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Abstract: - In this paper to address a signed distance fuzzy sliding-mode control (SDFSMC) architecture which 
integrates cerebellar model articulation controller (CMAC). The proposed control consists of the SDFSMC and 
a feedforward compensation with modify CMAC network which to control the dynamics of the nonlinear 
systems with unknown structured nonlinearities without requiring a priori knowledge of the system parameter 
values. The effectiveness of the proposed control scheme is verified with an application the rigid robot 
manipulators. 
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1   Introduction 
In recent years, there have been attempts to design 
the FLC based on the sliding mode control (SMC) 
law [1-3].  They have shown that the boundary layer 
can reached in finite time and the ultimate 
boundedness of states is obtained asymptotically 
even though there exist some disturbance of dynamic 
uncertainties of the system. Palm showed that the 
analogy between a simple FLC and sliding mode 
controller with a boundary layer [4]. Hwang et al. 
proposed a fuzzy sliding mode controller and opened 
a way of designing an FLC for higher order nonlinear 
system [5]. The sliding mode control provides a good 
performance in tracking of some nonlinear systems. 
Nevertheless, a notorious characteristic of sliding 
mode control approach is the discontinuity around 
the switching hyperplane, that means some of the 
state variable are vibrant. One of the methods to cope 
with the problem is to utilize a feedforward 
compensator to offset unpredictable affect of system 
uncertainties.  

That researches also show that the FSMC has 
the following advantages [6]: (1) It can well control 
most of complex systems without knowing their 
exact mathematical models. (2) The dynamic 
behavior of the controlled system can be 
approximately dominated by a fuzzified sliding 
surface. (3) FMSC can not only increase the 
robustness to system uncertainties but also decrease 
the chattering phenomenon in the conventional 
sliding mode controller. The fuzzy controller of 
second-order systems is designed on a phase plane 
built by error e and change of error   that are produced 
from the states x and x� . To reduce the fuzzy rules in 

the fuzzy controller, various method such as signed 
distance fuzzy sliding-mode control in Fig. 1. By this 
way [7-10], the number of fuzzy rules can be greatly 
reduced and tuning, and tuning of rules is more easily. 
Although a DSFMC approach without a knowledge 
of robot dynamics may be promising. However, the 
determination of the SDFSMC is also increased 
quickly as the number of sliding function increases.  
In this paper proposed the control consists of the 
SDFSMC and a feedforward compensation with 
modify CMAC network which to control the 
dynamics of the nonlinear systems with unknown 
structured nonlinearities. The valid of the proposed 
control scheme is confirmed with an application the 
rigid robot manipulators. To control a nonlinear plant 
by proposed SDFSMC which integrates CMAC in 
Fig. 2. It is important to note that this approach will 
not be very practical due to high dimensionality of 
input–output space. 

The CMAC is a perceptron-like associative 
memory that performs a table look-up of a nonlinear 
function over a particular region of the function space. 
The CMAC network has the capability to learn an 
unknown nonlinear mapping given the input-output 
set and to approximate the nonlinear function. The 
research results up to present have shown that the 
CMAC network has great potential in real-time 
adaptive control applications [11-12]. 
The rest of the paper is divided into five sections. In 
Section 2, the systems are described. In Section 3, the 
SDFSMC with CMAC controller is presented. In 
Section 4, the proposed controller is used to control 
the rigid robot manipulators. Finally, we conclude 
with Section 5. 
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2   System description 
Consider the following nth-order nonlinear systems: 

  
( ) ( 1) ( 1)( , ,..., ) ( , ,..., ) ( )n n nx f x x x g x x x u d t

y x

• •
− −= + +

=
                 (1) 

where  f and g are unknown continuous functions, d(t) 
is the unknown external disturbance, uŒ¬ and yŒ¬ 
are the control input and the output of the system, 

respectively, and  ( 1)( , ,..., )n Tx x x
•

−=x Œ¬ is the state 
vector of the system, which is assumed to be 
measurable. Without loss of generality, we assume 
that g > 0 and d(t) is bounded as |d(t)| £ D. Define the 
state vector to track a desired state  

( 1)( , ,..., )n T
dd dx x x
i

x −= Œ¬. Let e = x-xd be tracking 
error, and let  

  ( 1)( ) ( ) ( , ,..., )n T
dt t e e e

i
e x x −= − =                          (2) 

be the error vector. 
 
 
3 The FSMC with CMAC controller 
3.1 Signed distance fuzzy sliding-mode 

control 
In this section, the idea of named the signed distance 
is used, and the feasibility of the present approach 
will be demonstrated. The switching line is defined 
by: 

   1:  0s e c e
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First, we introduce a new variable called the 

signed distance. Let A(e, e
i

) be the intersection point 
of the switching line and the line perpendicular to the 

switching line from an operating point B(e, e
i

), as 
illustrated in Fig. 3. Next, d is evaluated. The distance 

between A(e, e
i

) and B(e, e
i

) can be given by the 
following expression [13]: 
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Without loss of generality, Eq. (5) can be 
rewritten as follows: 
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The signed distance ds is defined for an arbitrary 

point B(e, e
i

) as follows: 
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where  
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Now, we choose a Lyapunov function: 
   21

2 sV d=                                                     (9) 

Then 
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Hence, it is seen that if s>0, then ds>0, 

decreasing u will make s s
•

 decrease so that V
•

<0 and 

that if s<0, then ds<0, increasing u1 will make s s
•

 

decrease so that V
•

<0. So we can ensure that the 
system is asymptotically stable. From the above 
relation, we can conclude that: 
   1 su d∝ −                                                     (11) 

Hence, the fuzzy rule table can be established on 
a one-dimensional space of ds as shown in Table 1 
instead of a two-dimensional space of x and x� . The 
control action can be determined by ds only. Hence, 
we can easily add or modify rules for fine control. 
For implementation, a triangular type membership 
function is chosen for the aforementioned fuzzy 
variables, as shown in Fig. 4. 

However, ds and u1 are the input and output of 
the signed distance fuzzy logic control, respectively. 
The input of the proposed fuzzy controller which is a 
fuzzified variable of ds. The output of the fuzzy 
controller which is the fuzzified variable of u1. All 
the universes of discourse of ds and u1 are arranged 
from –1 to 1. 

Now, Extension to general case for DSFSMC, 
Consider a general n-input traditional FLC has rule of 
the following form: 

 
1 ( -1)

1:  If  is ,...,and  is   then  is 

          1,2,...,

k n n
GN k k k

n
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where M is the number of fuzzy sets for each fuzzy 
input variable and  i

kLE  (i=1,2,…,n) is the linguistic 
value taken by the process state variable ( -1)ne  in the 
k-th rule. In this case, the rule table is established on 

n-dimension space of , ,...e e
i

,and ( 1)ne − . The number 
of rule Mn is huge, which makes very difficult to 
generate reasonable control rules. Also, Define a 
general signed distance sD  as follows: 
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Consider the following Lyapunov function 
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To used (14) be rewritten as 
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By taking the time derivative of (13), we obtain 
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Differentiating (15) with respect to time. 
~

V
i

 along the 
system trajectory as 
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which σ is positive number. Hence, if is known, the 
DFLC law can be designed as:  
  

1
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1
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where 

   
1,    0
0,    0

if s
if s
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≠

=  =
                                      (19) 

 
3.2 CAMC controller 
The second part u2 of the control law u a block 
diagram is shown in Fig. 2 for CMAC neural network 
algorithm, which is a nonlinear function learner. 
CMAC is considered essentially as a table look up 
algorithm. It is adaptive because it can modify the 
contents in the table by a learning algorithm. It also 
has generalization capability due to the distributed 
storage of information. No hash coding is needed for 
this application. 

The CMAC can be used as a general nonlinear 
function approximator in Fig. 5 as follows: Given a 
reference nonlinear function, f(x1, x2), where (x1, x2) 
to Ng memory locations (generalization size). 
1. Sample the input vector, which may contain both, 
desired and feedback signal information. 
2. Find corresponding memory locations for that 
input vector using a mapping algorithm, use hash 
coding if necessary. 

3. To speed up the initial learning and to achieve 
better generalization, employ the generalization 
technique, i.e., each input vector to CMAC is mapped 
into a number of memory locations instead of only 
one memory location. 
4. Response from CMAC is then the summation of 
the contents of these active memory locations. 
5. Update the contents of the active memory locations 
according to the learning algorithm. 
6. Repeat until the learning accuracy criterion is 
satisfied. Herein is the derived mathematical model 
of CMAC algorithm.  

The value of xi(k) is 1 when the ith memory 
element is activated while it is zero when the memory 
element i is deactivated. The allocating vector xi(k) is 
determined using the formula [14] 
   ( ) { ( )[ ( ) ( )]}i i ix k s k av k ml k= +              (20) 
where avi(k) is ith added value at instant k; ml(k) 
represents the first active memory element location at 
instant k and si(k) has 1 or 0 value at step time k. avi(k) 
and si(k) can be defined as follows: 

   ( 1) 0
1
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i i
i
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where m is the memory size, and   
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0  otherwise
i

i

k ml k ml k i
s k

≤ ≤
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  (22) 

where 

 
( ) ( ) ( )
g( ) ( ) 1

i i

g

g k av k ml k
ml k ml k N

= +
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Ng is the generalization size: 
The currently active memory location contents 

are modified and updated using the following 
conventional learning algorithm  
   ( 1) ( ) η ( ),i iw k w k e k+ = + ×                    (23) 
where 0£h £1 is the learning rate, which determines 
the rate of convergence of the weight and e(k) is the 
tracking error which is derived from 
    ( )e k r y= −                                          (24) 
where r and y are the reference input and system 
output, respectively. 
The control action u2 can be determined from            

     2
1

( ) ( )
n

i i
i

u w k x k
=

=∑                                   (25) 

where wi(k) and xi(k) are the weight or the memory 
content and the allocating pointer of memory element 
i, respectively. 
 
 

(17)
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4 Experiment of the Rigid Robot 
System 

 
In this section, we shall demonstrate that the 
SDFSMC with CMAC control design is applicable to 
the rigid robot manipulators to verify the theoretical 
development. 
 
4.1 The application algorithm 
  Step 1. Initialize: At the beginning, all weights 
stored in CMAC memory are set all weights of 
CMAC to small random values. 
  Step 2. Compute to control from SDFSMC: Using 
Eqs. (18) compute the control u1. We choose the 
sliding vector c1 and c2 are 5.0 and 1.0, respective. 
  Step 3. Compute the compensate control from 
CMAC: Compute up as explained in (13). Each input 
to CMAC is quantized into xi(k) = 400 levels 
(resolution of joint angles is 0.05 rad). According the 
size Ng of virtual memory space is 3.73¥106. Hash 
coding is employed to compress into a much smaller 
physical memory space m. For all subsequent 
simulations, if not stated otherwise, we choose 

 =256m and the training factor η 0.8= for this 
simulation. The summation of the weights stored in 
shared memory cells forms a good starting for the 
optimisation of current control interval. 
Step 4. Apply control to robot: Sum the estimated 
main control and the compensate control to form the 
control signal and then apply this to the robot. 
Setp 5. Go back to step (2) until the final condition is 
reached. 
 
4.2 Robotic dynamics 
The dynamic equation for a single-joint manipulator, 
as shown in Fig. 7, can be expressed as follows [15]: 

             1 cos( )I B gθ θ µ θ τ
•• •

+ + =                          (26) 

where 2 2
0

1
3

I M l Ml= + , 1( )
2 ol M Mµ = + , 0 2.823M kg=  

is the mass of the link, M is the load,  = 0.33ml is the 
manipulator length, 1B is the damping coefficient, and 
the center of mass is located at the middle of link. If 
the single link moves in a horizontal plane with input 

torque 0( )d pk kτ θ θ θ
•

= − − − provided by the local 
controller, the dynamic equation in Eq. (26) can be 
rewritten as 

            0( ) 0d pI B Kθ θ θ θ
•• •

+ + − =                          (27) 
where pk and dk are constants for the local controller,  

1d dB K B= + , θ  is the actual joint value, and 0θ   is 
the joint variable specified by the motion command.         

The values of dB  and pK  in Eq. (27) can be 
obtained via a linear scaling of the B and K used in 
the fuzzy system for a second-order system by 
comparing the inertia in Eq. (27) with the load used 
in the fuzzy system. The scaling of 1( )d dB K B= +  
and pK in some sense implicates the adjustment of 

dK  and pK  of the local controller for matching the 
system’s operating range.  
 
4.3 Experimental results 
The robot manipulator for civil engineering and 
construction in a tunnel is given in this chapter. Fig.6 
is the picture of our experimental system. The 
hardware of a robot arm contains: (1) the forward and 
back motion of X-axis, range:0~29.4 cm; (2) the 
swirl motion of θ-axis, range +78 ~ -78 degrees; (3) 
the sliding motion of R-axis, range 0~20 cm. The 
diagrammatic sketch of a three-axis robot arm is 
shown in Fig.7. Each axis includes both 
limited-switch and home-tested sensor switch. The 
home-tested sensor benefits users to return the initial 
position, write programs, and measure exactly. Both 
limited-switch and home-tested sensor switch are 
made of magnetic induction.  

The comparison of our proposed method with 
the SDFSMC method without the CMAC for the 
same plant is shown in Figs. 8-11 respectively. We 
can find that our proposed method not only reduces 
overshoot to near zero but also maintains a small 
extent of the setting time and the steady error. 
 
 
5   Conclusion 
In this paper, the SDFSMC with CMAC control 
design has been presented. The proposed control 
consists of the SDFSMC and a feedforward 
compensation with CMAC network which to control 
the dynamics of the nonlinear systems with unknown 
structured nonlinearities without requiring a priori 
knowledge of the system parameter values.  

The experimental results demonstrated the 
effects of our design. The effects included faster 
rising time, better ability of resisting the disturbances, 
minimum overshoot in the set point, more accurate 
steady-state error and the most important is 
simplified the design process. 
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Fig. 1.  The block diagram of the SDFLC. 
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Fig. 2.  The block of the FSMC with CMAC    
controller. 
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Fig. 3.  Derivation of a signed distance. 
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Fig. 4.  Fuzzy variable of triangular type. 
 

Table 1. Rule table for a signed distance 
fuzzy logic control. 
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Fig. 5. Block diagram of CMAC neural network. 
 

 
Fig. 6. A real robot manipulations for civil 

engineering and construction in a tunnel. 
 

 Fig.7. The diagrammatic sketch of a rigid robot arm. 

 
Fig. 8. The response of the position controllers for 

θ-axis is moved from 0 to 30 degrees. 
           (solid line : － SDFSMC with CMAC, 
            dotted line : … SDFSMC, dashed line : -- 
            FSMC ) 

 
Fig. 9. The response of the position controllers for 

θ-axis is moved from 0 to 60 degrees. 
(solid line : － SDFSMC with CMAC, 
dotted line : … SDFSMC, dashed line : -- 
FSMC ) 

 
Fig. 10. The response of the position controllers for 

θ-axis is moved from 0 to -30 degrees. 
(solid line : － SDFSMC with CMAC, 
dotted line : … SDFSMC, dashed line : -- 
FSMC ) 

 
Fig. 11. The response of the position controllers for 

θ-axis is moved from 0 to -60 degrees. 
(solid line : － SDFSMC with CMAC, 
dotted line : … SDFSMC, dashed line : -- 
FSMC ) 


