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Abstract:   This paper describes a pattern recognition technique for voxel data based on 3D HLAC (Higher order 
Local Autocorrelation) masks.  HLAC has been used as feature descriptors for various pattern recognition 
applications including gesture recognition, face recognition, and 2D image retrieval.  In this research, popular 
2D HLAC masks are extended to 3D HLAC masks to handle 3D voxel data.  Our experimental system extracts 
pattern features from voxel data, and the features are processed by using multiple regression analysis to 
recognize voxel patterns. The system successfully recognizes voxel patterns, and can count number of patterns 
statistically.  Since HLAC masks have shift invariant characteristics, the system can recognize voxel patterns 
regardless of its positions and can search for the patterns quickly. The recognition system can learn voxel 
patterns from sample voxel data by using 3D HLAC masks and statistical analysis.  Therefore, the system does 
not require any program modification for classifying patterns even if the target patterns are changed. 
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1   Introduction 
HLAC features have been used for various pattern 
recognition and classification applications.  For 
example, face recognition [3], character recognition 
[6], texture analysis [8], and image retrieval [9].  
Important techniques related to HLAC can be found 
in various papers [1][2][3][7]. In these papers, 
autocorrelations up to the second order have been 
used, and they reduce the number of computations by 
using the shift-invariant property of the 
autocorrelation functions. Typically, 2D HLAC mask 
patterns (3 x 3) have been used for conjunctions with 
statistical approaches, and various multimedia data 
can be processed.  2D HLAC masks are suited for 
analyzing 2D images, but there are some limitations 
of analyzing 3D voxel data. Therefore, in this 
research, 2D masks (3 x 3) are extended to 3D masks 
(3 x 3 x 3) for extracting shape descriptors to handle 
3D voxel data.  Pattern features of voxel data are 
extracted using extended 3D HLAC masks, and the 
features are analyzed using multiple regression 
analysis.  By using this technique, our system can 
detect particular patterns in voxel data which makes 
it possible to count the number of patterns contained 
in a set of voxel data.  Figure 1 shows the intuitive 
concept of the research purposes.  In the figure, each 
point of the cell contains the intensity value, and 
various intensity values form unique three 
dimensional patterns.  Several sphere patterns are 
represented with high intensity values in the figures.  

In our research, we attempt to detect and count these 
spheres efficiently by applying multiple regressions 
to 3D HLAC features.  This simple sphere pattern 
recognition method can be extended to a broad range 
of pattern recognition applications which use 
scientific voxel data, such as medical data and 
geographical data.  

 
Figure 1:  A cube and spheres represented as voxels 
 
 
2   Pattern Classification using 3D 
Masks 
This section describes (1) HLAC features, (2)3D 
masks, and (3) multiple regression analysis. 

 
 
2.1 HLAC features 
In our system, autocorrelations up to the second order 
have been used.  By restricting the order of the 
autocorrelation functions, the number of 
computations is reduced. The details of HLAC 



features can be found in various papers [1][2][3]. 
Although typical HLAC local mask patterns limit the 
range of displacements to within a local 3 x 3 grid, we 
have limited the range to 3 x 3 x 3 grid in our system.   
The position of the mask pattern in the 3 x 3 x 3 grid 
is denoted by the three dimensional coordinates x, y 
and z.   denotes the mask pattern of 
autocorrelation function .  Each function is 
denoted as  
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The HLAC features  are computed by scanning 
the 3D voxel cube with the 3D HLAC masks.  The 
intensity values of voxels are summed where the 
masks positions are non-zero value.  By repeating the 
scanning of the 3D voxel cube, 3D HLAC features 
are computed, and these values represent the pattern 
features of the 3D voxel cube. 
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2.2 3D Masks 
The 3D mask patterns in string sequence form are 
shown in Figure 2.  The 3D HLAC mask is a 3D solid 
cube which is divided into a 3 x 3 x 3 grid.  It contains 
27 cells and is labeled with unique alphabets as 
shown in the figure.  Since the autocorrelation 
functions of the order N=0, 1 and 2 are used for 
HLAC features, the sizes of the string sequences are a 
length of 3 at most as shown in Figure 2.  The figure 
shows all the possible combinations of 3D HLAC 

mask patterns.  These mask patterns are applied to 
voxel data for extracting HLAC features.   
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N=0 (1):  a  
N=1 (13): ab, ak, am, an, ad, ae, aj, km, ks, kv, ms, mt, ns 
N=2 (237): akl, akm, akn, ako, aks, akt, aku, akv, akw, akx, abk, 
abl, aln, abm, abn, abo, abc, amn, amp, amq, ams, amt, amv, 
amw, amy, amz, abd, ano, anp, anq, anr, ans, ant, anu, anv, anw, 
anx, any, anz, anA, abe, abf, abj, ack, acn, ace, adk, adm, adn, 
adp, adq, ade, adg, adh, adj, aek, ael, aem, aen, aeo, aep, aeq, aer, 
aef, aeg, aeh, aei, aej, afk, afn, agm, agn, ahm, ahn, ain, ajk, ajm, 
ajn, ajs, ajt, ajv, ajw, klm, kls, klv, kmn, kmo, kmp, kmq, kms, 
kmt, kmu, kmv, kmw, kmx, kmy, kmz, knp, kns, knv, kny, kos, 
kov, kpv, kpw, kqv, kst, ksu, ksv, ksw, ksx, ktv, kuv, kvw, kvx, 
kvy, kvz, kwy, bks, bkv, lmn, lmt, lmw, lnp, lns, lnv, lny, lpw, lst, 
lsw, ltv, lvw, bms, bmt, bmv, bmw, lwy, bmy, bmz, bns, bnv, 
bny, mns, mnt, mnu, mot, mps, mpt, mqs, mqt, mst, msv, msw, 
msy, msz, mtu, mtv, mtw, mtx, mty, mtz, muw, nos, nps, npt, 
npu, nqs, nrs, nst, nsu, nsv, nsw, nsx, nsy, nsz, nsA, ntv, nty, nuv, 
nuy, ost, osw, otv, psv,psw,ptv,ptw,puw, qsv, qsw, qtv, rsw, bjs, 
bjt, bjv, bjw, cks, ckv, cns, cnv, cny, dks, dkt, dku, dkv, dkw, dkx, 
dms, dmt, dns, dnt, dnu, djs, djt, djv, djw, eks, ekv, ems, emt, ens, 
ejs, ejt, ejv, ejw, fks, fkv, fns, gms, gmt, gns, gnt, gnu, hms, hmt, 
hns, ins 
 
Figure 2: HLAC mask patterns (3 x 3 x 3) for 3D 
voxels in string sequence form 
 

 
The intensity values of the voxels are multiplied to 
the masks where the cells are valid, and these values 
are summed as HLAC features.  This process is 
repeated for various voxel positions, and 251 HLAC 
features are extracted from the voxel cube.  These 
HLAC features have unique values and distributions 
by reflecting the intensity patterns of the cubes, and 
they can be used for content-based similarity retrieval 
[18][19] indices for 3D solid textures [13].  In this 
research, the HLAC features are used for recognition 
of patterns rather than indices for similarity 
retrievals.  Not all the HLAC features are needed to 
classify or recognize the particular patterns, and the 
system needs to select relatively important HLACs 
for efficient computations.  This HLAC selection can 
be done statistically using multiple regression 
analysis with a sufficient amount of sample voxel 
data.  The following section examines multiple 
regression analysis. 



 
 
 2.3 Multiple Regressions 
The general purpose of multiple regression analysis 
is to find the relationship between several 
independent variables and a criterion variable. In 
general, multiple regression analysis estimates a 
linear equation of the form: 
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The variable can be expressed in terms of a 
constant  and slopes  times the  variables. 
The constant is also referred to as the intercept, and 
the slopes as the regression coefficients.   

y
b ia ix

In this research, the aim of the system is to find 
patterns and count how many patterns exist in the 
voxel cube data.  Therefore, the system needs to find 
the relations between these HLAC features and the 
number of patterns.  Thus, in our statistical model, 
the linear equation should predict the number of 
spheres as a function of HLAC features, and multiple 
regression analysis is conducted. From the analysis 
results, regression functions are formed, and these 
functions can predict the number of patterns from 
HLAC features. 
 
 
3   Experiments 
This section describes, (1) a pattern recognition 
system, (2) pattern counting and (3) pattern 
classification. 
 

 
3.1  A Pattern Recognition System 
The experimental system is implemented by C 
language.  A GNU gcc compiler running on a Linux 
operating system (Fedora Core 1) is used.  The 
statistic software program "R" [17] is used as a 
software module for the multiple regression analysis.  
A Pentium 4 - 2.66 Mhz CPU with 1024 Mbytes of 
memory is used to compute HLAC features.  Figure 3 
shows the interface of the system which outputs a 
cube containing sphere patterns. Although the actual 
cube is represented and treated as a 64 x 64 x 64 
voxel, the system outputs the cube and spheres as 3D 
polygonal models for fast visualization.   
As described in the following sub sections, 500 
sample voxel cubes are generated.  Table 1 shows the 
approximate time needed for (a) voxel cube 
generation, (b) HLAC feature extraction, and (c) 
multiple regression analysis.  All of these processes 
are needed as pre-computations for the system to 

learn patterns.  Once these processes are carried out, 
the system needs to compute regression functions and 
HLAC features to determine specific patterns, all of 
which can be accomplished in 1 to 3 seconds. 
 

 
Figure 3:  A pattern recognition system 

 
 

 364  332  316  
Voxel generation 5674 1280 312 
HLAC extraction 612 141 30 
M.R. analysis 3.5 3.3 3.5 

(Seconds)   
Table 1: Time needed for processing voxel data 

 
 

3.2 Pattern counting 
Since the equation for the multiple regressions 
contains 251 explanatory variables, the same number 
of parameters has to be estimated.  To estimate the 
parameters, a statistically sufficient amount of 
sample data is needed.  Five hundred sample data are 
generated which is about twice the number of the 
explanatory variables, and it is a sufficient number of 
samples for estimating regression functions.  The 
sample data are generated by using a software 
program which sets up a cube the size of 64 x 64 x 64 
filled with voxels. Also, a random number of spheres 
with two different radius sizes is placed inside the 
cube.  The program controls the positions of the 
spheres so that each sphere does not intersect with 
other spheres and the cube boundaries.  Some noises 
are added to the cubes to emulate typical sample data.  
An example of sample data is shown in Figure 4.  The 
cube is filled with 0 intensity values, and it contains 
large and small spheres with 1.0 intensity values 
where the 1.0 is the maximum value for the intensity.   
 



 
Figure 4: Sample data (Four large spheres, 4 small 
spheres, and 10 noise points) 
 
 
A sphere generation program is executed for the 10 
sets of experiments.  For each experiment, the radius 
of large spheres is decreased, while the radius of 
small spheres is kept the same size.  For each 
experiment, samples of 500 voxel cubes (64x64x64) 
are generated which contain a random number of 
spheres.  Multiple regression analysis is conducted to 
determine the functions to predict the number of 
large spheres and small spheres contained in the 
voxel cubes.  When the regression functions are 
found, R-squared and adjust R-squared values are 
examined.  Both R-squared and adjusted R-squared 
values can be used to determine if the regression 
functions are statistically significant.  Table 2 shows 
(1) R-squared values and (2) adjusted R-squared 
values for each experiment. When the difference 
between large sphere radiuses and small spheres 
radiuses are significant, the regression functions are 
able to predict the number of spheres correctly.  This 
is because the regression functions are customized 
for recognizing large spheres based on HLAC 
features, and it is difficult to distinguish large spheres 
and small spheres if their radius sizes are similar. 

 
 
Table 3 shows the actual number of spheres and the 
predicted number of spheres by the system.  Since the 
regression functions predict the number of spheres 
from HLAC features, the functions return the 
numbers with floating-point numbers.  Floating-point 
numbers are rounded to integer numbers to determine 
if the predicted number of spheres matches the actual 
number of spheres.  As shown in the table, the system 
was able to predict the correct number of spheres 
fairly well.  One important point is that the system 
does not have any recognition programs specialized 
for sphere shapes, but the system recognizes sphere 
shapes by learning from sample data.  Also, the 

system counts the number of spheres without 
extracting portions of spheres from voxel cubes.  The 
shift invariant features based on HLAC make 
possible this simple and fast recognition of sphere 
patterns. 
 

 RadiusL RadiusS  2R  2.RAdj
Exp. 1 10 5 0.937 0.937 
Exp. 2 9 5 0.946 0.894 
Exp. 3 8 5 0.831 0.829 
Exp. 4 7 5 0.748 0.746 
Exp. 5 6 5 0.650 0.647 
Exp. 6 5 5 0.559 0.555 
Exp. 7 4 5 0.506 0.502 
Exp. 8 3 5 0.555 0.552 
Exp. 9 2 5 0.656 0.653 
Exp.10 1 5 0.753 0.751 

 
Table 2: R-squared values and adjusted R-squared 
values for regression functions 

 
 
 
 # of spheres Predicted 

# of spheres 

 

 
4 

 
4  (4.233) 

 

 
4 

 
4  (3.998) 

 

 
3 

 
3  (3.238) 

 

 
4 

 
4  (4.401) 

 
Table 3: The number of spheres and the predicted 
number of spheres by the system 
 



 
Figure 5 shows the four 3D HLAC masks patterns 
which were influential among the 251 3D HLAC 
masks patterns in terms of classification powers.  
These four masks have characteristics to describe the 
curvatures, moments, and directions features of 
spheres. Therefore, these four masks are weighted 
with high slope values for the regression functions.  

 

 
Figure 5: Four 3D HLAC masks which were 
influential to recognize the spheres shapes in the 
experiment. 
 

 
3.3 Pattern Classifications 
In this experiment, two different patterns, spheres 
and cylinders, are tested as shown in Figure 6. The 
conditions for the experiment are similar to the 
experiment described in a previous subsection. Five 
hundred voxel cubes are generated as sample data 
where a random number of spheres and cylinders are 
placed into the cube.  The radius of spheres and the 
radius of cylinders are the same size, and the heights 
of the cylinders and the diameter of the spheres are 
set to the same size as shown in Figure 6.  After the 
system learns the pattern using multiple regression 
analysis, 50 new voxel cubes are generated and tested 
to determine whether the system can correctly count 
the number of spheres and cylinders.  Table 4 shows 
the pattern recognition rates for the spheres and 
cylinders with three different resolutions.  The best 
resolution for the system depends on the size and type 
of target patterns.  The 64 x 64 x 64 resolution 
returned the best result for sphere and cylinder 
recognition experiments.  The system recognized two 
different patterns successfully with significant 
recognition rates as shown in Table 4. 
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Figure 6: Pattern recognition experiments for spheres 
and cylinder  
 
 

 364  332  316  
Spheres 95.0 % 95.0 % 90.0 % 
Cylinders 98.0 % 97.0 % 89.0 % 

 
Table 4: Pattern recognition rates for the sphere and 
cylinders 
 
 
4   Conclusions and Future Work 
Recent advancement in computer graphics hardware 
allows users to visualize various scientific 3D voxel 
data used in the field of education, business and 
entertainment.  Although wide ranges of 2D image 
pattern recognition techniques have been introduced, 
3D pattern recognition technique research has not 
been studied extensively.  This paper describes a 
pattern recognition technique based on 3D HLAC 
(Higher order Local Autocorrelation) masks for 
voxel data.  We have implemented an experimental 
recognition system and a preliminary pattern 
recognition test shows that the system successfully 
could classify 3D voxel patterns.  The system makes 
possible the detection of particular shapes or patterns 
in voxel data.  Several interesting points can be 
concluded which consist of the following: (1) the 
recognition system can learn voxel patterns from 
sample voxel data by using 3D HLAC masks and 
statistical analysis. (2) The system does not require 
any extra program for classifying patterns even if the 
target patterns to be recognized are changed.  This 
shows that the system can be an adaptive pattern 
recognizer for various patterns.  (3) The system can 
detect patterns regardless of the pattern positions 
since the HLAC features are shift-invariant. (4) The 
computation time for the recognition is fixed 
regardless of whether voxel data patterns are simple 
or complex, because HLAC features are computed 
based on mask scanning of target patterns.  
 



In our experiment, simple patterns including spheres 
and cylinders are tested.  More complex patterns 
including 3D solid textures and voxelized 3D 
polygonal modes will be tested as a future work.  
Since the recognition rates of patterns vary 
depending on the resolution sizes of voxels, the 
system will be extended to flexibly select the best 
resolution to recognize voxel patterns.  
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