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Abstract: - In this paper, we will propose a cooperative control approach that is based on the hybrid grey-neural 
network with sliding mode control  (HGNS) methodology. The main purpose is to eliminate the chattering 
phenomenon such that the two-link robotic manipulator has a superior tracking response. Moreover, the system 
performance obtained via the method of the HGNS can be improved. In the present approach, two parallel 
Neural Networks are utilized to realize a Neuro-Sliding Mode Control. The equivalent control and the corrective 
control in terms of sliding mode control are the outputs of the Neural Networks. The weights adaptations of 
Neural Network are determined based on the sliding mode control equations. The proposed method is to 
investigate tracking control of a two-link robotic manipulator. The results demonstrate that not only the system 
performances are considerably improved, but also the system exhibits desired stability and robustness. 
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1   Introduction 
Generally, physical systems have certain non-linear 
and time-varying behaviours and various 
uncertainties. It is difficult to establish an appropriate 
model for the controller design. The Sliding Mode 
Control (SMC) theory has been developed and has 
been applied to closed-loop control systems for the 
last three decades [1-3] which is commonly known as 
the sliding mode control (SMC), is a nonlinear 
control strategy that is well known for its robustness 
characteristics. The essential characteristic of SMC is 
that the feedback signal is discontinuous, switching 
on one or more manifolds in state space. When the 
state crosses each discontinuity surface, the structure 
of the feedback system is altered. All motion in the 
neighborhood of the manifold is directed toward the 
manifold. Note that a sliding motion occurs in which 
the system state repeatedly crosses the switching 
surface. When the system states stay in the sliding 
surface, the equivalent control is capable of making 
the system stay in the surface.  

The main feature of SMC is that it uses a 
high-speed switching control law to drive the system 
states from any initial state onto a user-specified 
surface in the state space, namely, switching surface, 
and to keep the states on the surface for all successive 
time. As a result, we have the system dynamics 
entirely determined by the parameters that describe 
the sliding surface. This also results in a system that 
is insensitive to parametric uncertainties and external 
disturbances. In the design of the sliding mode 

control law, it is assumed that the control can be 
switched from one value to another infinitely fast 
[4-6]. However, this is impossible to achieve in 
practical systems because finite time delays are 
present for control computation, and limitations exist 
in the physical actuators. This nonperfect switching 
results in a phenomenon called chattering. The high 
frequency component of chattering is not only 
undesirable by itself but also they can excite 
unmodeled high-frequency plant dynamics which 
could result in unforeseen instability. The chattering 
behavior is especially unacceptable in process 
control and thus it has received considerable notice 
from the research community [7-11]. 

Improved generalization performance for 
error-based neural network learning can be obtained 
with techniques such as validation, pruning or 
constructive algorithms [12-13]. The methods are 
based on the principle that generalization is 
associated with the number of network parameters 
(weights), This study presents a HGNS system for the 
tracking control of a two-link robotic manipulator to 
achieve high-precision position control. 

In the present approach, two parallel Neural 
Networks are utilized to realize a Neuro-Sliding 
Mode Control. The equivalent control and the 
corrective control in terms of Sliding Mode Control 
are the outputs of the Neural Networks. The weights 
adaptations of Neural Network are determined based 
on the Sliding Mode Control equations. Then, the 
gradient descent method is used to minimize the 
control force so that chattering phenomenon can be 
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eliminated. The action of such HGNS are equivalent 
to that of full-state feedback controllers for 
second-order systems and, hence, these systems can 
always be stabilized. This controller guarantees some 
properties, such as the robust performance and 
stability properties.  

We show that the HGNS has the following 
advantages: (1) It can well control most of complex 
systems without knowing their exact mathematical 
models. (2) The dynamic behavior of the controlled 
system can be approximately dominated by a hybrid 
neural sliding surface. (3) HGNS can not only 
increase the robustness to system uncertainties but 
also decrease the chattering phenomenon in the 
conventional sliding mode controller.  

The rest of the paper is divided into five sections. 
In Section 2, the systems are described. In Section 3, 
the hybrid neural network sliding-mode control is 
presented. In Section 4, the proposed controller is 
used to control a Robotic system. Finally, we 
conclude with Section 5. 
 
2   System description 
Consider a nonlinear, non-autonomous, multi-input 
multi-output system of the form 

        ( )

1
( )

m
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i i ij j
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=
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where ( )ki
ix   indicates the th

ik derivative of xi. The 
vector U of components uj is the control input vector 
and the state X is composed of the xis and their first 
(ki–1) derivatives. Such systems are called square 
systems since they have as many control inputs as 
outputs xi to be controlled. The system can be written 
in a more compact form as letting 

     1 ( 1)( 1)
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       1[ ... ]T
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Assuming that 1n×∈x R , the system equation 
becomes 

       ( ) ( ) ( )t f B t= +
i
x x u                                       (4) 

where B ∈Rn×m input gain matrix. 
 
2.1 Sliding mode controller  
For the system given in (4), the sliding surface 
variable that is represented by 1mS ×∈ R . S = 0 defines 
a sliding surface. It is selected as  
       ( , ) ( ( ) ( )) ( ) ( )d d aS X t C X t X t S t S X= − = −                      (5) 
where 
       ( ) ( ),   ( ) ( )d d aS t CX t S X CX t= =                        (6) 
i.e., the time and the state dependent parts. The vector 
Xd represents the desired (reference) state and 
C∈Rm¥n is the slope matrix of the sliding surface. 

Generally, C is selected such that the sliding surface 
function becomes  

        1( ) ik
i i i

dS e
dt

λ −= +                                              (7) 

where ei is the error for xi ( ii d ie x x= − ) and lis are 
selected as positive constants. Therefore, ei goes to 
zero when Si equals zero. The aim in SMC is to force 
the system states to the sliding surface. Once the 
states are on the sliding surface, the system errors 
converge to zero with error dynamics dictated by the 
matrix C. 

To follow above, the design of an SMC based on 
the selection of a Lyapunov function is presented. 
The control should be chosen such that the candidate 
Lyapunov function satisifies Lyapunov stability 
criteria. Let the Lyapunov function be selected as 
below [14]: 

          ( )
2

TS SV S =                                                   (8) 

           
( ) ( )TdV S S Gsign S

dt
= −                                   (9) 

where G∈Rm¥m positive definite diagonal gain matrix, 
and sign(S) means signum function is applied to each 
element of S, i.e. 
           

1 2( ) [ ( )  ( )..... ( )]T
msign S sign S sign S sign S=      (10) 

and sign(Si) is defined as 

            
1     if  0

( )
1     otherwise

i
i

S
sign S

+ >
= −

                       (11) 

Taking the derivative of (8) and equating this to (9), 
the following equation is obtained: 

           ( )T TdSS S Gsign S
dt

= −                                 (12) 

The time derivative of S can be obtained using (5) 
and the plant equation as given below: 

           ( ( ) )d a ddS S dSdS dX C f B
dt dt X dt dt

∂
= − = − −

∂
x u      (13) 

By putting (13) into (12), the control input signal can 
be written as  
            ( ) ( ) ( )eq cU t U t U t= +                                    (14) 
where Ueq(t) is the equivalent control given by 

             1( ) ( ) ( ( ) )d
eq

dSU t CB Cf
dt

−= − −x               (15) 

and Uc(t) is the corrective control given by  
             1( ) ( ) ( ) ( )cU t CB Gsign S Ksign S−= =         (16) 
Ueq(t) is used to control the overall behavior of the 
system and Uc(t) is used to reject disturbances and to 
suppress parameter uncertainties. The controller of 
(14) exhibits high frequency oscillations in its output, 
causing a problem known as the chattering 
phenomena. Chattering is highly undesirable because 
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it can excite the high frequency dynamics of the 
system. For its elimination, it is suggested to use a 
modified shifted sigmoid function instead of the sign 
function. In the latter case, the corrective control is 
computed as 
                ( ) ( )cU t K Sφ=                                       (17) 
where f(·) is a modified sigmoid function, defined as 

2( ) 1
1 jj SS

e
φ −= −

+
                                     (18) 

 
3 Design Hybrid Neural Sliding Mode 

Controller 
3.1 The Structure of Neuro-Sliding Mode 

Controller 
Improved generalization performance for error-based 
neural network learning can be obtained with 
techniques such as validation, pruning or 
constructive algorithms. The last two approaches are 
based on the principle that generalization is 
associated with the number of network parameters, 
whereas validation is based on the validation set error 
to select the model with best generalization without 
explicit reference to network complexity. 

In this study, we use neural network to generate 
Ueq and Uc of SMC. Hence, Ueq is generated by NN1 
and Uc is generated by NN2. The structure of SNNS 
for the Robotic system is presented in Fig. 1. We 
have introduced the structure of SNNS, and then we 
need to discuss how to adjust weights of NN1 and 
NN2 such that the system state trajectory reaches the 
sliding surface as soon as possible. In this work, we 
update the weights of the NN1 and NN2 to minimize 
the S of SMC. 
 
3.2 Computation of the Equivalent Control   
The structure of NN1 is chosen by a two layers 
feed-forward neural network, which has one hidden 
layer and one output layer. The structure of inputs 
and output of the network are established by the 
equivalent control equation. From Fig. 2, it is found 
that the equivalent control is computed by using 
desired and actual states.    

In Fig. 2, some symbols are defined as follows 
descriptions. The input and the output of the hidden 
layer are designated as Ynetj and Youtj, respectively. 
The sub index j means that the j-th hidden-layer 
neuron. Similarly, the inputs and output of the output 
layer are designated as Unet and Uout, respectively. 
The values can be computed as 
  ( ) ,    1, 2,...,j jYout Ynet i nϕ= =                           (19) 

  ( )
1

,  ,  1, 2,...,
m

j j
j

Unet Wy Yout Uout g Unet j m
=

= = =∑      (20) 

  
, , , , i j i j i j j j jWz Wz Wz Wy Wy Wy= + ∆ = + ∆              (21) 

            
( )

2( )  1
1 netg x

e −= −
+

                          (22) 

where i , jWz  means that the weights between the 
neurons of input layer and hidden layer. Concretely, 
the i , jWz  can be regarded as the weight of i-th input 
layer neuron to the j-th hidden-layer neuron. The 
activation function g(·) is selected as a sigmoid 
transfer function, defined in (22). The symbol n   
represents the total number of the input layer, and m 
represents the total number of the hidden neurons. 
Ueq  is the estimated value of the equivalent control in 
Fig. 2. In order to avoid the equivalent control 
exceeds the maximum bound of actuator, reaching to 
a unreasonably large value, the output of neural 
network is [-1 , 1]. 
 
3.3 Weight adaptation of NN1 for the 

equivalent control estimation 
The weight adaptation is based on a minimization of 
a cost function that is selected as the difference 
between the desired and the estimated equivalent 
control  

^
2

2

1 max

1 ( )
2

jj

j

m eqeq

j

U U
E

U

=

=

−
= ∑                                (23) 

The gradient descent method is used to update the 
weight of NN1. The update formula are shown as 
follows: 

         ,
, ,

j

j

j
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yj i yj out

yj i net yj i
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W U W

η η ηδ∂ ∂
∆ =− =− =
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     (24) 

where 
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∂
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The derivative of the modify shifted sigmoid function 
is computed as 

            2
( ) 1 (1 ( ) )

2
j

j

j
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U

∂
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∂
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Gradient descent for the hidden layer is computed as 

            
,
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j

j i j

j i j j i
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where 

            
,

2

1
( )(1 ( ) )

j k k j j

j

m
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Y

δ δ
=

∂
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The most important point in this derivation is that the 
error between the desired and the estimated 
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equivalent control is replaced with the corrective 
control of the sliding mode control, as it is seen from 
(26). 
 
3.4 Computation of the Corrective Control 
In this GNNM(1,1) [13] of NN2 structure obtained 
for the corrective control Uc. Thus the structure of 
GNNM(1,1) of NN2 is easy to determine via 
designing SMC. The structure of GNNM(1,1) of 
NN2 is also a feed-forward network, which has one 
input layer and one output layer. The structure of 
NN2 for the manipulator is presented in Fig. 3.   

From Fig 3, it can be found that the input neuron 
are state error. The output neuron is a full connection 
structure. The advantage is that the controller 
possesses the self-turning characteristic. As a general 
neural network, the output of the output neuron also 
passes through a sign function or sign-like 
continuous functions. Hence, we use activation 
transfer function as the expression (22). The output of 
the output layer is the corrective control.  

In order to eliminate the high-frequency control 
and chattering around the sliding surface caused by 
the SMC, we now introduce a grey-neural network to 
be the direct adaptive neural controller to replace the 
SMC, when the state trajectory of system goes into 
the boundary layer.  

Grey system theory reckons that system of 
original sequence x(0)(k) (k=0,1,2,…,N-1)is added to 
a new series x(1)(k) that is characterized by 
exponential increase. So it is possible to use 
continuous function or differential equation to fit 
discrete data and the more is the number, the grey 
indefinite problems can be improved to solve in 
methods. On the point of theory view, discrete data 
from above method seem to be some discrete points 
extracted from certain function or differential 
equation but not independent mutually and disorder 
data.  

Some symbols can be changed as follows: 
original series (0) ( )kx t  are represented by ( )kx t , the 
result series (1) ( )kx t  after once adding are denoted by 

( )ky t , the predictive result value 
(1)^

( )kx t   is showed 
by ( )kz t , the range of t is  t∈(0,N-1). 
    The grey differential equation GM(1,1) is denoted 
as follows: 

       
(1)

(1)( ) ( )dx k ax k u
dt

+ =                                       (30) 

 In this paper, they are represented as: 

        ( ) ( )dy k ay k u
dt

+ =                                          (31) 

then we get (32) 

         ( ) ( (0) ) atu uy t y e
a a

−= − +                              (32) 

    Use the transform method of discrete response 
model, the time response model can be processed as 
follows ( 0)ate− >   :  

 1 1( )=(( (0) ) (0) 2 )(1 )
1 1

at
at at

u uz t y y e
a e a e

−
− −− − × + × × +

+ +
  (33) 

    The grey-neural network such as figure 3, 
corresponding weights of network are evaluated as 

follows 2( )up
a

=  : W11= a, W21= -y(0), W21=p, 

31 32 1 atW W e−= = + . 
The threshold y1 is : 

           1 (1 )( (0))at
y

ue y
a

θ −= + −                             (34) 

According to this grey-neural network in the training, 
weights are modified continuously is just as 
whitening of grey parameters extracted. 
The neural-grey predictor conform to is represented 
as the following: 

The sliding surface with a boundary width W 

designed in the phase plane. The S; 
^
S ; x1 and x2 are 

the sliding function, prediction sliding function, 
motor angle and motor velocity, respectively. The 
grey-neural predictor forecasts the movement of the 
state in the following conditions: 
(a) The positive step prediction: |x1S |>W or |x2S|>W  
and one of the following four conditions is satisfied  

1. 
^
S (k+1)- S(k)>0 if S(k)>0 and 

^
S (k+1)>0, 

2. 
^
S (k+1)- S(k)<0 if S(k)<0 and 

^
S (k+1)<0, 

3. S(k)>0 and 
^
S (k+1)<0, 

4. S(k)<0 and 
^
S (k+1)>0. 

(b) The negative step prediction: |x1S |>W or |x2S|>W  
and one of the following two conditions is satisfied 

1. 
^
S (k+1)- S(k)>0 if S(k)>0 and 

^
S (k+1)>0, 

2. 
^
S (k+1)- S(k)<0 if S(k)<0 and 

^
S (k+1)<0, 

We add the positive step prediction control to prompt 
the state into the boundary layer when the estimation 
state far away. Similarly, we add the negative step 
prediction control when the state outside the 
boundary layer and the estimation state go toward the 
boundary.  

To satisfy the equivalent control concept are 
substituted into  ; we get 

        
^
,cU Sγ= −                                                       (35) 

where 
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 σ > 0   for positive or negative step prediction 
=

0                                 otherwise,
γ





     (36) 

where γ represents the gain of the positive or 

negative step prediction and 
^
S  represents the 

forecast value of the sliding function S by the 
GNNM(1,1) predictor. The grey-neural network 
sliding controller satisfies the hitting condition at the 
sliding line and no reaching time when t = 0, and the 
error of e in the boundary layer W when t Æ •. 
Moreover, the boundary concept should be 
considered when designing γ . The overall algorithm 
described above is summarized in the Application 
Algorithm. 
  
Remark 1: Based on the Lyapunov theorem, the 

sliding surface reaching condition is s s
•

<0. If a 
control input u can be chosen to satisfy this reaching 
condition, the control system will converge to the 
origin of the phase plane. Since a HGNS is employed 
to approximate the non-linear mapping between the 
sliding input variable and the control law, the 
weightings of the HGNS should be regulated based 

on the reaching condition, s s
•

< 0.  
Remark 2: We combine the neural-grey predictor and 
sliding mode technique to reduce the sensitivity for 
the disturbances and the parameter variations. We 
need not know the uncertain bounded disturbances 
and parameter variations. The sliding function is 
estimated to reject the disturbances and the parameter 
variations. 
Remark 3: The adaptive rule is derived from the steep 

descent rule to minimize the value of s s
•

 with respect 
to Wj of HGNS. The weightings between hidden and 
output layers neurons can be on-line adjusted to 
achieve the learning ability of NN1, and updating the 
grey-neural controller parameter γ of NN2. 
Theoretically, the HGNS can be used to model and 
approximate any non-linear function with a 
reasonable accuracy. From the above analysis, it can 
be concluded that the proposed HGNS controller is 
stable and the system output error at least converges 
into a small error bound. 
 
 
4.  Computer Simulations 
In this section, a two rigid-link robot manipulator 
shown in Fig. 4 is utilized in this study to verify the 
effectiveness of the proposed control scheme. The 
dynamic model of the adopted robot system can be 
described [16] in the Eq. (37) 

            ( ) ( , ) ( ) τH q q C q q q G q
•• • •

+ + =                     (37) 
i.e. 

12 111 1 2 1 2 1

22 221 2 1 2

  ( )  τ

                  0 τ

q hq h q q qH H

H H q hq q

•• • • • •

•• • •

        − − +        + =
        
              

            (38) 

with q =[q1 q2]T being the two joint angles, t =[t1 t2]T 

being the joint inputs, and 
~

dq q q= − being the 
tracking error.  

            
11 1 3 2 4 2

22 2

12 21 2 2 2 4 2

3 2 4 2

2 cos 2 sin

cos sin
sin cos

H p a q a q
H p
H H p p q a q
h p q p q

= + +
=
= = + +

= −

 

            

2 2 2
1 1 1 1 1

2
2

2
3 1

2
4 1
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c e e ce e

e ce

e ce e

e ce e

p I m l I m l m l

p I mel

p m l l

p m l l

δ

δ

= + + + +

= +

=

=

 

Equation (38) can be rewritten as 
1 1

11 11 11 21 2 1 2 1 21

2 2 222 222 1 2

  ( )    τ

             0    τ

q hq h q q qH H H H

q H H hq q H H

− −
         − − +         =− +
         

−             

ii i i i i

ii i i

(39) 

where 
1

11 21

2 22

  

   

H H

H H

−
 
 
 
  

is assumed to be existent. 

Equation (39) can be expressed as a state equation 

    ( ) ( )= +
ii

q qq f q G q u                                       (40 ) 

where  1 2 1 2[ ] ,Tq q q q
i i

q=    1[ ]Tτ τ= 2u   
1 1

11 112 1 2 1

2 21 2

( )
( ) , ( )

0
q q

hq h q q qH H H H

H H hq q H H

− −
     − − +     =− =−
     
−          

i i i i

i i
21 21

22 22

      
f q  G q .

                
        The joint angle error vector is defined as 
~

d= −q q q , and the error state vector is defined as   
~

1 2 1 2[ ]Tq q q q=
i i

q     where dq  is the desired joint 
angle vector. 
The system parameters of the two rigid-link robot 
manipulator are selected as: m1=1kg, me=2kg, de=300, 
l1=0.12m, lc1=0.5m, lce=0.6m, and initial value are 
q1=00,  q2=00. 

The performance of position and tracking 
control from the simulations are presented and 
compared with the simulation results of Slotine and 
Li [16].  
   (a) position control : The robot, initially at rest at 
(q1=0o, q2=0o), is commanded to move one step to 
(q1=50o, q2=80o). The performance of the proposed 
HGNS is compared with the SMC control [16]. For 
the case of 50% mass uncertainties for m1 and me, the 
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simulation results are shown in Fig. 6 through Fig. 9. 
The results show that the proposed HGNS control 
still can cope with the mass uncertainties and model 
error to achieve performance.  
  (b) robust tracking control : The robot, initially at 
rest at (q1=0o, q2=0o), is commanded to follow a 
desired trajectory qd1=50+20cos(πt) and 
qd2=20+40sin(πt). The performance of the HGNS is 
compared with the SMC control approaches [16]. For 
the case of 50% mass uncertainties for m1 and me, the 
simulation results are shown in Fig. 10 through Fig. 
11, which shows that the HGNS approach has smaller 
tracking errors, and the transient tracking 
performance is also better than those using the sliding 
control. It is found that the control purpose of the 
robotic system can be arrived at, and can be shown 

that q and q
i

converge to zero, respectively. This 
simulation also shows that the proposed HGNS can 
achieve the best control performance with favorable 
tracking performance. 
 
5   Conclusion 
In this paper, the HGNS control system has been 
proposed to solve the output tracking problem for 
highly nonlinear and coupling, and the complete 
dynamic model was difficult to obtain precisely. To 
verify the effectiveness of the proposed control 
scheme, the HGNS control system was implemented 
to control a two-link manipulator. The simulation 
results show that the purpose of joint-tracking will be 
arrived at, and the link of robotic can be stabilized to 
the equilibrium and robustness. 
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Fig. 1 The Structure of HGNS Controller. 
 

( )⋅∑ g

( )⋅∑ g

( )⋅∑ g

( )⋅∑ g

( )⋅∑ g

•
•
•

•
•
•

( )⋅∑ g

1Z
1,1Wz

nZ

1−nZ

3Z

2Z

jiWz ,

1Wy

mWy

mYout

1Yout

Uout

1Ynet

mYnet

^

equ

Unet

Layer
Input

Layer
Output

Layer
Hidden

Weights
Hidden

Weights
Output

Gain
Constant

mnWz ,

 
Fig. 2. The structure of NN1 of SNNS to estimate the 

equivalent control 
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Fig. 3. The structure GNNM(1,1) of NN2 of HGNS 

to compute the corrective control. 
 
 

eδ

1l

1cl
1m
1q

1I

ceI
em

eI

2q
Y

X

 
Fig. 5.  An two-link robot manipulator. 
 

 
Fig. 6. The joint 1 position response comparison with 

SMN and HGNS. 

 
Fig. 7. The joint 2 position response comparison with 

SMN and HGNS. 

 
Fig. 8. The joint 1 control force comparison with 

SMN and HGNS. 

 
Fig. 9. The joint 2 control force comparison with 

SMN and HGNS. 
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Fig. 10. (a) The joint 1 position response  with SMC. 
              (b) The joint 2 position response with SMC. 
 

Fig. 11. (a) The  joint  1  position response  with     
HGNS. 

                  (b) The joint 2 position response with 
HGNS. 


