
Compact Test Generation for Non-Robustly Testable PDFs
Maria K. Michael
ECE Department

University of Cyprus

Spyros Tragoudas
ECE Department

University Southern Illinois

ABSTRACT
We introduce a new Automatic Test Pattern Generation
(ATPG) methodology for compact generation of test sets,
to detect non-robustly testable path delay faults in combi-
national and fully enhanced scanned circuits. The proposed
framework is non-enumerative with respect to the faults ex-
amined, and relies on the appropriate formulation and gen-
eration of functions that are used to derive the desired test
set. Each generated function targets many faults and, im-
plicitly, maintains a very large set of tests for the targeted
faults. Such function-based approaches allow for further
compaction using either static or dynamic test set com-
paction methods. One such dynamic test set compaction
heuristic is also presented here. We evaluate the perfor-
mance of the proposed methodology in terms of test effi-
ciency. The reported results on a variety of benchmarks in-
dicate that the method is very promising.

KEY WORDS
ATPG, delay test, delay faults, path delay faults, non-robust
test, test compaction, test efficiency.

1 Introduction

Under the Path Delay Fault (PDF) model ([5], [16]), every
fault is represented as a sequence of falling or rising transi-
tions along a physical path, from a primary input to a pri-
mary output in the circuit. A PDF test consists of a pair of
patterns< v1, v2 >, wherev1 is used to initialize and sta-
bilize the targeted path to known values andv2 is used to
excite transitions on the path. Since the number of faults is,
in the worst-case, exponential to the number of lines in the
circuit, compact and non-fault enumerative ATPG is neces-
sary for the PDF model.

A compact test set is also desirable for other reasons,
including lower power dissipation and smaller test applica-
tion time. We focus here on the problem of generating a
small test set that provides high fault coverage, by explic-
itly avoiding fault enumeration. In this work, we measure
the quality of the ATPG as the number ofsinglepath delay
faults detected per generated test. We refer to this measure
as thetest efficiency.

There are two phases during the traditional test gener-
ation framework for path delay faults. The first one is the
path sensitization phase which statically sensitizes a single
PDF or a set of PDFs. Subsequently, during the line justifi-

cation phase, the sensitized path(s) are tested provided that
the remaining lines in the circuit are justified to desirable
stable values or appropriate transitions.

A fault-by-fault (path-by-path) ATPG process is fol-
lowed in traditional enumerative methods (see [1], [5], [9],
[10], and [16], among others). To overcome the problem of
examining all path delay faults in a circuit, many enumer-
ative methods have proposed to only consider the longest
topological paths (critical paths). Unfortunately, such re-
strictions remain enumerative because the examined paths in
many circuits remain prohibitively many. Other approaches
suggest not examining paths but instead segments. Such
an approach was proposed in [7]. In the strict sense of
the definition, this approach cannot be classified as path-
enumerative since it does not proceed explicitly on a fault-
by-fault basis. However, it does not guarantee a polynomial
bound on the number of examined segments and, thus, the
approach is practically enumerative.

To tackle the problem of targeting a huge number of
faults on a path-by-path basis, [8] and [13] proposed non-
enumerative ATPG approaches. Both approaches are us-
ing graph theoretic arguments and are building on top of
structural-based fault propagation methods along selected
paths in the circuit. In particular, they use graph theoretic ar-
guments to simultaneously assign transitions to many paths
during the path sensitization phase in order to identify sub-
circuits whose paths can be mutually sensitized. Unfortu-
nately, the fault coverage from both of these methodologies
is very low. Their test efficiency is also quite low. More
importantly, none of these methods addresses scalability. In
our context, we refer to scalability as the ability of the ap-
proach to maintain the test efficiency as the number of gen-
erated tests increases.

We use function-based techniques to generate the de-
sired tests. This is a major difference between the proposed
method and the non-enumerative approaches in [8] and [13]
which use structural-based methods. Function-based ATPG
methods for PDFs have also been proposed in [1], [4], and
[6], but all these approaches are fault enumerative. The pro-
posed method derives and manipulates boolean functions,
we call themtest functions, that guarantee the detection of
several path delay faults at a time. We maintain and manipu-
late test functions using Binary Decision Diagrams (BDDs)
[3].

Other procedures that explicitly target the generation
of compact test sets for PDFs, but in an enumerative manner,

were proposed in [2], [14], and [15]. The test compaction
procedure of [2], as well as the most recent one included in
[14], is using the concept of primary and secondary target
faults. The level of compaction in both of these techniques
depends greatly on the selection order of the primary and
secondary faults. A slightly different concept is used in [15].
A maximal set of potentially compatible faults is derived by
identifying a set of faults that can be tested together with
some fault that has been arbitrarily selected. Even though
they may not target all faults explicitly, the methods in [2],
[14], and [15] are still enumerative in nature since they are
based on the principle of first targeting a single fault and
then attempting to find one or more faults that can be tested
mutually with the original fault.

We propose a new non-enumerative ATPG methodol-
ogy for non-robustly testable PDFs. A main characteristic
of non-robust tests is that they can detect excessive delays
on paths due to the propagation of hazards. A pair of vec-
tors< v1, v2 > is a non-robust test for one or more PDFs if
v2 statically sensitizes the targeted PDF(s) [10], [16]. There
are no requirements onv1 other than assigning the appro-
priate values on the primary inputs that are on the targeted
PDF(s). Thus, ATPG for non-robust tests is centered in gen-
eratingv2. We note that the proposed approach could be
used to also generate other types of tests, such as robust and
functional (see [5], [9], and [10] for details on these or simi-
lar definitions), but it becomes considerably more complex.
Generation of these types of tests will be the focus of future
work.

The approach consists of a linear number (to the
number of primary inputs) of topological circuit traversals.
Specifically, there are two traversals per primary input, one
per possible type of transition on the input. A list of a con-
stant number of test functions is kept per circuit line during
each circuit traversal. Each function is guaranteed to detect
many segments (subpaths) sensitized from a specified pri-
mary input up to the line. The number of functions kept at a
line is explicitly bounded to a small constant so that the non-
enumerative property of the method is guaranteed. When a
circuit traversal is completed, tests that detect several path
delay faults originating from some primary input are gener-
ated. The tool is also designed such that the test efficiency is
maintained at satisfactory levels as the number of generated
tests increases by introducing a new compaction routine ap-
plied per generated list of test functions.

The rest of the paper is organized as follows. Section
2 presents basic terminology and describes the proposed
ATPG method. Section 3 presents the new dynamic com-
paction routine that is incorporated in the ATPG framework,
and Section 4 discusses how to condition the ATPG tool to
run iteratively for additional fault coverage. Experimental
results are presented in Section 5. Section 6 concludes.

2 The ATPG method

A circuit C is represented as a directed graph, denoted byG.
The subgraph ofG induced by primary inputI is denoted by

a

c

d

e

b

2

1O

O

j

h

g

i

f k

Figure 1. Circuit C17 (C)

2

1O

O

j

h

i

f k
d

1

2

3

4

Figure 2. Subcircuit corresponding toGd of C

GI , which also contains all the lines ofC that are indepen-
dent ofI but immediately drive some node inGI . We call
these lines thesupporting points of GI . Figure 1 shows
circuit C17 from the collection of the ISCAS’85 benchmark
circuits, and Figure 2 shows the corresponding subcircuit
represented by the subgraphGd. Observe thatGd also con-
tains lines{1, 2, 3, 4} of C, which are the supporting points
of Gd.

An input signal is either anon-input (on the targeted
PDF) which assumes a certain transition to be propagated
or an off-input (off the targeted PDF) which assumes a
value to be justified. The controlling and non-controlling
values of a gateg are denoted bycv(g) ∈ {0, 1} and
ncv(g) ∈ {0, 1}, respectively. A transition is designated
by tr ∈ {r, f}, wherer = rising and f = falling.
The positive (negative) cofactor of a boolean function
f with respect to variablex is denoted byfx (fx), where
fx = f|x=1 (fx = f|x=0).

The proposed ATPG method consists of a linear num-
ber of topological circuit traversals. A primary inputI with
a transition typetr ∈ {r, f} is considered per traversal.
When considering some primary inputI we first derive the
correspondingGI subcircuit. For each line inGI , a list of
functions is generated. Each function corresponds to the
constraints that the non-robust test must satisfy in order for
one or more PDFs to be detected from inputI to the spe-
cific line. We refer to these functions astest functions. The
test generation process forGI terminates when a list of test
functions is generated at each primary output ofGI . The
test functions generated at a primary outputO guarantee the
detection of a number of PDFs from inputI (for a specified
transition onI) to outputO.

Let Fi() denote a test function for some linei, tri the
type of transition on linei, andpi the number of detected
PDFs from a primary inputI to line i. We maintain a vector
(Fi(), tri, pi) to store this information. The transition on the
targeted primary inputI is denoted astrI : t1 → t2, where
t1, t2 ∈ {0, 1}. The functionality of a linei, expressed with
respect to the primary input variables, is denoted byfi().

The non-robust test function formulation at some gate
g with output linei is shown below:

Fi =
∏

j∈ON(g)

Fj() ·
∏

j∈OFF (g)

(
f

ncv(g)
j ()

)
|I=t2

·
∏

j∈SP (g)

f
ncv(g)
j ()

(1)

ON(g), OFF (g), andSP (g) denote the set on on-input,
off-input, and supporting lines of gateg, respectively. Func-
tions f

ncv(g)
j () andf

cv(g)
j () are used to denote the normal

and complemented forms of functionfj() depending (i) on
the type of gate that linej is driving and (ii) whether linej is
to be set to a controlling or non-controlling value. Precisely:

f
ncv(g)
j () =

{
fj() , g ∈ {AND, NAND}

fj() , g ∈ {OR, NOR}

f
cv(g)
j () =

{
fj() , g ∈ {AND, NAND}

fj() , g ∈ {OR, NOR}

The two pattern test is extracted from the test function
Fi(). The input values for the second time frame (v2) is
fixed according to a selected minterm from the test function
Fi(). The values for all inputs (other than the targeted in-
put I whose values are determined bytrI) for the first time
frame (v1) are actually don’t cares (either 0 or 1). Since
our goal is to generate compact test sets with as high fault
coverage as possible, we extract a largest-size cube from the
test function. This allows for a large number of inputs to
be assigned transitions (these are inputs that are not fixed
by the extracted cube) that may end up detecting additional
PDFs. What is important to observe here is that a test ex-
tracted from a test functionFi() will always cover at least
as many aspi PDFs.

Maintaining a list of test functions at each line is very
critical to the performance of the proposed approach. Each
function at a line detects a number of PDFs from a primary
input to the line. Thus, a function at this point contains a col-
lection ofpotentialtests that may become invalid in future
steps when additional constraints must be satisfied. For this
reason, it is extremely important to generate several such
functions. The list of functions for some linei can be formed
by considering all the possible ways that the functions in the
list of each of the immediate predecessors ofi can be com-
bined. A combination can be created by selecting a subset
of the immediate predecessors ofi to be the on-inputs. The
remaining inputs are off-inputs. The supporting points (if
any) are always viewed as off-inputs since no explicit sensi-
tization is required through them.

Since the number of test functions per line can be pro-
hibitive, the number of functions kept at a line is explic-
itly bounded to a small constant so that the non-enumerative
property of the method is guaranteed. Thus, an intelligent
decision must be made on how to select appropriate func-
tions. We set bounds on the number ofconsideredand the
number ofselectedfunctions. The selection is made from
the list of considered functions based on the number of PDFs

detected per satisfiable function. Thus, those functions that
sensitize the least number of paths are not selected.

3 Collapsing of Test Function Lists

The goal here is to further decrease the size of the gener-
ated test set by collapsing many lists of test functions into
one, such that the total number of functions decreases while
the total number of detected PDFs remains the same. Un-
der the proposed framework, collapsing (also referred to as
compaction) can be very effective since functions that im-
plicitly represent many tests for a set of targeted PDFs are
maintained. This gives us greater flexibility for compaction
compared to traditional structural-based ATPG methods that
generate one test per fault(s). In many structural-based
ATPGs the generated test contains don’t care values (thus,
referred to as an incompletely specified test), which in
turn can be expanded to represent many tests for the same
fault(s). This is still limiting when compared to function-
based ATPGs that can generate many incompletely specified
tests per fault(s).

The motivation behind the compaction technique dis-
cussed in this Section is to further take advantage of the
function-based ATPG framework. It is important to note
here that compaction is inherent in the proposed method
since tests are generated in a non fault enumerative man-
ner. However, since the ATPG method presented in Section
2 produces a list of test functions per primary output (O) on
a primary input (I) by primary input basis, a generated test
will primarily target paths in anI/O subgraph. Intuitively,
we can achieve a higher degree of compaction if we try to
collapse the generated lists of test functions such that paths
that span between differentOs andIs can be tested together
with a single test.

The flow of the proposed overall compaction scheme
is illustrated in Figure 3. It follows a systematic levelized
scenario based on dynamic programming. Assume a circuit
with n primary inputs. At Level 1 we have the test function
lists that are generated for everyO, on anI-by-I basis, using
the basic approach presented in Section 2. A generated test,
up to this point, will detect PDFs within the specificI/O
cone. At the next level (Level 2), theO lists for eachI
are compacted into a single list (we elaborate on how this
compaction is actually performed at the end of this Section).
These new lists are indicated by Ocompact for eachIi, i =
1 . . . n, in Figure 3. This step allows the generation of tests
that detect PDFs between differentOs (but still a singleI).

An additional compaction step is performed for ev-
ery I (other thanI1) to apply compaction between two
O compact lists. For example, Level 3 shows the resulting
list after the Ocompact lists forI1 andI2 have been com-
pacted. In Level 4, the list from Level 3 and the Ocompact
list of I3 are considered. This scenario continues until the
list of input In is compacted with the list that was gener-
ated by compacting the lists for all previousn − 1 inputs
(Leveln), to produce the final compacted list at Leveln+1.
Compaction at Levels3 . . . n + 1 is invoked once per level

3

I2

2

3

In−1

n−1I GIn−1

In−1

Level 1

...

. . .

I

������
������
���

������
������
���

������
������

������
������

���
���
���

���
���
���

I2 G
I

I3 G
I

I1 G
I

.

O_compact
for

O_compact
for

I_compact
up to

I_compact
O_compact

for

O_compact
for

I_compact
2Iup to

3Iup to

up to In

for

.

.

1I

IIn G
I

n

n

I_compact

O lists
Level 2 Level 3 Level 4 n+1LevelnLevel

1

O_compact

������
������
���

������
������
���

	�		�	
	�		�	
	�	

�

�

�

�

�

������
������

������
������

��
��

������
������

������
������

������
������

������
������

������
������

������
������

������
������

...

...

...
...

...

...

������
������
���

������
������
���

������
������

������
������

������
������

������
������

������
������

������
������

���
���
���
���

���
���
���
���

��

 � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!

"�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�"

#�#
#�#
#�#

$�$
$�$
$�$

%�%%�%
%�%%�%

&�&&�&
&�&&�&

'�'
'�'
'�'

(�(
(�(
(�(

)�)
)�)
)�)

�
�
�

+�+�++�+�++�+�++�+�++�+�++�+�++�+�+

,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,

-�-�-�--�-�-�--�-�-�--�-�-�--�-�-�--�-�-�--�-�-�--�-�-�--�-�-�-

.�.�..�.�..�.�..�.�..�.�..�.�..�.�..�.�.

/�//�/
/�//�/
/�/

0�00�0
0�00�0
0�0

Figure 3. Flow of list compaction approach

whereas at Level 2 is invoked exactlyn times (for eachIi).
Thus, the compaction algorithm is performed2n− 1 times.

Observe that, as in the case of many compaction ap-
proaches [2, 14, 15], the compaction results are sensitive
to the ordering on which the primary inputs are processed.
Thus, a different order than the one shown in Figure 3 can
lead to a final list with different number of test functions.
However, the fault coverage remains the same among dif-
ferent input orderings.

The same list compaction algorithm is used for all lev-
els. The input is two or more lists of test functions. LetT
denote the total number of test functions (in all lists), andP
denoted the total number of PDFs detected by theT func-
tions. The desired output of the algorithm is a single com-
pacted list that contains at mostT test functions which still
detect at leastP PDFs. Two test functions are said to be
compatibleif their product (AND operation) is satisfiable.
This implies that the PDFs detected by the two test func-
tions can all be detected by a single test. The compaction
algorithm follows a greedy scenario based on which it gen-
erates compatible functions iteratively. We start by assign-
ing a unique identifier to each list. During the first iteration,
functions from different lists are checked for compatibility
pairwise (two at a time). We insist on selecting functions
from different lists because the paths detected by each func-
tion are guaranteed to be different. Compatible functions are
removed from their original lists, and their product is stored
in a new list along with the original list identifiers.Non-
compactedfunctions are those that are not compatible with
any other function, and can be determined after all possible
pairwise combinations are considered. Such functions are
also stored in the new list and are marked as non-compacted
so that future iterations will not consider them further. At
the next iteration, the new list (generated during the previ-

ous iteration) is compacted in a similar manner. Again, only
functions that were originally in different lists are allowed
to be considered as a pair. This can be achieved by checking
the saved list identifiers per function. The iterations con-
tinue until the size of the new list is 1 (all functions can be
compacted into a single function) or is equal to the size of
the list in the previous iteration. This way, it is guaranteed
that no more thanT − 1 iterations will occur.

There is one extra operation that is necessary when
checking for compatible functions that detect PDFs origi-
nating from different inputs (Levels3 . . . n + 1). Assume
two test functionsFI() andFJ (), that detect PDFs from in-
putsI andJ , respectively. FunctionsFI() andFJ () have
both been generated based on transitionstrI : trI1 → trI2

and trJ : trJ1 → trJ2 independently. In order to ensure
that both transitions are taken into consideration when try-
ing to compact the two functions into a single one, each of
the test functions must be cofactored with respect to the de-
sired transition on the other function. Thus,FI |J=trJ2() and
FJ |I=trI2() are computed and the resulting collapsed func-
tion is the product of these two.

4 Fault Coverage Improvement using an Iter-
ative method

When it is desired to increase the fault coverage (by generat-
ing additional tests), the approach described up to Section 3
can be repeated with slight modifications. Let all the activi-
ties described up to Section 3 constitute a single pass of the
proposed methodology. The challenge here is to be able to
condition the ATPG tool so that when a new pass is invoked
it will try to target PDFs that have not been detected during
the previous passes of the tool. This is a particularly dif-
ficult problem when PDF enumeration is not allowed. An
iterative improvement scenario can be followed where the
ATPG method is performed on several passes to generate
tests that target new PDFs, while maintaining satisfactory
test efficiency.

To assist to the above, some additional information is
kept for every generated test function. Specifically, the iden-
tifiers of the on-input lines that are considered when forming
the test function are kept. (Recall the discussion at the end
of Section 2 on how these combinations are formed). This
information is updated over all passes. Since we specifi-
cally limit the number of functions kept at each node and,
in practice, the number of passes is kept to a small constant,
this information is not space prohibitive.

These on-input line identifiers are checked when at-
tempting to generate a new on-input combination for a test
function. A higher priority is given to those combinations
that were not considered in previous passes. We observe
that, since we only maintain theimmediateon-input line in-
formation, a combination that was considered during a pre-
vious pass does not necessarily target the exact same PDFs
as the one considered in the current pass. Therefore, we do
not drop such combinations, but we assign a lower priority

to them.

5 Experimental Results

The approach was implemented in C language and run on a
900MHz SunBlade 1000 workstation. The package of [17]
was used to generate the BDDs as well as the optimal ini-
tial ordering of variables that is also provided along with
[17]. No variable reordering was necessary (even though it
could have been invoked to provide with space savings, in
the expense of additional CPU time). Fault coverages were
obtained using the recent exact non-enumerative method in
[12].

In our implementation, we restricted the on-input line
combinations considered when generating a list of test func-
tions per line to single and pairwise combinations. Up to
500 test functions were kept per function list. Since we are
specifically interested in the generation of compact test sets,
we primarily evaluate the proposed ATPG tool in terms of
test efficiency(TE) per test, which is the number of PDFs
detected by the test. The average test efficiency (TEave) of
a test set is calculated by dividing the total number of PDFs
detected by the total number of tests generated.

It is well known that certain functions cannot be rep-
resented efficiently by BDDs. For example, functions that
express operations such as arithmetic multiplication have
BDDs with exponential size regardless of the variable order
[3]. We were able to create the BDDs for all the required
functions for all the circuits besides c6288. Only the circuit
induced by the first 12 primary outputs of c6288 can be rep-
resented efficiently by BDDs. In order to be able to target
faults in the remaining part of the circuit (this part is the one
induced by the remaining 20 primary outputs of c6288), we
generate BDDs for simplified functions at the circuit lines
instead of the original line functions. Simplified line func-
tions are those obtained after preassigning a small cardinal-
ity subsetI ′ of the input variable setI to either 0 or 1. The
variables in subsetI ′ are selected randomly. The only re-
striction we apply is that the cardinality ofI ′ is equal or less
than a small constantk. OnceI ′ is selected, we assign the
variables inI ′ to some combination of values and try to gen-
erate the BDDs that correspond to the simplified functions
at the circuit lines. If the BDDs are constructed success-
fully, we proceed with the ATPG process. Observe that the
ATPG process is performed on the original structure of the
circuit, with the difference that the line functionalities are
now modified (simplified) according to the selected values
on the variables inI ′. Clearly, these simplified line func-
tions do not contain any minterms that were not contained
in the original line functions (after taking into consideration
the fixed values on the variables inI ′). To be complete, the
ATPG process must be repeated for all possible combina-
tions of values for the variables inI ′, that is2k times. Up
to this point, only PDFs that originate at any primary input
I 6∈ I ′ are targeted. A second phase is required to target the
remaining of the faults. In this second phase, a small cardi-
nality subsetI ′′ ∈ I \ I ′ is selected and the technique de-

scribed for the first phase is applied again. Approximately
24% of the inputs of c6288 had to be preassigned, during
each of the two phases, in order to construct the BDDs for
the simplified line functions.

We present experimental results for the ISCAS’85 and
ISCAS’89 full-scanned circuits. We note here that direct
comparison with existing methods is not possible since all
existing compact ATPG methods do not report results for
non-robust tests. To our knowledge, we report the best, by
far, TE ave values for non-robust tests.

Table 1 lists the obtained results for five passes. For
each pass, we list the number of tests generated (tests), the
number of PDFs detected (PDFs), and the corresponding av-
erage test efficiency per circuit (TEave). Entries with ”–”
in Table 1 indicate that a 100% fault coverage was achieved
in a previous pass and, therefore, no more passes were nec-
essary. All non-robustly testable PDFs in circuits s298 and
s386 were detected after the first pass. For the ISCAS’89,
only circuits s713, s1196, and s1423 required a third pass,
and the fourth and fifth passes were activated only for circuit
s1423. Observe that the TEave per circuit is maintained at
a satisfactory level (drops a little) as the number of passes
increases.

In rows total89 and total85 (last two rows of Table
1) we show the total number of tests generated, the total
number of faults detected, and the average number of faults
per test for all the ISCAS’89 and ISCAS’85 circuits, re-
spectively. To fairly compare the total TEave between the
first and second pass for the ISCAS’89, we do not include
circuits s298 and s386 in the total calculations for the first
pass. (No totals are provided for passes 3, 4, and 5 for the
ISCAS’89 since they were only required for very few cir-
cuit s1423.) The total TEave for the ISCAS’89 is almost
the same for the first and second passes (it drops by 0.05%
in the second pass). For the ISCAS’85, observe that even
though the TEave per circuit always drops in the next pass
(as it was expected), the total TEave appears to increase
at the second pass. This occurs because the number of de-
tected faults for c6288 is considerably larger than the sum
of detected faults for all the remaining circuits, and, also,
because the TEave decrease for c6288 from the first pass to
the second is much smaller (1.69%) than in any other circuit.

Column 17 of Table 1 reports indicative results for the
average CPU time per pass (in seconds), where ATPG time
is the time required for the derivation of the test functions at
the circuit lines, and Comp. time is the time required for the
dynamic compaction method discussed in Section 3. The
total execution time per pass (on the average) is the sum of
ATPG and Comp. time.

6 Conclusions

A new function-based ATPG approach for non-robust tests
that explicitly avoids the enumeration of paths, and can gen-
erate small tests sets that have high fault coverage, is pre-
sented. The proposed framework is especially attractive
for dynamic test-set compaction, since a large number of

Table 1.Results for the ISCAS’85 and ISCAS’89 benchmark circuits.

1st pass 2nd pass 3rd pass 4th pass 5th pass CPU (secs)
Circuit tests PDFs TE ave tests PDFs TE ave tests PDFs TE ave tests PDFs TE ave tests PDFs TE ave ATPG / Comp.

s298 64 364 5.68 - - - - - - - - - - - - 39 / 5
s344 94 627 6.33 102 632 6.19 - - - - - - - - - 56 / 7
s349 90 619 6.87 97 634 6.53 - - - - - - - - - 55 / 7
s382 113 717 6.35 118 734 6.22 - - - - - - - - - 55 / 8
s386 101 414 4.10 - - - - - - - - - - - - 31 / 8
s400 102 729 7.15 107 755 7.05 - - - - - - - - - 58 / 8
s420 275 840 3.05 310 932 3.01 - - - - - - - - - 92 / 8
s444 89 574 7.17 83 586 7.06 - - - - - - - - - 56 / 9
s526 111 719 6.47 116 720 6.21 - - - - - - - - - 56 / 8
s641 161 2089 12.97 181 2270 12.54 - - - - - - - - - 133 / 19
s713 224 4577 20.43 234 4706 20.11 259 4922 19.00 - - - - - - 296 / 16
s820 199 961 4.83 209 984 4.71 - - - - - - - - - 55 / 12
s832 201 965 4.80 210 996 4.74 - - - - - - - - - 55 / 12
s953 332 2212 6.66 361 2312 6.40 - - - - - - - - - 55 / 15
s1196 379 3177 8.38 435 3534 8.12 477 3759 7.88 - - - - - - 77 / 14
s1238 371 3368 9.08 416 3684 8.85 - - - - - - - - - 78 / 14
s1423 1789 29824 16.67 2211 35857 16.21 2396 37148 15.50 2524 38111 15.01 2637 38501 14.60 967 / 106

c880 579 9545 16.48 820 10744 13.90 1134 11592 10.22 1343 13190 9.82 1573 14539 9.24 719 / 88
c1355 4339 401158 92.45 5712 484985 84.91 6811 535021 78.55 7999 575891 70.00 9859 611605 62.04 6164 / 204
c1908 2283 86848 38.04 3704 115814 31.27 4946 133583 27.01 6127 148421 24.22 8635 160470 18.58 5214 / 853
c2670 644 62426 96.93 1047 73795 70.48 1497 79465 53.08 2179 82544 37.88 2822 85845 30.42 1302 / 999
c3540 1317 389064 295.42 2024 478681 236.5 2574 529824 205.84 3102 562692 181.40 3589 589390 164.22 5074 / 2105
c5315 841 164607 195.73 1397 206664 147.93 3163 226184 71.51 3780 239728 63.42 4247 245401 57.78 1724 / 1011

c6288 1001 11.2x106 11189 1991 21.9x106 10999 2713 28.0x106 10321 3512 34.6x106 9852 5101 45.9x106 8998 2020 / 491
c7552 2950 215649 73.10 4181 238933 57.15 5223 249422 57.15 6412 257123 40.10 7711 265888 34.48 1959 / 1699

total 89 4530 51998 11.48 5190 59336 11.43 - - - - - - - - -
total 85 13954 12529297 897.9 20876 23509616 1126.15 28061 29765091 1060.73 34454 36479589 1058.79 43537 47873138 1099.59

tests for sets of PDFs are implicitly maintained in the form
of Boolean functions. The test efficiencies obtained from
the experimental results for a variety of benchmark circuits
demonstrate that the proposed framework is very promising.

References

[1] D. Bhattacharya, P. Agrawal and V. D. Agrawal, “Test
Pattern Generation for Path Delay Faults using Binary
Decision Diagrams”,IEEE Trans. on Computers, Vol.
44, No. 3, pp. 434-447, March 1995.

[2] S. Bose, P. Agrawal, and V. D. Agrawal, “Generation
of compact delay tests by multiple path activation”,
Proc. ITC, pp. 714-723, 1993.

[3] R. Bryant, “Graph-based algorithms for boolean func-
tion manipulation”.IEEE Trans. on Computers, Vol.
C-35, No. 8, pp. 677-691, August 1986.

[4] C. A. Cheng and S. K. Gupta, “Test generation for path
delay faults based on satisfiability”,Proc. DAC, 1996.

[5] K. T. Cheng and H. C. Chen, “Classification and Iden-
tification of Nonrobust Untestable Path Delay Faults”,
IEEE Trans. on CAD, Vol. 15, pp. 845-853, August
1996.

[6] R. Drechsler, “BiTes: A BDD based test pattern gener-
ator for strong robust path delay faults”,Proc. EDTC
pp. 322-327, 1994.

[7] K. Fuchs, M. Pabst, and T. Roessel, “RESIST: A
Recursive Test Pattern Generation Algorithm”,IEEE
Trans. on CAD, Vol. 13, No. 12, pp. 1550-1561, De-
cember 1994.

[8] D. Karayiannis and S. Tragoudas, “A Fast Non-
enumerative Automatic Test Pattern Generator for Path
Delay Faults”,IEEE Trans. on CAD, Vol. 18, No. 7,
pp. 1050-1057, July 1999.

[9] A. Krstic, K. T. Cheng,Delay Fault Testing for VLSI
Circuits, Kluwer Academic Publishers, Boston, MA,
1998.

[10] C. J. Lin and S. M. Reddy, “On delay fault testing in
logic circuits”, IEEE Trans. on CAD, Vol. CAD-6, No.
5, pp. 694-703, September 1987.

[11] M. Michael and S. Tragoudas, “ATPG for Path Delay
Faults without Path Enumeration”,Proc. ISQED, pp.
384-389, March 2001.

[12] S. Padmanaban, M. Michael, and S. Tragoudas, “Exact
Path Delay Fault Coverage with Fundamental Zero-
Suppressed BDD Operations”,IEEE Trans. on CAD,
March 2003.

[13] I. Pomeranz, S. M. Reddy and P. Uppaluri, “NEST:
A Non-enumerative Test Generation Method for Path
Delay Faults in Combinational Circuits”,IEEE Trans.
on CAD, Vol. 14, No. 12, pp. 1505-1515, December
1995.

[14] I. Pomeranz, and S. M. Reddy, “Test Enrichment
for Path Delay Faults Using Multiple Sets of Target
Faults”, IEEE Trans. on CAD, Vol. 22, No. 1, pp. 82-
89, January 2003.

[15] J. Saxena and D.K. Pradhan, “A method to derive com-
pact test sets for path delay faults in combinational cir-
cuits”, Proc. ITC, pp. 724-733, 1993.

[16] G. L. Smith, “Model for Delay Faults Based upon
Paths”,Proc. ITC, pp. 342-349, November 1985.

[17] F. Somenzi, “CUDD: CU Decision Diagram Package”,
ECE Dept., The University of Colorado at Boulder, re-
lease 2.3.0, 1999.

[18] P. Tafertshofer, A. Ganz, and K. J. Antreich,
“IGRAINE–An Implication GRaph-bAsed engINE
for Fast Implication, Justification, and Propagation”,
IEEE Trans. on CAD, Vol. 19, No. 8, pp. 907-927, Au-
gust 2000.

