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Abstract: - In this paper, we introduce a novel technique to improve surface mesh quality while maintaining all 
essential surface characteristics. In contrast to previous methods we do not constrain node movement to the 
underlying discrete surface. Instead our approach allows keeping resultant mesh very close to the surface 
approximated by the original mesh. Proposed method is explicit, that is we do not need any parameterization of 
the original mesh. All operations are performed directly on the surface. As a result our technique is robust and 
runs at interactive speeds. Several quantitative measures and error-metrics are presented to prove the 
effectiveness of proposed technique and compare it with the previous approaches. 
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1   Introduction 
Improvement of surface mesh quality is important 
problem for numerical simulations, solid mesh 
generation and computer graphics applications.  
There are two main ways to achieve high quality 
mesh: modifications of mesh topology by 
inserting/deleting mesh nodes or edge flipping 
[1][2] and node movement methods commonly 
called mesh smoothing. This paper focuses on the 
latter way.  
To improve mesh quality in the plane a number of 
smoothing techniques have been developed 
ranging from simple Laplacian smoothing (see, 
for instance, [3] and references therein) to more 
sophisticated algorithms. Among them there are 
physically based methods [4][5] where nodes are 
moved under the influence of some forces so that 
the shape of incident elements is improved. 
Instead of local mesh optimization by moving 
each node on the basis some geometric 
characteristics (as is done in Laplacian smoothing, 
angle-based [6] and physically based methods) the 
optimization-based techniques allow improving 
all original mesh. In these techniques so called 
cost function [7] is optimized. As such function 
aspect ratio [8] or distortion metrics [9] [10] can 
be used. 
It is necessary to note that the good shape of 
mesh elements is not only the criteria for mesh 
quality when surface meshes are considered. It is 
also essential to minimize changes in the surface 
characteristics like normals and curvatures. As it 
has been pointed out in [11] preservation of such 
characteristics is important for preventing drastic 
changes in the volume enclosed by the surfaces 

and in forces like surface tension that depends on 
surface properties.  
 
 
1.1 Previous works 
Several techniques to improve surface mesh 
quality have been developed over the last 
decade. Most of them are based on the idea to 
constrain node movement to the underlying 
discrete surface. A simple way is to reposition 
each node in a locally derived tangent plane and 
project it back to the surface [12][13]. More 
robust algorithms use global parameterization of 
the original mesh, and then improvement in the 
parameter domain [14][15][16].  The main 
drawback of these methods is high 
computational cost since they involve the 
solution of a large set of equations. Moreover, 
global parameterization may distort the 
complicated 3D structure. The alternative to 
global parameterization has been proposed in 
[11]. The nodes of the mesh are moved in a 
series of local parametric spaces derived from 
individual mesh elements. 
Let us note, however, that all these methods allow 
keeping new nodes on the original mesh but not 
on the surface approximated by this mesh. As a 
simple example consider a sphere and a mesh 
with the nodes situated on this sphere. Applying 
algorithms described above we will obtain new 
nodes situated on the original mesh but not on the 
original sphere. Therefore, unlike initial mesh the  
new mesh will not be discrete approximation of 
the original sphere. Furthermore, several 
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iterations will cause considerable shrinking initial 
surface. 
In [17] we have presented a novel technique called 
Curvature Based Mesh Improvement, which 
effectively solves foregoing problems. To find 
new location of each node we used value of 
maximum curvature defined at this node. Proposed 
method gives good results in the sense of 
preserving surface characteristics. But it can be 
applied only for meshes representing smooth 
surfaces without sharp edges and corners. 
Furthermore this method has rather high 
computational cost since it involves curvature 
estimation.  
 
 
1.2 Contribution and overview 
In this paper we present a simple approach to 
overcome drawbacks of the previous algorithms. 
We do not pose a problem to preserve new nodes 
on the original mesh that is on the discrete surface. 
Instead we propose method to keep resultant mesh 
very close to the surface approximated by the 
initial mesh. This method can be called explicit 
because all operations are performed directly on 
the surface. That is the reason why our technique 
is robust and fast. But for all that we do not 
sacrifice any quality in results. Moreover the 
method can be applied iteratively. 
The presented scheme can be improved by 
introducing some constraints. It allows 
significantly reducing damage to sharp edges of 
the surface.  
Thus our main contribution in this paper is a 
robust, iterative technique, which optimizes 
surface mesh quality and does not cause 
considerable damage to the important surface 
characteristics.  
 Another contribution is a set of several error-
metrics to quantify the deviation of the resultant 
mesh from the original one.  
The rest of this paper is organized as follows. In 
Section 2 we give a detailed description of our 
algorithm and its weighted version. Section 3 
describes some quantitative measures and error-
metrics to examine mesh quality and deviation of 
a resultant surface from the original one. 
Examples of applying our algorithm to various 
meshes are presented in Section 4. In this Section 
we also compare our approach with the previous 
ones. We close by offering some concluding 
remarks in Section 5. 

          
Fig. 1: Search for the node  such as vectors jp

ipp0 and jpp0 compose a maximal angle. 

             
Fig. 2: Search for the new location of the node  
with regard to the node . 
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Fig. 3: Search for the coordinates of . ip0
 
 
2   Algorithm 
Let us consider some node  of the original 
mesh and all nodes ,  associated 
with this node. For each node the new position 
of the node is obtained according to the 
following procedure.   

0p
{ }ipP = ki ,...1=

ip

0p

At first, we find the node Pp j ∈ such as 

vectors ipp0  and jpp0 compose a maximal angle 

as shown in Fig. 1. The new position  of the 
node with regard to will be a vertex of a 
trapezium such as a triangle consisting of the 
points is isosceles (Fig. 2). Let us 
emphasize two aspects of the algorithm. 

ip0

0p ip

joii ppp ,,

iji pppp ||00 , therefore new node will be very 
close to the original surface. is isosceles jii ppp 0∆



that provides improvement of correspondent mesh 
elements.  
Let us denote by  the midpoint of the 
segment .  The new coordinates of  may 
be found using following formulas:  
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(see Fig. 3). 
After all  have been found the new position of 
the node is obtained by averaging coordinates 
of , . 
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2.1 Quality control 
Using any optimization technique we must be 
sure that there will be no invalid or badly shaped 
elements in the resultant mesh. The simplest way 
is to check whether the quality of mesh elements 
improved after applying technique or not. It is 
common to use for that minimal angle like it is 
done in smart Laplacian smoothing [9]. However 
let us note that such procedure reduces the risk of 
obtaining inverted elements but still cannot 
guarantee validity of the new mesh. To solve this 
problem we propose to use signed aspect 
ratio 2
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are the lengths of triangle sides and is 
the signed area of triangle (i.e., with respect to 
counter-clockwise orientation). For oriented 
mesh all valid triangles have positive areas and 
all inverted triangles have negative areas. It is 
obvious that for any triangle 

il

3,2,1=i A

11 ≤≤− k . A value 
1 corresponds to an equilateral triangle, while –1 
indicates an inverted equilateral triangle. When 
all the three points of the triangle are co-linear, 
the triangle is degenerate that yields a value of 0. 
After the new position of the node has been 
found we need to calculate minimal aspect ratio 

 for the triangles adjacent to this node and 
compare it with the minimal aspect ratio  
with regard to the old position of the node.  If 

we move the node to the new position. 
Otherwise we keep the node at its initial position. 
Let us note that computational cost of calculating 
signed aspect ratio is the same as computational 
cost of calculating the minimal angle. But unlike 
minimal angle signed aspect ratio guarantees the 
validity of the resultant mesh. 
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          (a)                      (b)                       (c) 
Fig. 4: (a) Fragment of Cylinder model; (b) 
Fragment of Cylinder model processed with 
proposed algorithm; (c) Fragment of Cylinder 
model processed with constrained algorithm. 
 
2.2 Constrained algorithm 
As it will be shown described algorithm 
demonstrates very good results in the sense of 
preserving main surface characteristics such as 
curvatures and normals. But it still cannot 
guarantee conservation sharp edges of the surface 
(Fig. 4(a,b)). 
We propose a very simple improvement to the 
original scheme, which significantly reduces the 
damage to sharp edges.  
Let us consider some node  of the original 
mesh and all nodes ,  associated 
with this node. For each edge , 

0p
{ }ipP = ki ,...1=

ipp0 ki ,...1=  we 

             
Fig.5: Calculation of the angle between two 
adjacent normals. 
 
calculate angle iα between normals to the adjacent 
faces (Fig. 5). Then we find two maximal angles 

iα , jα . Denote by ijα an angle between and 

. If 
ipp0

jpp0 1εαα <− ji , 2, εαα >ji , and 3εα >ij  

where 21,εε , 3ε are some threshold values, we 
believe that the nodes belong to the 
sharp edge of the surface and apply procedure 
described in Section 2 only for nodes  and . 
In other words we construct trapezium for the 
nodes . Obtained fourth vertex of this 
trapezium is new position of the node . Usually 
we define threshold values to be 

ji ppp ,, 0

ip jp

ji ppp ,, 0

0p
2,01 =ε , 

7,02 =ε , and 6,23 =ε .  
The robustness of our improvement is 
demonstrated in Fig. 4(c).  
 
 



3   Quantitative measures  
The problem of surface mesh improvement 
includes two main aspects: improvement of mesh 
element shapes and preserving surface 
characteristics and features as much as possible. 
Thus a tool for evaluation of optimized mesh 
should include geometric quality measures and so-
called error-metrics to estimate the deviation 
between original and resultant meshes. In this 
Section we introduce such tool. 
 
 
3.1 Signed aspect ratio  
To measure the geometric properties of the 
obtained mesh we use signed aspect ratio 
described in Sections 2.1.  The quantity of 
triangles with aspect ratio (inverted 
elements), and are 
computed for original and resultant meshes to 
demonstrate the improvement of mesh quality. 
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3.2 Normal-based metric 
To quantify the deviation resultant mesh from the 
original one we propose normal-based metric. 
Let 

1L
M and M ′ be original and resultant mesh 

respectively. Consider a triangle T ′of the mesh 
M ′ and find a triangle T of M closest to T ′ .  
Denote by and )(Tn )(Tn ′ the oriented unit 
normals to T and T ′ .  Let ),( TT ′α  be an angle 
between  and . Then, the metric is 

defined by 

)(Tn )(Tn ′

m
TTE MT

n ⋅
′

= ∑ ′∈′
π

α ),( , where is 

the number of mesh triangles.  

m

Since for any triangle T  ′ πα ≤′),( TT , it is clear 
that  and  in case that the 
resultant mesh coincides with the original one.   

[ 1,0∈nE ] 0=nE

Let us note that this metric is sensitive to 
degradation of sharp features and highly curved 
regions. To illustrate this property of the metric 
we use model of Mannequin and the same model 
after applying simple Laplacian smoothing. The 
latter is colored according to -distance from 
the original model. Dark-gray color corresponds 
to the small-error regions and light-gray color 
marks out the regions with considerable distortion 
of the original surface (Fig. 6). 

nE

   
           (a)                      (b)                      (c) 
Fig. 6: (a) Model of Mannequin; (b) An example 
after processing by Laplacain smoothing; (c) 
Smoothed model colored according to -
distance from the original model. 
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3.3 Curvature-based metric 
The essential geometric features of any surface 
are its curvatures. Roughly speaking, the degree 
of surface “bending” in space is defined by mean 
curvatures. Therefore we use the notion of mean 
curvature to construct our curvature-based metric.  
It is easy to see that polyhedral surface “bends” 
along edges. 
Denote by )( ieβ  the dihedral angle between two 
faces adjacent to the edge  of the mesh. We 
calculate this angle in such a way that 

ie
0)( >ieβ if 

is convex edge, ie 0)( <ieβ  if is concave 
edge, and 

ie
0)( =ieβ  if is plane edge.  ie

Then our curvature-based metric is defined 

by
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the number of mesh edges. 
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This metric has the same properties as our 
normal-based metric.  It penalizes the error at 
sharp edges of the mesh and its value varies from 
zero to unity.  
 
 
4 Results 
Firstly let us demonstrate the visual effect of 
applying described algorithm. From the results 
shown in Fig. 7, we can see that even after fifth 
iteration the model of Wolf preserves all its 
characteristic features. Fig. 7 demonstrates also 
that our algorithm does not destroy special 
features of the model such as anisotropy and local 
refinement. We can see that local refinement near 
wolf’s mouse and eyes is preserved even after 
fifth iteration. It is useful to remark that  proposed 
technique can handle inverted elements. The 
invalid triangles on the original model of Wolf 
are marked by black patches. From Fig. 7(b) it is 
easily seen that algorithm efficiently eliminates 
inverted elements. Statistics from Tables 1 and 2 
prove that the deviation of the resultant mesh 



from the original surface is small while geometric 
quality of the mesh is improved greatly. 
We have also implemented our algorithm with 
weights to the original Stoned model shown in 
Fig. 8(a). Fig. 8(c) illustrates that introduced 
weights allow preserving sharp edges of the 
model even after several iterations. Tables 4 and 
5 show the statistics for optimized model. 

 
(a) (b) 
 

Fig. 7: (a) Model of Wolf (number of polygons is 
113992); (b) The optimized model of Wolf after 
fifth iteration. 
 
 

 Original 
mesh 

1st 
iteration 

5th 
iteration

0≤k  4 1 0
2.00 ≤< k  182 67 4
4.02.0 ≤< k  1057 634 289

Table 1: Histograms of signed aspect ratio for the 
mesh of Wolf.  
 
 

 1st iteration 5th iteration

nE  0.017770 0.0369311

cE  0.019596 0.0348723
Table 2: Error-metrics on the mesh of Wolf. 
 
 
4.1 Comparison of our algorithm and 
previous approaches   
To compare our approach with the previous ones 
we chose simple method illustrated the main idea 
of the preceding works. At each node of the 
original mesh we define local tangent plane, 
project neighboring nodes to it and find new 

location of the concerned node using smart 
Laplacian smoothing. After that we project 
obtained node back to the discrete surface.  To be 
precise, let us call this approach “Back to the 
Discrete Surface” (BDS). 
We applied usual Laplacian smoothing, BDS and 
our algorithms to the triangular mesh of the cubic 
surface . We also implied our 
method Curvature Based Mesh Improvement 
(CBMI) described in [17].  

33 64 yxz +=

Different quantities measuring the change in the 
obtained meshes and the original surface can be 
easily computed since we have mesh on the 
analytical surface. We calculated maximum and 
average changes in Gauss and Mean curvatures 
( Gaussλmax∆ , Gaussaverλ∆ , meanλmax∆ , meanaverλ∆ ), 
maximum and average changes in normals 
( nαmax∆ , naverα∆ ), maximum and average 
deviations from the original surface ( , ). maxE averE
The statistics from the Table 3 confirm that 
CBMI algorithm gives the best results in the 
sense of preserving surface characteristics. The 
note must be made that our new technique causes 
little large changes in surface curvatures and 
normals than CBMI algorithm. Nevertheless it 
also keeps resultant mesh very close to the 
original surface. And let us remind that in 
contrast to CBMI algorithm we do not need to 
estimate surface curvatures and normals. 
Therefore we take a great advantage in speed. 
Moreover our new technique can be applied not 
only to the smooth surfaces but also to the 
surfaces with sharp corners and edges. Thus we 
believe that our algorithm is an ideal trade-off 
among mesh quality, preservation of surface 
characteristics and computational cost.  
 
 

Lapl. 
smooth. 

BDS CBMI New 
method

Gaussλmax∆ 8.488 4.213 2.951 3.

Gaussaverλ∆ 0.566 0.504 0.352 0.395

meanλmax∆ 2.007 1.434 1.438 1.075

meanaverλ∆ 0.144 0.124 0.087 0.095

nαmax∆ 089.4  073.4  046.3 046.3
naverα∆ 005.1  08.0  056.0 065.0

maxE 0.007 0.003 0.0011 0.0018

averE 0.001 0.0004 0.0002 0.0003
Table 3: Changes in surface characteristics for the 
mesh of cubic surface optimized with Laplacian 
smoothing, BDS, CBMI and our new algorithm. 
 
 



 

 
                           (a)                                                       (b)                                                       (c) 
 

         
                             
                           (d )                                                       (e)                                                         (f) 
Fig. 8: (a) The original Stoned model courtesy of R. Scopigno and M. Callieri of Institute CNUCE (number of 
polygons is 173902); (b) Model optimized with weighted algorithm after first iteration; (c) Model optimized with 
weighted algorithm after fifth iteration; (d) Fragment of original mesh; (e) Fragment of mesh after first iteration; 
(f) Fragment of mesh after fifth iteration. 
 
 

 Original 
mesh 

1st 
iteration 

5th 
iteration

2.00 ≤< k  1186 606 407
4.02.0 ≤< k  7314 3260 1688

Table 4:  Histograms of signed aspect ratio 
for the mesh of the Stoned model.  
 
 
 
 
 

 
1st iteration 5th iteration

nE 0.0185485 0.0328791

cE 0.0204367 0.0340501

Table 5: Error-metrics on the mesh of 
Stoned model 

 
 
 
 
 



5 Conclusion 
In this paper, we introduced novel approach to 
improve surface mesh quality while maintaining 
the essential surface characteristics. In contrast to 
the existing methods we did not tend to keep new 
vertices on the original discrete surface. All 
operations are performed directly on the surface. 
It allows us taking an advantage in speed without 
sacrificing any quality in results. Moreover as it 
has been shown the results are even superior to 
the previous ones in the sense of preserving 
surface curvatures and normals. 
Introducing angle-based weights into original 
scheme allows considerably reducing damage to 
the sharp edges of the surface.  
The procedure has been successfully tested on a 
number of complex triangular meshes. Different 
quantitative measures and error-metrics proved 
that proposed technique do not cause 
considerable changes in surface characteristics 
while improving mesh quality. The algorithm 
can be applied iteratively that allows the user 
attaining resultant mesh more suitable for his 
application.  
Let us note that although we consider only 
triangular meshes our algorithm can be applied 
to quadrilateral meshes in the same way. While 
for triangular meshes our method uses the 
neighboring nodes connected with the central 
node, to apply these algorithm to quadrilateral 
meshes we simply need to consider all 
surrounding nodes.  
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	To measure the geometric properties of the obtained mesh we 

