
Estimating Effort of Incremental Integration Software Testing and
Design Metrics

ZORICA M. MIHAJLOVIĆ1, DUŠAN M. VELAŠEVIĆ2 and NIKOS E. MASTORAKIS3

1Computer Systems Design Lab.
VINČA Institute of nuclear sciences

P.O. Box 11001, Belgrade
SERBIA and MONTENEGRO (YUGOSLAVIA)

2Faculty of Electrical Engineering
University of Belgrade

Bulevar kralja Aleksandra 73, 11000 Belgrade
SERBIA and MONTENEGRO (YUGOSLAVIA)

3Department of Computer Science of the Military Institute
University of Education, Hellenic Naval Academy

Hatzikyriakou Avenue, 18539, Piraeus
GREECE

Abstract: - Estimating effort is an important component of planning software engineering tasks.
Preventive incremental integration software testing is one of such tasks. In the moment when this testing
begins software design already exists and can be used in effort estimating. Seven design metrics already
proposed in the literature on software engineering have been selected in this paper in order to analyze
their applicability to estimating effort of incremental integration testing. A number of programs has been
developed to collect the data needed for this analysis. In addition, the conditions under which these data
have been collected are shown. Based upon the data, the metrics have been analyzed by using the
correlation between each of the metrics and the actual effort spent on this testing. The results point to
best metrics to be used for the estimation purpose.

Key - Words: - Software Testing, Incremental Integration Testing, Estimating Effort, Design
Metrics.

1 Introduction
Estimating effort is an important component of
planning in software engineering [20], [9]. It is
important when a software project is considered
as well as when a separate task of the project is
treated. The generic task of software testing is an
example of such a task. Estimating effort helps in
determining the calendar time of the task,
predicting the cost of the task and refining the
task’s budget.
 The task of software testing can further be
decomposed into the levels of testing [17], [19],
[24]. Unit and integration testing are two lowest
levels of testing. According to experts [17], for
software developed through procedural paradigm
the best way to perform unit and integration

testing is to consider them as an integrated level
of incremental integration testing. A program is
built through a process of creating the program’s
increments in incremental integration testing. A
new increment is created in each step by adding a
new unit to the previous increment. This new
increment and its interfaces are in the focus of
testing. After testing and correcting this
increment, a new increment is created until the
complete program is formed. In this creation,
when we say “a unit”, we mean a software
element not further decomposed into the other
elements.
 The prevention strategy of testing as defined
in [6] is proclaimed to be the most advanced
testing strategy that should be practiced. Testing

is seen in parallel with software development and
the beginning of testing is shifted towards the
beginning of software development. In addition,
testing activities are defined analogously to
software development activities. They include
test planning and test design as the activities that
precede test execution. Finding software
problems during testing is shifted towards test
planning and test design instead of leaving them
for test execution only. In the context of
incremental integration testing the earliest
moment when this testing can begin is the
moment when engineers finish software design.
 Estimating effort of preventive incremental
integration testing is considered in this paper.
Since software design already exists in the
moment when this testing begins, estimating
effort is related to design metrics that can be
directly derived from software design. The
problem of estimating effort of incremental
integration testing has not been enough studied in
the previous work on software testing. The
exception is given in [13] and [15] where two
metrics for estimating effort of incremental
integration testing have been proposed: estimated
number of tests and number of units. The other
previous approaches are focused on:

1. unit testing ([10], [7], [20], [3] and [23],
among others),

2. system testing ([16], [21], [5], [2], [22],
[17], [8] and [25], among others), and

3. consider testing within a software project
without distinguishing the levels of
testing ([19] and [20], among others).

 In order to analyze the applicability of design
metrics to estimating effort of preventive
incremental integration testing a number of
software design metrics that has already been
proposed in the literature on software engineering
is selected in this paper (Section 2). The
applicability is analyzed by computing the
correlation between a metric and the actual effort
spent on this testing. To collect the data needed
for this computation a sequence of example
programs has been developed. Incremental
integration testing has been included in this
development. A special methodology, the ITeM
methodology [13], has been used during this
testing. The use of the ITeM methodology
determined the conditions under which the data
used for the correlation computation have been

collected (Section 3). The estimation capabilities
of the metrics seen through the correlation are
further computed (Section 4) and the most
promising of them chosen (Section 5).

2 Design Metrics
Four criteria have been set in selecting the design
metrics to be included in the analysis of the
applicability to estimating effort of incremental
integration testing:

1. metrics should be taken from the literature
on software engineering (already
proposed),

2. metrics should already be mentioned in
the context of software testing or software
modifications,

3. metrics should be directly derived from
software design and

4. metrics should be appropriate for
incremental integration testing.

The third criterion requires further
explanations. The starting point for the design
metric consideration is the standard presentation
of software design [20], [4]. This presentation
includes a structure chart with couples and the
corresponding detailed design of units shown in
the form of PDL (Program Design Language).
The design metric consideration excludes any
special presentations of software design. The
presentation with loops and decisions within a
structure chart is an example of such a special
presentation. This special presentation has been
introduced in [11] to extend the cyclomatic
complexity metric into the design level. In
addition, the third criterion about the metrics
directly derivable from software design means
that it is enough to go through design to capture a
metric. Special computations, like the
computation of cohesion of units with data flow
analysis between statements of a unit [3], are
excluded.

Starting from the enumerated criteria, the set
of metrics for the analysis of their applicability to
estimating effort of incremental integration
testing has been defined:

1. the number of lines of PDL derivable from
the detailed design of units – LOP (Lines
of PDL),

2. cyclomatic complexity of units [10] – CC,
3. the (fi * fo)2 metric introduced in [7] - F2,

4. the LOP * (fi * fo)2 metric inspired by [7] -
LF2,

5. the modified quantification of coupling
introduced in [3] – MCp,

6. the estimated number of tests proposed for
estimating effort of incremental
integration testing in [13] and [15] – ENT,
and

7. the number of units in a structure chart,
the direct chart metric [20] already
proposed for estimating effort of
incremental integration testing in [13] and
[15] – NU.

The LOC metric (Lines of Code) is a standard
metric used in estimating effort in software
engineering especially in software project effort
estimation [20]. It is also used in estimating effort
of smaller tasks of software engineering that are
assigned to a single software engineer as is
defined in Personal Software Process – PSP [9].
Independently of the task dimension, the number
of LOC is estimated first. Then, based upon this
number and the historical data collected from
previous similar tasks, the task’s effort is
estimated. The LOP metric is included
analogously to the LOC metric. Since detailed
software design already exists in the moment of
planning incremental integration testing, finding
the number of LOP is easy as it can be directly
derived from this design.

Cyclomatic complexity is a well-known metric
that describes the complexity of units starting
from the number of conditions of code [10]. It is
considered in the context of unit testing. It has
been shown that units with higher cyclomatic
complexity are less reliable than those with lower
cyclomatic complexity. The number of 10 can be
taken as an approximate limit. Although
cyclomatic complexity has originally been
proposed as the code metric, it can be applied to
detailed software design presented in PDL.
Because of that, cyclomatic complexity of units is
included in the set of metrics potentially suitable
for estimating effort of incremental integration
testing.

The starting point for the introduction of the (fi
* fo)2 metric and the LOP * (fi * fo)2 metric is the
work presented in [7]. Both the metrics are based
upon the values that describe how much a unit is
connected with other units within a structure
chart: fan-in (fi) and fan-out (fo). Fan-in gives the

number of units that call the unit in the focus of
consideration. Fan-out gives the number of units
called by the unit in the focus of consideration.
The definitions of fi and fo cover not only the
direct connections between units but the indirect
connections, too. The indirect connections are
those that use global variables. It has been shown
that there is the strong correlation between the
number of changes of units and each of the
proposed metrics. An increase in each of the
metrics leads to an increase in the number of
changes. LOC * (fi * fo)2 was the second original
metric proposed in [7]. A modified version of this
metric - LOP * (fi * fo)2 is included in our set of
metrics suitable for estimating effort of
incremental integration testing. The motivation
for this inclusion is the same as for LOP.

The quantification of coupling introduced in
[3] starts from the number of m computed as:

m = idc + 2 * icc + odc + 2 * occ + fo + fi (1).

In this formula, idc denotes the number of input
data couples, icc denotes the number of input
control couples, odc denotes the number of output
data couples, occ denotes the number of output
control couples, fo denotes fan-out and fi denotes
fan-in. The data couple computations take care
about the direct and indirect connections. The
quantification of coupling is defined as C = 1 / m.
The higher C corresponds to the better unit from
the coupling point of view. Such a unit is easier to
modify. The number of m is included in the set of
measures potentially suitable for estimating effort
of incremental integration testing because the
effort needed for testing a unit is directly
proportional to the m number of the unit. We call
this m number the modified quantification of
coupling MCp.
 The estimated number of tests is the metric
originally proposed for the use in estimating
effort of incremental integration testing in [13]
and [15]. It is computed as:

ENT = 9 * (idc + odc) + 3 * (icc + occ) + fo +
 + nsf (2).

The elements idc, odc, icc, occ and fo have the
same meaning as in (1). The term nsf denotes the
number of special features for testing identified in
a unit besides functions and interfaces. The

performance of a unit is an example of such a
feature. Incremental integration level of testing is
divided in phases when the ENT metric is used.
Three phases are preparation for testing, the core
of testing and reporting on testing. The ENT
metric is proposed for estimating effort of the
first two phases: preparation for testing and the
core of testing. First experimental results with
this metric showed the correlation of 0.91
between this metric and actual effort spent in the
first two phases of incremental integration testing.
 The last metric included in the set of metrics
potentially suitable for estimating effort of
incremental integration testing is the number of
units in a structure chart (NU). This simple metric
directly describes the dimension of integration in
incremental integration testing. It is proposed as
the metric to be used in estimating effort of the
third phase of incremental integration testing,
reporting on testing, in [13] and [15].
 All the enumerated metrics meet the
previously defined criteria of selection. LOP and
cyclomatic complexity are appropriate for unit
testing. The number of units is appropriate for
integration testing. From the general point of
view, the metrics F2, LF2, MCp and ENT are
appropriate for incremental integration testing.

3 Data Collecting
To analyze the applicability of the metrics to
estimating effort of incremental integration
testing we have developed a number of programs.
The programs have been written in C. The
development included incremental integration
testing. During incremental integration testing the
data on the actual effort spent on this testing and
the other useful data have been collected. In
performing incremental integration testing, a
special methodology, the ITeM (Incremental
Integration Testing Management) methodology
[13], has been used. The ITeM methodology is a
way of how the various elements necessary for
planning and tracking incremental integration
testing can be gathered together in one place to
direct software engineers during this testing. The
brief presentation of doing incremental
integration testing when the ITeM methodology
is used follows.
 The first step to do during incremental
integration testing is to plan this task starting
from the already created software design. Test

planning includes eight steps: 1) determining the
features to be tested, 2) identifying the goals of
testing, 3) identifying the management
constraints, 4) identifying the resources at the
disposal, 5) creating the partial plan, 6)
estimating, 7) scheduling and 8) planning for the
purpose of tracking.

Functions and interfaces of an increment in the
focus of testing are the first features identified for
testing. Some special features, performance for
example, are further identified. Functions are
elaborated next and the detailed features for
testing are identified. The detailed features are
input conditions and their attributes as they are
defined in [18]. The input sequence of characters
and its length are some examples of input
conditions and attributes.

The ITeM methodology allows several
different goals of testing to be set for incremental
integration testing. The least set of goals of
testing requires that the detailed features are
covered by tests and that all the problems found
in one activity of testing, test planning for
example, are resolved before going to the next
activity, test design for example. These goals of
testing correspond to the completion criteria of
testing. The testing task is completed when the
goals of testing are met.

The identification of management constraints
answers the question if there is a deadline and/or
the restricted number of engineers set for the task
of testing or there are no special management
constraints on time and people required for the
task. The identification of resources answers the
question of how many software engineers are
assigned to the testing task.
 The partial plan creation means breaking
down the starting task of incremental integration
testing into activities across several levels until
elementary activities are reached. Each
elementary activity is assigned to a single
engineer. There are two bases in the partial plan
creation:

1. the process model of incremental
integration testing defined as a
component of the ITeM methodology in
[13] and [14] and

2. the design of a program to be tested.
 At the first level, the task of incremental
integration testing is broken down into three
activities that correspond to the phases of the

process model: preparing for testing, the core of
testing and reporting on testing. The first activity
of preparing for testing is further broken down
into three main activities: test planning, test
design and coding. Coding is included into the
activities of incremental integration testing when
the ITeM methodology is used as it is tightly
connected with them. In addition, preparing for
testing includes the activities of solving problems
found in the main activities, problems found in
the input software design during test design for
example, and the activities of replanning that
follow after solving problems. The corrective
activities (the activities of solving problems) are
included if they are necessary. The places for
these activities are reserved in the initial partial
plan. That means that finding problems in the
input software design is assumed in the initial
partial plan creation. This is in accordance with
the main aim of testing: finding problems. When
we say a problem, we mean any event occurring
during testing that requires further investigation.
Test planning, test design and coding consider the
program to be tested as a whole. If test design is
taken, this means that tests for all the increments
are designed before coding.
 The activity of the core of testing is further
broken down into the activities of the same type
that correspond to increments. The structure chart
of the input software design forms the basis for
breaking down this activity into the activities of
increments. For each increment, the
corresponding core of testing activity includes
test implementation (writing a driver for
example) and test execution. The current
increment must be tested and corrected
completely before the core of testing of the next
increment begins. The activity of reporting on
testing is not further broken down. This activity
includes: finding the relationship between the
plan and its performance, reporting on problems,
forming the data histories and collecting test
products for the future use.
 In estimating effort of incremental integration
testing, the ENT metric is used for the phases of
preparing for testing and the core of testing and
the NU metric is used for the phase of reporting
on testing. The ENT metric is separately
computed for all the units first and then summed
across the units. Based upon the ENT metric, the
NU metric and the corresponding data histories,

the effort estimations are computed for the three
phases. The effort estimated for preparing for
testing is further distributed across the main
activities and the corrective and replanning
activities, also based upon the data histories. In
order to do this distribution, it is necessary to
record the effort spent on the separate activities of
this phase during the previous testing tasks. The
effort estimated for the core of testing is further
distributed across the activities of increments
proportionally to the ENT metric of each unit.
 Starting from the partial plan, the plan’s
activities and their effort estimations are assigned
to days and weeks in scheduling. In the same
time, the management constraints are respected as
close as possible. Planning for the purpose of
tracking includes earned value planning and
planning of milestones.
 After the plan for the task of incremental
integration testing is created in the test planning
activity, the task’s performance begins following
the plan. The tests for all the increments are
designed and all the units are coded. If problems
are found in the input software design during test
planning or test design, they are solved and the
input software design is modified appropriately.
Then replanning follows. In this way, the input
software design is refined before coding. After
the phase of preparing for testing is finished, the
increment core of testing begins. Finally, after the
completion of testing the last increment, the
report on the task of incremental integration
testing is made.
 ITeM is a flexible methodology that offers
various options: different goals of testing to be set
for a task and different numbers of engineers
assigned to the task, among others [13]. The
following options of the ITeM methodology have
been selected in incremental integration testing
the programs considered in this paper:

1. the least set of testing goals has been set,
2. one software engineer has been assigned

to the testing task,
3. no management constraints have been

defined and
4. the ENT metric and the NU metric have

been used in estimating effort of testing.
In addition, the method of equivalence
partitioning and the method of boundary value
analysis [17] have been used in designing tests
for testing functions of units.

 The data on the actual effort spent on
incremental integration testing the programs have
been collected under the previously shown
conditions. These data have been originally used
to confirm the applicability of the ENT metric
and the NU metric to estimating effort of
incremental integration testing [15]. It has been
shown that the square of the correlation between
each of the two metrics and the actual effort spent
on the appropriate phase of incremental
integration testing is greater than 0.7 and that the
likelihood of finding the correlation by chance is
less than 0.05.
 The same data as in [15] have been used as the
starting data in the analysis of the applicability of
the metrics introduced in Section 2 to estimating
effort of incremental integration testing. The
actual effort spent on incremental integration
testing includes the actual effort spent on
determining the ENT metric and the NU metric
among various terms when the ITeM
methodology is used. Since the ITeM
methodology requires the detailed tracking of
performing the testing task, it is possible to
separate the actual effort spent on determining
these metrics from the rest of the effort. Thus, the
actual effort spent on incremental integration
testing without the determination of metrics can
be obtained. After we computed this value, we
determined the other proposed metrics besides
ENT and NU for the programs considered and
recorded the actual effort spent on the
determination of each metric. Then, by summing
the actual effort spent on testing without the
metric determination and the actual effort spent
on determining a particular metric we obtained
the actual effort spent on incremental integration
testing for each metric.

The differences among the actual efforts spent
on incremental integration testing a single
program for different metrics are small. They are
less than 1.6 %. This result is expectable since the
determinations of metrics are similar. To
determine each of the metrics it is necessary to go
through the program’s structure chart and/or the
corresponding detailed software design. It is
necessary to go through the detailed software
design of units presented in PDL to compute LOP
and cyclomatic complexity. Then the sum of the
metrics of all the units is made. It is necessary to
go through the structure chart to compute F2,

MCp and NU. At last, it is necessary to go
through the structure chart and the detailed design
to compute LF2 and ENT.
 At last, the task of incremental integration
testing has been considered in its completeness in
the analysis of the applicability of the metrics to
estimating effort of this testing. In other words,
the effort spent on all the three phases of
incremental integration testing has been taken
into account as a single value. The results of this
analysis are presented in the next section.

4 Comparison Results
The data on the metrics and the effort spent on
incremental integration testing collected on the
sequence of programs developed in C are shown
in Table 1. The effort is equal to the effective
duration of the testing task since one engineer has
been assigned to the task. It is given in minutes.
Incremental integration testing has been
performed in accordance with the ITeM
methodology and under the conditions presented
in the previous section. Thus, the effort presented
in Table 1 include the determination of the ENT
metric and the NU metric. The efforts for the
other metrics are not given although they are
computed and used in the correlation
computations. They are not given since they are
very similar to those shown in Table 1. For
example, for the program named Cyclomatic
Complexity Meter the effort goes from 1448
minutes for the NU metric to 1470 minutes for
the LF2 metric. In addition, the formulas given in
Section 2 have been used in computing the
metrics of separate units in increments. Then the
sum of the metric numbers across all the
increments has been created for each metric. The
exception is the NU metric that corresponds to
the number of units of a structure chart.
 To analyze the applicability of the metrics to
estimating effort of incremental integration
testing the correlation between a particular metric
and the actual effort spent on this testing has been
computed as well as the likelihood of finding the
correlation by chance. The results are shown in
Table 2. Correlation represents the measure of the
linear relationship between two variables. If the
existence of the linear relationship is confirmed,
it is possible to estimate the second variable
based upon the first variable and this relationship.
This analysis of the applicability of metrics to

estimating effort of incremental integration
testing is done in accordance with the suggestions
given for PSP [9]. If the square of the correlation
of two variables is greater than 0.7 or greater, and
the likelihood of finding the correlation by chance
is less than 0.05 or less, then the metric is suitable
for estimating effort [9].
 Table 2 shows that the best effort estimation
of incremental integration testing is obtained
when the ENT metric is used. It can be expected
since the ENT metric has originally been
proposed for the estimation purpose [15]. The
other metrics can be divided into three groups.
LOP, NU and MCp form the first group. They
give the similar squares of the correlation: 0.786,
0.780 and 0.780 respectively. Among these
metrics, the NU metric can be computed in the
simplest way. CC forms the second group and it
has the square of the correlation of 0.755. F2 and
LF2 form the third group with the square of the
correlation around the limit of 0.7. It can be
concluded that the ENT metric should be used to
obtain the best effort estimation for incremental
integration testing. Good results could be
obtained with the NU metric, too. This metric is
especially acceptable when we want to eliminate
the excessive computations.

5 Conclusion
The applicability of seven design metrics to
estimating effort of incremental integration
testing is analyzed in this paper. These metrics
are selected because they are potentially suitable
for this estimation as is shown in Section 2. The
data collected on the sequence of programs
developed in C under the conditions defined in

Section 3 have been used in this analysis. They
show that the best estimation is obtained with the
ENT metric. Then LOP, NU and MCp follow
with the similar estimation capabilities. Among
these metrics, the NU metric is computed most
easily.

in
EN
es
ne
th
co
pr
ar
as
at

Re
Table 2 Correlations and significance values
Metric Correlation Square of

the
correlation

Likelihood of
finding the
correlation
by chance

LOP 0,886 0,786 0,00259
CC 0,869 0,755 0,00388
F2 0,832 0,692 0,00765
LF2 0,842 0,709 0,00650
MCp 0,883 0,780 0,00279
ENT 0,921 0,848 0,00092
NU 0,883 0,780 0,00280
Table 1 Metrics and the effort spent on incremental integration testing collected on a
number of programs

Program Longest
Line

Calculator Triangle Empty
Line
Counter

Line
Counter

Cyclomatic
Complexity
Meter

Expert
System
User
Interface *

Effort 296 2787 795 1572 1562 1459 4262
LOP 20 279 211 310 352 356 1317
CC 3 43 45 66 61 45 194
F2 16 71 53 141 147 120 1496
LF2 320 4361 3899 10903 13510 9874 48307
MCp 5 59 34 58 64 58 338
ENT 34 287 158 226 280 337 842
NU 1 8 5 8 7 7 43
* Presented in [1] and [12]
When the most precise estimation for
cremental integration testing is needed, the

T metric should be used. When an acceptable
timation and the minimum computations are
eded, the NU metric should be used. At least,
is conclusion can be accepted under the
nditions shown in Section 3 and for the
ograms given in Table 1. Even if the conditions
e not met, the proposed metrics should be used,
 it is a better solution than to have no estimation
 all.

ferences:
[1] N. Afgan, P.M. Radovanović and A.G.

Blokh, An Expert System for Boiler Surface
Fouling Assessment, In Hanjalić, K. and
Kim, J.H.(Eds), Expert Systems and
Simulations in Energy Engineering, Begel

House, New York, USA, 1995, pp. 219-
224.

[2] S.R.Dalal and A.A. McIntosh, When to
Stop Testing for Large Software Systems
with Changing Code, IEEE Trans. on
Software Engineering, Vol. 20, No. 4, 1994,
pp. 318-323.

[3] H. Dhama, Quantitative Models of
Cohesion and Coupling in Software,
Journal of Systems and Software, Vol. 29,
No. 4, 1995, pp. 65-74.

[4] C. Eastel and G. Davies, Software
Engineering: Analysis and Design,
McGraw-Hill, London, UK, 1989.

[5] W. Ehrlich, B. Prasanna, J. Stampherl and
J. Wu, Determining the Cost of a Stop-Test
Decision, IEEE Software, Vol. 10, No. 2,
1993, pp. 33-42.

[6] D. Gelperin and B. Hetzel, “The Growth of
Software Testing”, Communications of the
ACM, Vol. 31, No. 6, pp. 687-695.

[7] S. Henry and D. Kafura, Software Structure
Metrics Based on Information Flow, IEEE
Trans. on Software Engineering, Vol. SE-7,
No. 5, 1981, pp. 510-518.

[8] B. Hetzel, The Complete Guide to Software
Testing, 2nded., Wiley, New York, USA,
1988.

[9] W.S. Humphrey, A Discipline for Software
Engineering, Addison-Wesley, Reading,
Massachusetts, USA, 1995.

[10] T.J. McCabe, A Complexity Measure, IEEE
Trans. on Software Engineering, Vol. SE-2,
No. 4, 1976, pp. 308-320.

[11] T.J. McCabe and C.W. Butler, Design
Complexity Measurement and Testing,
Communications of the ACM, Vol. 32, No.
12, 1989, pp. 1415-1425.

[12] Z. Mihajlović, An Expert System for
Monitoring of Fouling in a Power Boiler,
Proceedings of the 41st Yugoslav
Conference of ETRAN, Zlatibor,
Yugoslavia, Vol. 3, 1997, pp. 239 - 242 (in
Serbian).

[13] Z. Mihajlović, Knowledge-Based Planning
and Tracking the Level of Unit and
Integration Software Testing, Ph.D.

Dissertation, University of Belgrade,
Belgrade, Serbia and Montenegro, 2003.

[14] Z. Mihajlović, D. Velašević and N.
Mastorakis, A Preventive Process Model of
the Incremental Integration Level of
Software Testing, WSEAS Trans. on
Computers, Vol. 2, Issue 1, 2003, pp. 30-35.

[15] Z. Mihajlović and D. Velašević, Measures
for Estimating Effort of Incremental
Integration Software Testing, Proceedings
of the International Conference on
Computer, Control and Communication
Technologies CCCT’03, Orlando, USA,
Vol. I, 2003, pp. 434-439.

[16] J.D. Musa and A.F. Ackerman, Quantifying
Software Validation: When to Stop
Testing? IEEE Software, Vol. 6, No.
3,1989, pp. 19-27.

[17] G.J. Myers, The Art of Software Testing.
Wiley, New York, USA, 1979.

[18] T.J. Ostrand and M.J. Balcer, The
Category-Partition Method for Specifying
and Generating Functional Tests,
Communications of the ACM, Vol. 31, No.
6, 1988, pp. 676-686.

[19] W. Perry, Effective Methods for Software
Testing, Wiley, New York, USA, 1995.

[20] R.S. Pressman, Software Engineering: A
Practitioner’s Approach, 4th edition,
McGraw-Hill, New York, USA, 1997.

[21] N.D. Singpurwalla, Determining the
Optimal Time Interval for Testing and
Debugging Software, IEEE Trans. on
Software Engineering, Vol. 17, No. 4, 1991,
pp. 313-319.

[22] J. Su and P.R. Ritter, Experience in Testing
the Motif Interface, IEEE Software, Vol. 8,
No. 2, 1991, pp. 26-33.

[23] J. Voas, L. Morell and K. Miller, Predicting
Where Faults Can Hide from Testing, IEEE
Software, Vol. 8, No. 2, 1991, pp. 41-48.

[24] J.A. Whittaker, What Is Software Testing?
And Why Is It So Hard?, IEEE Software,
Vol. 17, No. 1, 2000, pp. 70-79.

[25] T. Yamaura, How to Design Practical Test
Cases, IEEE Software, Vol. 15, No. 6, 1998,
pp. 30-36.

