8) 
where w(−1) = initial guess and i ≥ 0. 
 
Applying the simplification for the LMS 

algorithm, (8) becomes  
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where  
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Expanding (9) and applying the matrix inversion 

theorem we obtain the ε-normalized LMS 
algorithm. If, however, instead of the constant ε we 

introduced the constant 2)i(eε , the ε-error 
normalized LMS algorithm takes the form: 

 

)i(e)i(
)i()i(

)1i()i( H

22
x

xe
ww

+ε

µ+−=   

     (10) 

If we introduce two positive constants α and γ in 
(9), we obtain the following equation: 
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Applying the matrix inverse theorem to 

1H2 ]))i()i(I)i([ −γ+α xxe , we obtain the ratio-
error-data LMS algorithm 
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this can be rewritten in a more simplified form as: 
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If we let γ=0 and α=1 in (13), we obtain (4). 
 
 
4   Other LMS-Type Algorithms 
     If we apply the following minimization:  
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we obtain the error-leaky LMS algorithm 
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provided that ))i(1( 2eαµ−  is less than 1. This 
algorithm constraints the step size constant µ in 
the range  
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where 
max

λ is the maximum eigenvalue of the 
data correlation matrix Rx. 
If we, next, apply the minimization procedure  
 

])||)i(([Emin 222 wxe
w

−γ  

 
where γ  is a positive constant, we obtain the error-
constant-modulus algorithm: 
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If, on the other hand, we apply the minimization 
procedure  
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we obtain the ratio-constant-modulus algorithm: 
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where 'µ = 2µδ. 
 
     In our previous studies [12,13], we have 
shown that an LMS-based algorithm with an ε–
error normalized step-size parameter  
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and that with a modified ε–error normalized 
step-size parameter 
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perform much better than other LMS 
algorithms under diverse signal to noise 
conditions. 
 
 
5   Simulations Results 
    The error normalized LMS algorithm (4), the 
ratio-error-data LMS algorithm (13), and the 
NLMS algorithms were applied to an adaptive 
noise canceller shown in Fig.1.  

 
Fig. 1: Typical adaptive noise canceller (ANC). 

 
A typical ANC is composed of two inputs: 

primary input and reference input. The primary 
input signal d consists of the original speech, S, 
corrupted by an additive noise v. The noise source 
is represented by g, and the transmission path from 
the noise source to the primary input is represented  
by  the  low  pass filter, h. The input to the adaptive 
filter is the reference noise signal g that is correlated 
with v, but uncorrelated with S. The filter weights 
w are adapted by means of an LMS-based 
algorithm to minimize the power in the output 
signal. This minimization is achieved by processing 
g via the adaptive filter to provide an estimate of v, 
( vy ˆ= ), and then subtracting it from d to get e 
which represents an estimate of the original speech 
S.   

Simulation results of the three algorithms are 
shown in Table 1. The same value of the step-size 
(µ=0.1) was used in all the algorithms to achieve a 
compromise between small excess mean-square 
error (EMSE) and high initial rate of convergence 
for a wide range of noise variances. In the ratio-
error-data LMS algorithm (13), we used α=0.7 
and γ=0.3 (α+γ=1), and an error vector with 
increasing length was used. The order of the 
adaptive filter is assumed to be N=12.  
   Simulations were carried out using a male native 
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Table 1: Comparison of the steady-state EMSE and 
  Misadjustment (M) of the three examined algorithms. 

 

The NLMS   
algorithm 

 

The error 
normalized LMS 

algorithm   

The ratio-error-data LMS 
algorithm 

 
Stationary 

White noise g 
 mean = 0 EMSEss  

(dB) 
M % EMSEss  

(dB) 
M % EMSEss 

(dB) 
M % 

σg
2

 = 0.001 −−−−30.70 8.46 −47.26 0.19 −50.96 0.08 
σg

2
 = 0.01 −−−−30.70 8.46 −42.49 0.56 −−−−43.76 0.42 

σg
2

 = 0.1 −−−−30.70 8.46 −43.20 0.48 −44.34 0.37 
 
 
speech sampled at a frequency of 11.025 kHz. The 
number of bits per sample is 8 and the total number 
of samples is 33000 or 3 sec of real time. The 
simulation results are presented for stationary noise 
environments in which the noise g was assumed to 
be zero mean white Gaussian with three different 
variances. The steady-state excess mean-square 
error (EMSE) and the misadjustment (M), [9], of 
the three algorithms are shown in Table1. 
     Figure 2 compares the performance of the 
proposed algorithms with that of the NLMS for the 
case when 2

g� =0.01. The figure shows plots of the 

EMSE in dB for that noise level of the three 
algorithms. Performance improvement of the 
proposed algorithms over the NLMS is clear. 
Figure 3 demonstrates the superiority of the 
proposed algorithms by plotting the excess 
(residual) error (S−e) of the three algorithms.  It 
was also confirmed by listening tests which 
demonstrated higher quality of the recovered 
speech and less signal distortion and reverberation 
than that if the NLMS is used. However, the ratio-
error-data LMS algorithm, (13), shows a slight 
performance enhancement over the error 
normalized LMS algorithm, (4).  
 
 
6   Conclusion 
     Several new least mean-square (LMS) 
algorithms based on error normalization procedure 
were introduced. Computer simulations of some of 
these proposed algorithms, carried out using a real 
speech in an adaptive noise canceller setup, were 
also shown. The performance of the proposed 
algorithms outperforms that of the standard NLMS 
algorithm by achieving less signal distortion, 
reverberation and excess mean-square error.  
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            Fig. 2: EMSE of the three examined  
             algorithms (σg

2
 = 0.01, Table 1). 
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               Fig. 3: Excess error (S–e) of the three  
               examined algorithms (σg

2
 = 0.01, Table 1). 
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