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Abstract - The Taking care of fault that might induce  a 
downgrading in complex automated systems performances, 
by detection and diagnosis procedures has become a vital 
necessity. The aim is to maintain an acceptable behavior of 
the system in abnormal operating conditions. Fault  
Detection and Isolation procedures (FDI) coupled with 
regulation / control procedures insure an adequate tolerance 
level  to automated  system  fault.  
     

In this paper, we focus on the FDI procedures based on 
the analytical redundancy, i.e. on the use of a mathematical 
model of the system, and more particularly to fault  
indicating signal synthesis (called residual ) which is the 
essential step in any analytical FDI procedure. Residuals 
must satisfy a double requirement : insensitive (robust) to 
modelling uncertainties  (in ordre to reduce  false alarm 
rate), and highly sensitive  to faults (in ordre to reduce the 
non–detection rate ), while having appropriated structures 
to facilitate fault  isolation.  
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1. INTRODUCTION  
 

The modern technology advances to a point where it is 
possible and extensively desirable to improve reliability and 
the technical process safety. This is achieved by computer 
implanted FDI procedures. However, the malfunction of 
actuators, sensors and of the process components, as well as  
erroneous actions of human operators can have some 
disastrous consequences in  high risk systems such as: 
spatial engines (Astronomy), aircrafts (Aviation), nuclear 
reactors, chemical plants.  
Thus, each failure or fault can lead to shutdowns or a 
rupture of service and consequently a  plant output 
reduction. There is an improvement of consciousness and 
attitude to  possible disaster provoked by failures that could 
enable  a failure tolerating system  development.  
Such system must maintain a optimal performance during 
normal operating conditions  and must handl encountered 
critical situations during which the system’s conditions are 
abnormal that is by performing of detection and diagnosis 
procedures and reconfiguration according to accurate 
software programs. 
 

2. FDI  PROBLEM  FORMULATION   
 

Since the FDI system operating quality depends mainly 
on the  model’s quality, it is more important to start with a 
realistic and minitious specification of the given process. It 
will be the basis for the FDI problem fundamental solution.  
 

In general, we adopt the following linear continuous 
state representation to describe the nominal behavior of the 
s stem.  y
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where x ∈ ℜn , u ∈ ℜr ,y ∈ ℜm being respectively state, 
input, and observation vectors. The A, B, C and D are 
known matrices. 
 
The input / output  corresponding model is:  
y0(s)=[ C.(sI − A)-1 B+ D ].u(s)= Gu(s).u(s)                      (2) 
 
where Gu(s) = [ C.(sI − A)-1 B+ D ]= [ A, B, C, D ] 
is the nominal transfer matrice which is rational proper and 
(mxr) dimension.  
 

In a special case of the linear systems including faults 
effects and additives type perturbations, the state equations 
take the following form[1] :  
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With A, B, C, D, E1 ,E2 K1 and, K2 are known matrices with 
appropriate dimensions.  
d ∈ ℜp, f ∈ ℜq are respectively the unkown perturbations 
and  faults  vectors. 
 
In an  equivalent way, we have:  
y(s) =  Gu(s).u (s) + Gf (s).f (s) + Gd (s).d (s)                    (4)                  
 
with           Gu (s) = C.(sI − A)-1 B + D                              (5)                 
                  Gd (s) = C.(sI − A)-1 E1 + E2                                            (6)                           

                  Gf (s) = C.(sI − A)-1 K1 + K2                                           (7)                           
 
Where y(s) , f(s) et d(s) are respectively the Laplace  
transformation of y(t), f(t) and d(t). 
 
 



2.1 Residual Generation  
The aim of residual generation is to produce a vector r 

which is structured such that fault effects are independent 
from each other and also independent from those of the 
unknown inputs. The most favorable case corresponds to 
the perfect decoupling.  
The most general form of a linear residual generator in the 
frequency domain is [2]:  

r(s) =  H(s).  =[ H
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where Hu and Hy  are transfer matrices which must stable. 
 
In ordre to make the r(s) becomes zero for the fault free 
case (i.e. to achieve requirements in equation (11)), Hu, Hy  
must satisfy:  
Hy (s).Gu(s) + Hu (s) = 0                                                     (9)                                                                                                                      

where Nu(s) , Mu(s), N~ u(s) et M~ u(s) are the right and left 
coprime factors and belong to the set of proper stable 
rationnel matrices  noted by ℜH∞[4].  

The residual generator  priorly uses knowledge contained in 
the model of the system and processes on line y(t) and u(t) 
measurements to give in output a residual signal helping  to 
test the coherence of measurements issued from the system 
and its model.  
 
Thus, the residual has the following mathematical 
definition:   
lim  r(t) = 0      for   f(t) = 0,       d  ≠ 0                            (10)              M N                                                   r(s)    =    ~   ~

u.y - u.u                                                           (19)
                          t → ∞       

r(t) ≠ 0 ,           for  f(t) ≠ 0                                               (11)                                                     r(s) is called the residual vector which is given by a  set of 
dynamical relations (residual generator) operating on inputs 
- outputs data with the help of proper stable rational 
functions.  

 
2.2 Residual  evaluation  

The generated residual is then used to form appropriate 
decision functions, noted by J(r). They are valued by an  
decision unit. The FDI procedure is realised if the following 
specifications are fulfilled:  
J(r) < J th          for   f(t) = 0,                                              (12)                                                                               

                              
                                                    

In normal functionning (non failing sensors and  
actuators), r(s) is zero, in the ideal case (without 
modelisation errors and without noise). However, all or one 
vector component of r(s) will deviate in presence of failures 
on either one of  the sensors or actuators.  

J(r) > Jth          for   f(t)  ≠ 0      (fault Detection)             (13)      
J(ri) < J thi            for   fi (t) = 0,    (i = 1, ......... ,q)               (14)     
J(ri) > Jthi        for   fi (t)   ≠ 0    (fault Isolation)               (15)                                        Therefore, the vector r (s) can be used as a residual to detect 

the presence of faults.   
Where J th  as well as J thi  define thresholds. 
 
In this case, the problem of perfect fault detection and 
isolation (PFDI), (robust residual generation) may be 
formulated as :  
 
1. For a fault detection, the fault effect  on the residual 
must be decoupled  from the unknown input effect.  
2. For a fault isolation, the fault effect on the residual must 
be decoupled from  the modelling uncertainties effects and  
from  other faults.  
 
The residual generator synthesis then consists on 
determining the transfer matrices Hu(s) and Hy (s) which 
must satisfy (9) as well as the required specifications  
( robustness, isolability...).  
 

3. CONSTRUCTION OF RESIDUAL GENERATORS 
From  the Bezout identity [3] given by the following  

matrice representation :   
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A double coprime factorization of transfer matrice G(s) is 
written as   
Gu(s) = Nu(s) Mu

-1(s)  = M~ u
-1(s). N~ u(s)                               (17)                    

 

 
From the left factorisation, we can written :  
M~ u.y - N~ u.u = 0                                                                  (18)
                                                                               
Let's note that the equation (18) can be drawn straight from 
equation (2) and equation (17).  
In the occurence  of faults in actuators and /or sensors, the 
relation (18) does not hold anymore and we get  

 

 
4. FAILURE  ISOLATION 

 
we consider the vote procedures use which are  more 

general; they don't require any hypothesis on the failures 
mode.  

To implement a vote procedure with complete isolation, 
redonduncy relation structures have to satisfy  these two 
criterias:  
• Each component (sensor or actuator) appear in  at least 

one equation.  
• Each component is excluded  from  least a equation.  
 

If these two conditions are satisfied, then the isolation 
task  becomes simple: when  a component fails, all relations 
including this component will be uncoherent while those 
where it is excluded remain coherent. Thus, all components 
featured in the coherent relations will be declared non 
failing and the component common to all relations is 
readily identified as failed.  



4.1 Vote procedure using  Hermite form  
As illustrated, we assume that the actuators are good 

and we demonstrate  sensor failure isolation.  
Let the left  factorization ( M~ u , N~ u), we can always find  
unimodular matrice U1 such as  U1. M~ u has a upper 
triangular Hermite form. 
 
Premultiplying  (19) by U1  (i.e. pour  m = 3)  yields : 
rc   =  U1. M~
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we can easily arrive to the following concluions: 
If rc1 = rc2 = 0   and  rc3    ≠ 0  then only sensor 3 is faulty. 
If rc1 = 0     but   rc2  ≠ 0   and   rc3    ≠ 0  then   sensor 2 is 
certainly  faultly and sensor 3 is eventually fautly 
If rc1    ≠ 0  rc 2  ≠ 0    and   rc3    ≠ 0  then  sensor 1 is certainly  
failed and either sensor 2 or sensor 3 or both are failed. 
 

5. APPLICATION  
 

In the last section, a FDI approach is proposed. To 
illustrate its implementation we give an exemple. The  
physical system considered is an airplane propulsion system 
GE 21 [5].  
The  values of  A, B, C, D are the following:  
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and the  transfer function is  
Gu(s) =     [G11  G12  G13] / (s2+5.2660s+6.9212) 
where 

G11 =   
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we then get the following left factors :  
N~ u (s)= [N11  N12  N13] / (s2+10s+25) 
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And   
M~ u (s)  = 
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The residual generator is then defined by the equations:  
 
r1 (s)  = 
 [(s2+9.8915s+24.4576).y1 (s) + (-2.0814s-10.4071).y3(s) + 
(0.0303s+0.1513).u1(s)+(-1.3670s-6.8348).u2(s)+ 
(1.5559s+7.7794).u3(s) ] / d(s). 
 
r2(s) =  
[(3.2118s+16.0590).y1 (s) + ( s2+10s+25).y2(s) + 
 (-3.9491s-19.7455).y3(s) + (-0.6444s - 3.2211).u1(s) +  
(1.2167s+6.0836).u2 (s) + (0.7156s+3.5778).u3(s)]/d(s). 
 
r3(s) = 
 [(2.4452s+12.2259).y1 (s) + (s2+5.3745s+1.8724).y3(s) + 
(0.2670s2+2.1856s+4.2531).u1(s)+(-0.025s2-0.2929s-
0.8395).u2(s) +(-0.146s2+0.2398s+4.849).u3(s)]/d(s). 
 
5.1 Sensors  faiIures  introduction 

When the system is not affected of  faults nor unknown 
inputs, the residual is null.  
 
Let's consider the introduction of a biased type fault on :  
a)  Case 1: one sensor  

 Fault Time injection 
Sensor 1 f1=0.07 3 seconds 

 

 
 

Fig.1. Response of residual r (t) corresponding to fault sensor 1. 



 
 
b) Case 2: three sensors 
 Fault Time injection 

Sensor 1 f1=0.07 2.5 seconds 
Sensor 2 f2 =0.5 5 seconds 
Sensor3 f3=0.5 7.5 seconds 

 
 

 
 

Fig.2. Response of residual r (t) corresponding to the faults sensors. 
 
Residual figures clearly indicate the fault presence. The 
delay of detection will be related to chosen thresholds. we 
can however underline that the isolation cannot be achieved 
because the three residuals are sensitive to a one sensor 
fault. 

           
The obtained results show that the residual generator  is 
sensitive to the different faults, (even to noises), introduced 
to the different output components, but it is difficult to 
isolate such a fault or a noise. Because of that, we introduce  
an isolation procedure based on the  Hermite form. The 
established  algorithm gives left factors of Gu(s) with M~ H 
(s) of M~ u(s)  upper  triangular  form. 
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The residual is:  
  
r1 (s) = 

(3.21118s+16.059).y1(s)+(1.3135s2+7.0595s+2.4594).y3(s) 
r2(s) =  
(-0.7613s2-7.6131s-19.0328).y2(s)+(s2+8.38s+16.905).y3(s) 
r3(s)  = 
 ( -0.4090s3 - 4.1985s2-13.5987s-14.1528).y3 (s). 
 
From these equations a simple logic decision may be 
considered  to isolate  the failing sensors.  
 
The corresponding residuals are illustrated by figures (3) 
and (4) which allow to determinate the instants of fault 
apparition as well as their isolation.  
 

 
 

Fig .3. Fault isolation corresponding to first case. 
 

 
 

Fig.4. Faults  isolation  corresponding to second case. 
 

 
6. CONCLUSION 

 
In this paper, the problem related to desiging fault  

detection and isolation has been formulated and solved. It 
has been shown that the frequency domain approaches can 
be used effectively in treating this class of problem. 
Using factorization techniques, residual generators have 
been developed. They are the basis of our studies. 
The results obtained allow to conclude that the residual 
generator show good performance for fault detection and 
isolation for sensor type. 
As far as, the fault actuator, farther work can confirm the 
validity  for the diagnosis. 
In the presence of unkown inputs or uncertainty the 
robustness problem remain, hence an application of H∞ 
optimization is still called for. 
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