
Context-sensitive Relational Division
Richard Elling Moe

Department of information and media studies
University of Bergen

ABSTRACT
We argue that the division operator in relational algebra
is poorly equipped to handle a certain type of universal
queries. This parallels earlier investigations into the power
of the division operator, but instead of taking such short-
comings as reasons for dismissing the entire division ap-
proach to universal queries, we propose a solution that pre-
serves the ideas behind Codds’ division.

KEY WORDS
Relational algebra, Division, Universal queries, Database
query languages.

1 Introduction

Today, SQL is by far the dominant database query lan-
guage. Despite this, relational algebra still holds ground.
There may be several reasons for its survival.

First, the algebra is a procedural language, whereas
SQL is flagged as being declarative. This makes the al-
gebra more suitable for low-level specification of queries
and thereby a valuable analytic tool for query-optimization
techniques. Furthermore, it is a common conception that
declarative languages are more user-friendly than procedu-
ral ones but, remarkably, in the case of SQL vs relational
algebra the opposite has been claimed [18].

Secondly, The relational algebra has proved to be
a good framework for theorizing about query languages.
Partly because of its solid footing in mathematical disci-
plines, and because it manages to define the notion of a
query language simply in terms of a small number of inde-
pendent elementary operations.

Finally we believe that the study of query languages
as such requires an awareness of the possible alternative ap-
proaches that could be taken. The algebra is important sim-
ply in virtue of beingdifferentfrom SQL because it thereby
represents a different way of thinking about, and dealing
with, database queries. We shall keep this consideration in
mind as a guideline for the discussion.

In connection with databases, a universal query is
a request for the retrieval of data where the specification
involves quantification similar to the kind one would ex-
press using universal quantifiers in formal logic. Given a
database with facts about employees, the departments that
employ them, the projects they work on and which projects
are run by each department, a universal query could be, for

instance:

Find the employees who work on all projects(1)

run by department 5.

Universal queries are somewhat complicated compared to
the typical database query. They have received a fair
amount of attention, both with respect to their specifica-
tion [1, 2, 3, 6, 9] and the algorithms for processing them
[10].

Database query languages come in many shapes, with
different approaches to handling universal queries. We
shall concentrate on the relational algebra where thedivi-
sion operator is typically called into action when specify-
ing a universal query. However, it has been pointed out
that the division operator isn’t suitable for all kinds of uni-
versal quantification [1, 3, 6, 7, 9]. We shall identify yet
another type of universal query where the standard division
is not up to scratch, namely when the quantification relies
on contextual information.

In keeping with the view that the individual character-
istics that makes a language unique among languages are in
themselves valuable, we shall be conservative in the effort
to solve our particular kind of query. Thus we try to remain
faithful to the original approach to universal queries. For
reference, the discussion will touch upon other approaches
but our main focus will be on the ideas behind Codds’ di-
vision operator [2].

2 Basics

There is a wealth of literature on database theory and query
languages and notation and terminology varies. We adopt
that of Elmasri/Navathe [11].

In its purest form, the relational algebra comprises the
selection and projection operatorsσ and π, respectively,
and the set operations∪, − and×. In principle, these op-
erators are all that is needed. This set of operators defines
the expressive power of relational algebra1. Any set of op-
erators which is equally expressive, or more, is said to be
relationally complete.

This way of measuring the expressive power readily
lends itself to other languages. In fact, relational com-
pleteness has become a minimum requirement for rela-
tional database query languages. The relationalcalculus

1We disregard extensions of the algebra designed to add to its power,
such as aggregate functions and recursive closure operators.



and the algebra are equivalent with respect to expressive
power [13, 17], whereas the power of SQL goes beyond
relational completeness [14].

Other operators can be added to the algebra for prac-
tical reasons, such as the join./ and division÷. Even if
their introduction makes no difference when it comes to
expressive power, certain types of queries becomes easier
to express. Thus it may be held that they represent an im-
provement with respect to the expressiveconvenienceof
the language.

3 Division

Division (÷) operates on two relations where the attribute-
set of the first properly includes that of the second. Given
relationsRandSwith attribute-setsX andY, respectively2,
such thatY ⊂ X; R÷Sdenotes a relation with attribute-set
X−Y. Specifically,t ∈ R÷S iff {t}×S⊆ R.

The division operator was designed for universal
queries, which otherwise are complicated to express. Take
for instance the case of finding those employees who work
on all projects run by department number 5. Suppose the
database includes the following relation-schemas3.

• EMP(SSN,DNO) relates the social security numbers
of employees to the identification-numbers of the de-
partments that employ them.

• PROJ(PNUM,DNUM) relates each project, given by
an identification-number, to the department that con-
trols it.

• WO(ESSN,PNO) relates employees and the projects
they work on.

Using the division operator÷ query (1) may be formulated
as follows:

PRO5(PNO)← πPNUM(σDNUM=5(PROJ))
RESULT←WO÷PRO5

The division operator÷ has proved useful in many situa-
tions, but some voices has been raised against its usefulness
and generality. In response, generalized division operators
have been proposed to mend such problems. We shall re-
turn to this matter shortly, but first let us take a brief look
at an alternative approach to handling universal queries.

3.1 Relational comparison operators

Ever since the early days of SQL it has been well known
that universal queries can be expressed asrelational com-
parisons, using for instance thecontains operator. (It
should be remarked though that thecontains-operator is

2Technically, the attributes are ordered within the relation-schema. We
do not go to this level of detail here since relation-schemas may well be
defined without such a requirement and since the reader can easily induce
the necessary ordering on the fly.

3The example is adapted from Elmasri/Navathe [11].

no longer part of the SQL standard. Even so, it is still re-
ferred to in the context of SQL [11, 12].) Date [5, 7, 8]
argues for the introduction of such operators into the rela-
tional algebra and maintain that they offer a more conve-
nient solution for universal queries.

Adapting his approach, query (1) might look like this:

πSSN(σπPNUM(σDNUM=5(PROJ))⊆πPNO(σESSN=SSN(WO))(EMP))

Observe that the relational comparison appears as a test
for the inclusion of the result of one query in the result
of another. That is, on this approach,σ-conditions may
include operators on complex domains, in this case rela-
tions, rather than the simple domains that the original al-
gebra was confined to, i.e. numbers and character-strings,
with (in-)equality operators, ’less than’, ’greater than’ etc.
Furthermore, this introduces the kind ofnested querieswe
find in SQL. (Correlatednested queries in fact, but we will
make a point of that later on.)

We feel that this represents quite a departure from the
original algebra. To some degree it even introduces an SQL
line of thinking into it. For the present discussion we wish
to keep the focus on the traditional relational algebra. So,
we return to the division approach to universal queries.

3.2 Generalized Divisions

There has been numerous reports of÷ being obscure and
difficult to learn [1, 9, 15]. Furthermore, Date [6, 9] points
out a mismatch between the intuitive reading of a query
such asFind those who works on all projects run by de-
partment 5.and the results of its algebra solution presented
above. In the case when department 5 runs no projects at
all, WO÷PRO5 would return all employees, rather than
none as one might expect. The problem is fixed by a suit-
able generalization of the division operator. Also, Date
[4, 7] claims that his relational comparison operators, of
the kind described in the previous section, avoid problems
of this sort.

These may well be impracticalities of the division op-
erator but more relevant for our discussion are the claims
that÷ does not cover the full range of universal queries
[1, 3, 7, 9].

Dadashzadeh [3] and Carlis [1] identify certain types
of universal queries for which÷ is not sufficient. They pro-
pose generalized division operators to overcome the prob-
lems. However, because of the complex nature of these
operators, which involves the use of relational comparison,
we feel that the original principle of division has been lost
in the approach.

4 Division and context

We now look into a kind of universal query for which the
standard division operator seems to be of little use. Con-
sider the following example:



Find the employees who work on all projects(2)

run by their own department.

Contrast this with query (1) for those who work on the
projects run by department 5. Two important differences
can be pointed out. First, whereas the projects belonging
to department number 5 can be extracted prior to applying
division, it is impossible to secure the agreement between
the departments of employees and projects by means of a
single selection-condition to be applied independently of a
division. We elaborate this point by considering the follow-
ing set:

{x | (x,y) ∈ EMPand
x∈WO÷ρ(PNO)(πPNUM(σDNUM=y(PROJ)))}

(ρ is a renaming-operator, i.e.PNUM is renamed toPNO.)
This expression denotes the desired result of our query. Un-
fortunately it is not an expression of the relational algebra.
However, this illustrates that query (2) corresponds to ase-
ries of applications of÷, each with a different ’divisor’.
Moreover, these divisors are based on the contents of the
database. I.e. when the database state changes, so does the
set of actual divisors. Hence, such a series of divisions can
not be specified once and for all, as we would need in order
to create a general solution for our query.

The second point we emphasize is that with ordinary
division there are only two possible roles an attribute can
play. Either that of being atarget. I.e. an attribute for which
values are to be retrieved and presented in the result of the
division. Otherwise, the attribute iscommonto both rela-
tions and is there for the target-attributes to be measured up
against. Consider the definition ofR÷S above and recall
thatY⊂X. Here,X−Y contain the targets, which are mea-
sured up against the remaining attributes, i.e. those com-
mon toRandS. In the example above (WO÷PRO5) ESSN
is the only target andPNO is the only common attribute.
Now, given that all attributes in a division are either targets
or common attributes there is no room for bringing other
attributes into the picture. Here lies a weakness. Other at-
tributes may also hold useful information. In a sense, such
attributes define a context which may be relevant in the case
of universal queries. In query (2), the task of finding those
who work on all the projects oftheir owndepartment rely
on such contextual attributes, namelyDNUM andDNO.

We have identified a universal query for which addi-
tional information must be brought into the division itself.
(As opposed to being administered before or after a divi-
sion is applied.) Furthermore, this information resides in
attributes that are contextual to the division. Apparently
the ordinary division operator÷ is ill-equipped for the task,
and is certainly not a convenient mechanism for expressing
this query.

Could it be that the concept of division is simply out
of place here? We think not and aim to develop a general-
ized division operator appropriate for the job.

A recent survey of the literature [16] has revealed no
obvious division-based solution to our particular problem.

Except perhaps an approach [4] which we are reluctant to
adopt. Not that it lacks merit, but we find it a bit too radical
for our goals. Nevertheless, we present it briefly before
proposing our own solution.

4.1 Correlated nested queries

SQL supports the feature that is often referred to ascor-
related nested queries. I.e. that a sub-query may refer to
attributes belonging to its super-queries. Had this mecha-
nism been at our disposal in the algebra, a solution to query
(2) might have looked something like the following:

EMP./SSN=ESSN(WO÷πPNUM(σDNUM=DNO(PROJ)))

Observe that theσ-operation refers to the attributeDNO
which belongs to theEMP-relation. That is, the occurrence
of an attribute inside the division-expression is correlated
with one on the outside.

The trouble is that this is not an acceptable expression
in relational algebra because in a selectionσϕ(R) it is re-
quired that the attributes referred to in the conditionϕ must
belong to the relationR.

To our knowledge, no precise definition has been
given of the syntax and semantics for an algebra where con-
ditions may refer to attributes outside their normal scope.
Nor have we made any attempt to explicate this ourselves.
Our reluctance to adopt this approach comes from the
judgement that it would have too great an impact on the
language. Even if it should turn out that the introduction of
correlated nested queries leaves the expressive power of re-
lational algebra unchanged, it would nevertheless alter the
dynamics of the language and the line of thinking we em-
ploy when dealing with queries. This, we feel, would be
such a major change in the pragmatic dimension of the lan-
guage that the algebra would not be the same.

4.2 Context-sensitive division

Given our lack of insight into the expressive power of an al-
gebra with correlated nested queries, the question remains
whether the solution sketched in the previous section rests
on powers beyond relational completeness. If so, is such a
degree of complexity inherent to our type of query? Fortu-
nately, this is an easy question to resolve. Recall that the
relational calculus and the algebra are equivalent when it
comes to expressive power. Hence, a calculus solution to
our problem would prove that such queries are within the
range of pure relational algebra. As it happens, the calculus
can easily handle the query:

{e.SSN| EMP(e) and
∀x(if PROJ(x) andx.DNUM = e.DNO then

∃w(WO(w) andw.ESSN= e.SSN
andw.PNO= x.PNUM))}

Now our goal is to propose a generalized division op-
erator that supports our particular kind of query, in a con-



venient manner, while staying within the boundaries of re-
lational completeness. Let us start by exploring how query
(2) could be solved using only the standard repertoire of
relational algebra. The following expression should do the
job:

πESSN(WO)−
πSSN(πSSN,PNUM(σDNO=DNUM(EMP×PROJ))−WO)

Here lies the basic idea behind our new division operator,
but there are some considerations that should be taken into
account.

It is reasonable to expect a division operator to take
two relations as arguments. Note that there are three re-
lations involved in the expression above, but this can be
circumvented by a touch of trickery. Note also that the ex-
pression includes aσ-operator. To accommodate this, we
let theσ-condition be a parameter to the new division op-
erator.

The roles of targets and common attributes are re-
tained for the new division, but contextual attributes may
also appear. By letting the list of targets be a parameter
to the operator, the roles of attributes are fully specified:
the targets are given explicitly, the common attributes can
be identified from the relation-schemas and the remaining
attributes are contextual.

Given that contextual attributes are now allowed on
the scene, and that the condition parameter provides a chan-
nel for feeding extra information into a division, it seems
that we have what we need for our specific problem. So,
the time has come to spell out the details formally and de-
fine ourselves a suitable operator.

Let R andSbe relation-schemas with attribute setsX
andY respectively. SupposeT ⊆X, X∩Y =C andC∩T =
/0. Letϕ be a boolean condition overX∪Y. Now we define
context-sensitivedivisionR T

ϕ
S to be equivalent with

πT(R)−πT(πT∪C(σϕ(πX−C(R)×S))−πT∪C(R))

Here, T corresponds to the targets, whileC contain the
common attributes. For the intended use,T andC will be
non-empty.

Finally, equipped with this new division operator we
can express query (2) conveniently as follows

EWO← EMP./SSN=ESSNWO
WO′(SSN,DNO,PNUM)← πSSN,DNO,PNO(EWO)
RESULT←WO′ SSN

DNO=DNUM PROJ

It is easily seen that the new operator is indeed a gen-
eralization of÷: If no contextual attributes are present and
the condition evaluates to true in all cases, then context-
sensitive division boils down to being the same as ordinary
division.

For the record, query (2) can easily be formulated by
means of relational comparison operators.

πSSN(σπPNUM(σDNUM=DNO(PROJ))⊆πPNO(σESSN=SSN(WO))(EMP))

Note that this also involves correlated nested queries.
As it happens, the new division operator is suitable for

solving another class of universal queries. LetR be a rela-
tion with a single number-valued attributeN. The query for
the least number inR would typically be solved by means
of aggregate functions. But, in fact, thisis a universal query
and can easily be formulated as such in SQL and relational
calculus. In the algebra however, it seems that÷ is not
up for the task. Luckily, context-sensitive division offers a
fairly convenient solution:

(ρ(M)(R) ./M=N R) M
M≥N R

5 Conclusion

Our discussion has revolved around relational algebra and
certain universal queries. Today, SQL is by far the domi-
nant query language for relational databases. Despite this,
the algebra still holds ground and one reason is that it is
differentfrom SQL, representing a different mode of think-
ing about and handling queries. In this respect, too many
’enhancements’ with elements borrowed from SQL could
make the algebra obsolete. Our approach has been conser-
vative, wanting to preserve the differences between the lan-
guages in order to preserve the relevance of both. Accord-
ingly, we have remained faithful to the division-approach
to universal queries rather than to adopt mechanisms from
the realm of SQL, such as relational comparison operators
or correlated nested queries.

We have identified a type of universal query for which
the original division operator seems to be of little use. This
parallels other investigations into universal queries and re-
lational algebra. For instance [1, 3], which propose gen-
eralized division operators to mend shortcomings of÷ in
connection with certain other types of universal queries.
However, it seems that in these cases the original division
operator has been generalized beyond recognition. One
might ask whether these should be referred to asdivision-
operators at all.

For our kind of problematic query, we propose a gen-
eralized division operator while making an effort to retain
the fundamental idea of division. In doing so we demon-
strate that the type of query we have discussed need not
be seen as yet another nail in the coffin for the division-
approach to universal queries.

References

[1] J. V. Carlis, HAS, a Relational Algebra Operator or
Divide is not Enough to Conquer,Proceedings of the
second international conference on data engineering,
IEEE Computer Society, 1986

[2] E. F. Codd, Relational completeness of data base sub-
languages. In Justin, R. J. (ed)Data base systems,
Courant computer science symposia series 6, Engle-
wood Cliffs, N.J.: Prentice-Hall, 1972



[3] M. Dadashzadeh, An improved division operator for
relational algebra,Information systems14(5), 1989

[4] C. J. Date, On relational division,Discussion on
Database Debunkings websitewww.dbdebunk.com,
2003

[5] C. J. Date,An introduction to database systems, Ad-
dison Wesley, 2004

[6] C. J. Date, H. Darwen, Into the great divide,Rela-
tional database writings 1989-1991, Addison Wesley,
1992

[7] C. J. Date, H. Darwen, Relation-valued attributes or
Will the real first normal form please stand up?Rela-
tional database writings 1989-1991, Addison Wesley,
1992

[8] C. J. Date, H. Darwen, Toward a reconstituted defini-
tion of the relational model Version 1 (RM/V1),Rela-
tional database writings 1989-1991, Addison Wesley,
1992

[9] C. J. Date, H. Darwen, Divide and Conquer?,Rela-
tional database writings 1991-1994, Addison Wesley,
1994

[10] G. Graefe, R. L. Cole, Fast algorithms for universal
quantification in large databases,ACM Transactions
on database systems, Vol. 20, No 2, 1995

[11] R. Elmasri, S. B. Navathe,Fundamentals of database
systems, Addison Wesley, 2003

[12] M. Kifer, A. Bernstein, P. Lewis ,Database systems,
Addison Wesley, 2004

[13] A. Klug, Equivalence of relational algebra and rela-
tional calculus query langages having aggregate func-
tions,Journal of the ACM29 No. 3, 1982

[14] L. Libkin, Expressive power of SQL,Theoretical
Computer Science296, 2003

[15] L. I. McCann, On making relational division compre-
hensible,ASEE/IEEE Frontiers in education confer-
ence, 2003

[16] A. Trovåg, On the expressive convenience of rela-
tional algebra,Master thesis, Department of infor-
mation and media studies, University of Bergen, In
preparation 2004

[17] J. Ullman, Principles of Database and Knowledge-
base systems, vol. 1, Computer Science Press, 1988

[18] C. Welty, D. W. Stemple, Human factors comparison
of a procedural and a nonprocedural query language,
ACM Transactions on database systems, vol. 6. No.
4, 1981


