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Abstract: - In this paper, we will propose a cooperative control approach that is based on the Synthesize of 
self-tuning neural network with sliding mode control methodology. The main purpose is to eliminate the 
chattering phenomenon such that the seesaw system has a superior fixed position and tracking response. 
Moreover, the system performance obtained via the method of synthesize neural network with SMC (SNNS) can 
be improved. In the present approach, two parallel Neural Networks are utilized to realize a Neuro-Sliding Mode 
Control. The equivalent control and the corrective control in terms of sliding mode control are the outputs of the 
Neural Networks. The weights adaptations of Neural Network are determined based on the sliding mode control 
equations. The simulation and experiment seesaw system result show which the proposed controller shown that 
the proposed method is feasible and effective. 
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1   Introduction 

Generally, physical systems have certain 
non-linear and time-varying behaviours and various 
uncertainties. It is difficult to establish an appropriate 
model for the controller design. The Sliding Mode 
Control (SMC) theory has been developed and has 
been applied to closed-loop control systems for the 
last three decades [1-3] which is commonly known as 
the sliding mode control (SMC), is a nonlinear 
control strategy that is well known for its robustness 
characteristics. The essential characteristic of SMC is 
that the feedback signal is discontinuous, switching 
on one or more manifolds in state space. When the 
state crosses each discontinuity surface, the structure 
of the feedback system is altered. All motion in the 
neighborhood of the manifold is directed toward the 
manifold. Note that a sliding motion occurs in which 
the system state repeatedly crosses the switching 
surface. When the system states stay in the sliding 
surface, the equivalent control is capable of making 
the system stay in the surface.  

The main feature of SMC is that it uses a 
high-speed switching control law to drive the system 
states from any initial state onto a user-specified 
surface in the state space, namely, switching surface, 
and to keep the states on the surface for all successive 
time. As a result, we have the system dynamics 
entirely determined by the parameters that describe 
the sliding surface. This also results in a system that 
is insensitive to parametric uncertainties and external 
disturbances. In the design of the sliding mode 

control law, it is assumed that the control can be 
switched from one value to another infinitely fast 
[4-6]. However, this is impossible to achieve in 
practical systems because finite time delays are 
present for control computation, and limitations exist 
in the physical actuators. This nonperfect switching 
results in a phenomenon called chattering. The high 
frequency component of chattering is not only 
undesirable by itself but also they can excite 
unmodeled high-frequency plant dynamics which 
could result in unforeseen instability. The chattering 
behavior is especially unacceptable in process 
control and thus it has received considerable notice 
from the research community [7-11]. 

Improved generalization performance for 
error-based neural network learning can be obtained 
with techniques such as validation, pruning or 
constructive algorithms [12-14]. The methods are 
based on the principle that generalization is 
associated with the number of network parameters 
(weights), This study presents a SNNS system for the 
tracking control of a seesaw system to achieve 
high-precision position control. One of the methods 
to cope with the problem is to utilize a feedforward 
compensator to offset unpredictable affect of system 
uncertainties.  

In the present approach, two parallel Neural 
Networks are utilized to realize a Neuro-Sliding 
Mode Control. The equivalent control and the 
corrective control in terms of Sliding Mode Control 
are the outputs of the Neural Networks. The weights 
adaptations of Neural Network are determined based 
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on the Sliding Mode Control equations. Then, the 
gradient descent method is used to minimize the 
control force so that chattering phenomenon can be 
eliminated. The action of such SNNS are equivalent 
to that of full-state feedback controllers for 
second-order systems and, hence, these systems can 
always be stabilized. This controller guarantees some 
properties, such as the robust performance and 
stability properties.  

We show that the SNNS has the following 
advantages: (1) It can well control most of complex 
systems without knowing their exact mathematical 
models. (2) The dynamic behavior of the controlled 
system can be approximately dominated by a 
Synthesize neural sliding surface. (3) SNNS can not 
only increase the robustness to system uncertainties 
but also decrease the chattering phenomenon in the 
conventional sliding mode controller.  

The rest of the paper is divided into five sections. 
In Section 2, the systems are described. In Section 3, 
the Synthesize neural network sliding-mode control 
is presented. In Section 4, the proposed controller is 
used to control the seesaw system. Finally, we 
conclude with Section 5. 
 
2  Review of sliding mode control 

design 
In general, the Sliding Mode Control (SMC) can be 
separated into the reaching mode and sliding mode. 
The sliding surface is the desirable path in state space, 
which is given by the designer. These points 
constitute a special trajectory along the surface, 
called a sliding mode. Thus, a phase trajectory of this 
system generally consists of two parts, representing 
two modes of the system. The first part is the 
reaching mode in which the trajectory starts from 
anywhere on the phase plane moving toward a 
switching surface and reaches the surface in finite 
time. The second part is the sliding mode in which 
the trajectory asymptotically tends to the origin of the 
phase plane. 

Consider the n-th order linear system, which can 
be represented by the following state-space model in 
a companion form. 
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Where  and  is the n-dimensional state vector and 
control input of the system, respectively, and  
represents the external disturbance.    
If the disturbance is known and has the upper bound  . 
     ( )d t D<                                                             (2) 
And if the desired state is a step function, then the 
above dynamic equations can be transformed into the 
error equation.  
The error is defined   and its derivatives are the state 
variables 
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In general, the SMC design has a two-step 
process. First, choose a switching surface, which is 
chosen by desired behavior. Restricted to the 
intersection of the switching surface (Sliding mode), 
it results in the desired behavior. Next, define a 
switching control such that the trajectory of the 
system converges to the sliding surface (Reaching 
mode), and then stay on the sliding surface.  
Most, sliding surfaces are defined of follows: 
       ( ) TS e = c e                                                          (4) 
where c=[c1, c2, ..., cn]T, c∈Rn, e=[e1, e2, ..., en]T. The 
vector is given for ( ) 0TS e = =c e . It means that the 
resultant system is stable. Hence, the control can 
input drive the system (1) converges to the stable 
sliding surface.  
Expanding (4), we have 
      0)( 112211 ==++++= −− ecT

nnn eecececeS "               (5) 
where 1nc = . Taking the time derivative for ( )S e , 
we can obtain the following equation, 
      0)( 112211 ==++++= −− ecT���"���

nnn eecececeS               (6) 
Substituting (1), (3) into (6), we have 

     0)()()()( 121211 =+++++++= − tduecaecaeaeS eqnnn"�   (7) 
Obviously, the equivalent control equ  of (7) are 
define as  
      )()()( 121211 tdecaecaeau nnneq −+−−+−−= −"        (8) 

The equivalent control is to keep the system 
states at the sliding surface S=0 for all t ≥ 0. Hence, if 
the states is outside the sliding surface, to drive the 
state to the sliding surface, we choose the control law 
such that 
        σ< −�SS S                                                        (9) 
where s is a positive constant, and (9) is called 
reaching condition. We have to guarantee the state 
trajectory converge to the sliding surface. Next, we 
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define the corrective control, cu , which are shown as 
follows. 
         sgn( )cu K S= ⋅                                             (10) 
Where K is constant. The sign function is a 
discontinuous function.  

        
1   ,  >0

sgn( ) 0  ,  =0
1,  <0

S
S S

S
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−

                                        (11)  

Hence, the whole control input  is a combination of  
and    

1 1 2 1 2 1( ) ( )

                      ( ) sgn( )
eq c n n nu u u ae a c e a c e

d t K S
−= + =− − + − − +

− + ⋅

"
  (12) 

Notice that the (10) exhibits high frequency 
oscillations, which is defined as chattering. 
Chattering is undesired because it may excite the 
high frequency response of the system. Hence, most 
of approaches use the saturation or the sigmoid 
function to replace the sign function. 
 
3 Design Synthesize Neural-Sliding 

Mode Controller 
3.1 The Structure of Neuro-Sliding Mode 

Controller 
Improved generalization performance for error-based 
neural network learning can be obtained with 
techniques such as validation, pruning or 
constructive algorithms. The last two approaches are 
based on the principle that generalization is 
associated with the number of network parameters, 
whereas validation is based on the validation set error 
to select the model with best generalization without 
explicit reference to network complexity. 

In this study, we use neural network to generate 
ueq and uc of SMC. Hence, ueq is generated by NN1 
and uc is generated by NN2. The structure of SNNS 
for the Robotic system is presented in Fig. 1. We 
have introduced the structure of SNNS, and then we 
need to discuss how to adjust weights of NN1 and 
NN2 such that the system state trajectory reaches the 
sliding surface as soon as possible. In this work, we 
update the weights of the NN1 and NN2 to minimize 
the S of SMC. 
 
3.2 Computation of the Equivalent Control   
The structure of NN1 is chosen by a two layers 
feed-forward neural network, which has one hidden 
layer and one output layer. The structure of inputs 
and output of the network are established by the 
equivalent control equation. From Fig. 2, it is found 
that the equivalent control is computed by using 
desired and actual states.    

In Fig. 2, some symbols are defined as follows 
descriptions. The input and the output of the hidden 
layer are designated as Ynetj and Youtj, respectively. 
The sub index j means that the j-th hidden-layer 
neuron. Similarly, the inputs and output of the output 
layer are designated as Unet and Uout , respectively 
[15]. 
The values can be computed as 
             ( ) ,    1, 2,...,j jYout Ynet i nϕ= =                         (13) 

      ( )
1

,  ,  1, 2,...,
m

j j
j

Unet Wy Yout Uout g Unet j m
=

= = =∑ (14) 

          
, , , , i j i j i j j j jWz Wz Wz Wy Wy Wy= + ∆ = + ∆              (15) 

   
( )

2( )  1
1 netg x

e −= −
+

                                  (16) 

where  i , jWz  means that the weights between the 
neurons of input layer and hidden layer. Concretely, 
the  i , jWz  can be regarded as the weight of i-th input 
layer neuron to the j-th hidden-layer neuron. The 
activation function g(·) is selected as a sigmoid 
transfer function, defined in (16). The symbol   n 
represents the total number of the input layer, and m 
represents the total number of the hidden neurons. 
Ueq  is the estimated value of the equivalent control in 
Fig. 2. In order to avoid the equivalent control 
exceeds the maximum bound of actuator, reaching to 
a unreasonably large value, the output of neural 
network is [-1 , 1]. 
 
3.3 Weight adaptation of NN1 for the 

equivalent control estimation 
The weight adaptation is based on a minimization of 
a cost function that is selected as the difference 
between the desired and the estimated equivalent 
control  
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The gradient descent method is used to update the 
weight of NN1. The update formula are shown as 
follows: 
 ( ) ( )21ˆ 1

2j eq eq j
j

EWy u -u g Unet Yout
Wy

λ λ∂  ∆ =− ⋅ = ⋅ ⋅ − ⋅ ∂
        (18) 

where λ is the learning-rate parameter of the 
back-propagation algorithm and it is a constant. From 
(18), we find that the actual equivalent control ueq is 
unknown. Hence, jWy∆  of (18) cannot be calculated. 
In order to overcome this problem, we use   to replace 

the 
~

eqequ u− . The reason is that is given by the 

designer, and the characteristics of 
~

eqequ u−  and S 
are similar. Thus, (18) can be rewritten as follows:  
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      ( ) ( )21 1
2j jWy S g Unet Youtλ  ∆ = ⋅ ⋅ − ⋅ 

                (19) 

The weights between input neurons and hidden 
neurons are updated by the following:  

( ) ( ) ( )22
i,j j j i

i,j

E 1Wz λ S 1-g Unet W 1-g Ynet Z
Wz 4

λ ∂   ∆ = − ⋅ =     ∂
i i i i i  (20) 

where λ is the learning-rate parameter of the 
back-propagation algorithm and is a constant. The 
most important point in this derivation is that the 
error between desired and estimated equivalent 
control is replaced with the corrective control of the 
sliding mode control. 
 
3.4 Computation of the Corrective Control 
In this NN2 structure, the corrective control cu  is 
obtained by NN2. Thus the structure of NN2 is easy 
to determine via designing SMC. The structure of 
NN2 is also a feed-forward network, which has one 
input layer and one output layer. The structure of 
NN2 for the manipulator is presented in Fig. 3.   

From Fig 3, it can be found that the input neuron 
are state error. The output neuron is a full connection 
structure. The advantage is that the controller 
possesses the self-turning characteristic. As a general 
neural network, the output of the output neuron also 
passes through a sign function or sign-like 
continuous functions. Hence, we use activation 
transfer function as the expression (22). The output of 
the output layer is the corrective control.  
In order to eliminate the high-frequency control and 
chattering around the sliding surface caused by the 
SMC, we now introduce a self-tuning neuron to be 
the direct adaptive neural controller to replace the 
SMC, when the state trajectory of system goes into 
the boundary layer. The self-tuning neuron of SNNS 
can be schematically shown in Fig. 3 and 
mathematically expressed as [16] 
     net I ε= −                                             (21) 
where   is external input of neuron, e threshold or bias, 
net is internal state of neuron. The output uc of 
self-tuning neuron used as the neural controller is 
given by 

   
( )

( )

[1 ]( )
1

net

c net

eu g net
e

β

β

α − −

− −

−
= =

+
                (22) 

where the activation function g(∑):RÆR is a modified 
hyperbolic tangent function; a is the saturated level; 
and b is the slope value. Note, that these two 
adjustable parameters, a and b, influence mainly the 
output range and the curve shape of this activation 
function. In this case, since the output range of uc can 
be automatically tuned according to certain 
adaptation mechanism, it is unnecessary to consider 
the scaling problem of the controller. For 

convenience, let q =[e, a, b ]ŒR3, represent the vector 
of adjustable parameters. We wish to adjust θ, such 
that, the control objective can be achieved. The NN2 
algorithm and the weight adaptation are described in 
the statements above.  

  1 ( )
2

TJ S S=                                              (23) 

The aim of control strategy J is to minimize   
successively by updating the neural controller 
parameter θ. In order to achieve this goal, the 
following theorem provides a simple and stable 
algorithm for parameters updating. 

Differentiating   in (23), and using the chain rule, 
we have  

             [ ]Ti c

i c

x udJ JJ
dt x u

θ
θ

• •∂ ∂∂
= =
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             (24) 

we have 

             
i

J e
x
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=
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                                                    (25) 
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              sgn( )c i

c

u xe
u

θ η
θ

• ∂ ∂
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                                (27) 

Substituting (25), (26), and (27) into (24), we have 
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∂ ∂ ∂
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    (28) 

According to the Lyapunov stability theory, this 
implies that the function will be monotonically 
decreasing for time t ≥ 0. The tuning algorithm for q 
in (27), enables the neural controller to generate a 
suitable control force.  Moreover, using (22) and (23), 

the partial derivative cu
i

 with q =[e, a, b]ŒR3 in (27) 
can be derived as follows: 

 
2 2( )
2

c cu uβ α
ε α

∂ −
=

∂
                           (29) 

c cu u
α α

∂
=

∂
                                              (30) 

2 2( )
2

c cu net uα α
β α

∂ −
= −

∂
i

                     (31) 

Noted that the adaptation process of e、a and b 
should be stopped when the state error is acceptable. 
They may be sensitive to system perturbations. 
Additionally, the limitary concept should be 
considered when designing e、a and b. The overall 
algorithm described above is summarized in the 
Application Algorithm. 
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Remark 1: Based on the Lyapunov theorem, the 

sliding surface reaching condition is s s
•

<0. If a 
control input u can be chosen to satisfy this reaching 
condition, the control system will converge to the 
origin of the phase plane. Since a SNNS is employed 
to approximate the non-linear mapping between the 
sliding input variable and the control law, the 
weightings of the SNNS should be regulated based 

on the reaching condition, s s
•

<0.  
Remark 2: The adaptive rule is derived from the steep 
descent rule to minimize the value of   with respect to 
Wj and q of SNNS. The weightings between hidden 
and output layers neurons can be on-line adjusted to 
achieve the learning ability of NN1, and updating the 
neural controller parameter q of NN2. Theoretically, 
the SNNS can be used to model and approximate any 
non-linear function with a reasonable accuracy. From 
the above analysis, it can be concluded that the 
proposed SNNS controller is stable and the system 
output error at least converges into a small error 
bound. 
 
4.  Simulation and Experiment of the 

Seesaw System 
4.1. Description of System 
The balancing mechanism of the seesaw is shown in 
Fig. 4. The previous study [17] gives the system 
model by using Lagrange’s formulations based on 
principle of balance of force and torque below. 

2
1( ) sinm r x mx mg uθ θ θ+ − − =�� ���  

2
1 1 2

1

[ ( ) 2 ] sin
( sin cos ) 0

I m r r x x xx Mgr
mg r x
θ θ θ θ θ

θ θ
+ + + + −

− + =

�� �� ���� �   (32) 

The dynamical equation of the seesaw mechanism is 
given as follows:  

sinu mg Bx mxθ+ − =� ��  

           
( ) ( ) ( )2 2

2 1

1

sin sinMg r mg x r

ur I

θ θ φ

µθ θ

+ + ⋅ +

+ − =� ��
   (33) 

where I is the wedge inertia given by (34) 
21

2 24 2
a bI abcρ

 
= + 

 
                                     (34) 

From Fig. 4-3, it can be derived below.     
               
4.2 The Application Algorithm 
For the seesaw system given in (32), the seesaw 
system has three variables of states. The variables are 
the angle that the wedge makes with the vertical line 
( )θ , change of the angle that the wedge makes with 
vertical line ( )θ� , and the position of the cart from the 
origin (x). 

 
4.3 The Result of Computer Simulation 
In order to prove the practicability of SNNS, 
simulation is done before it is applied to the practical 
system. The initial states of these two simulations are 
different. The value of parameters in Table 1 of the 
seesaw system in the simulation: 
Simulation : The SNNS controller is applied to the 
seesaw system with initial state is shown as follows: 
the cart position is 34 centimeters and angle is 11.0 
degrees. Fig. 5 and Fig. 6 shows the response of angle 
and the state trajectory. 
 
4.4 The Result of Experiment 
In the experiment, three variables are chosen as the 
inputs SNNS controller. They are angle error q, 
change of angle error dq and cart position x, 
respectively.  

In Fig. 7, the variable are defined as follows: 
                  ( )k Y Rθ θ θθ = −                                         (35) 

( )x x xx k Y R= −                                       (36) 

( )1n nk θθ θ θ∆ +∆ = −                                (37) 
where Rθ  and xR are the equilibrium point of seesaw 
angle and cart position. Yθ   and xY   are the outputs of 
the potentiometers for measuring the tilt angle of 
seesaw and position of the cart. 1nθ +   and   nθ  are the 
angle errors at  the n+1-th and n-th sampling instants. 
kθ , θ∆k and xk are the scaling factors. In result of 
Experiment 1, we add the extra force (as disturbance) 
to the seesaw system when it balances. The seesaw 
system recovers to balance quickly.   
Experiment:  
The initial states of the seesaw: 
The position of the cart is 34 centimeters.  
The angle of inverted wedge is 11.0 degrees. 
We have to add a disturbance at t = 4.1s. 
Fig. 8 and Fig. 10 shows the response of angle and 
the state trajectory. 
 
5   Conclusion 
In this paper, the SNNS control system has been 
proposed to solve the output tracking problem for 
highly nonlinear and coupling, and the complete 
dynamic model us difficult to obtain precisely. To 
verify the effectiveness of the proposed control 
scheme, the SNNS control system was implemented 
to control a seesaw system. Form the simulation 
results show the joint-position will be arrived at 
purpose, and the seesaw system can be stabilized to 
the equilibrium. 
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Parameter          Value

The wedge inertia I 0.044
The height of center of wedge r 1 0.148
The height of wedge center of mass r 2 0.123

The  mass of the wedge 1.52

The  mass of the  cart 0.46

The damping coefficient of the angle  0.5

The damping coefficient of the cart  15  
Table 1 The value of parameters of   the seesaw  

system. 

 

F

Fig. 4 The initial states of the seesaw of                

simulation. 

 

 
Fig. 5 Time response of angle for the SNNS  

Control. 
 

 
Fig. 6  Time response of angle for the  SNNS  

Control. 

 
Fig. 7  The practical hardware structure of the  

seesaw system. 

 
 

 
Fig. 8 The position response of  the actual  seesaw 

system. 
 

 
Fig. 9 The angle response of the actual  seesaw  

system. 

 

 
Fig. 10 The S response of the actual  seesaw system. 


