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Abstract: - In this paper, a design approach adaptability of fuzzy sliding-mode controller (AFSMC) with a 
decoupled method is proposed. The decoupled method provides a simple way to achieve asymptotic stability for 
a class of fourth-order nonlinear system. Moreover, heuristic sliding factors are implemented as functions. 
Therefore, the sliding factor in hybrid fuzzy sliding mode controller is given without trial-and-error. Using this 
approach, the response of system will converge faster than that of previous reports. The simulation of a cart-pole 
system is presented to demonstrate the effectiveness and robustness of the method. 
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1   Introduction 
Fuzzy logic controllers (FLC’s) are one of useful 
control schemes for plants having difficulties in 
deriving mathematical models or having 
performance limitations with conventional linear 
control schemes [1]. A fuzzy logic controller is 
designed on the basis of human experience, which 
means a mathematical model is not required for 
controlling a system. Due to this advantages, a fuzzy 
logic-based control has been implement for many 
industrial applications [2-3].  

In recent years, there have been attempts to 
design the FLC based on the sliding mode control 
(SMC) law [4-6]. They have shown that the boundary 
layer can reach in finite time and the ultimate 
boundedness of states is obtained asymptotically 
even though there exist some disturbance of dynamic 
uncertainties of the system. Palm showed that the 
analogy between a simple FLC and sliding mode 
controller with a boundary layer [7]. Hwang et al. 
proposed a fuzzy sliding mode controller and opened 
a way of designing an FLC for higher order nonlinear 
system [8]. The sliding mode control provides a good 
performance in tracking of some nonlinear systems. 
Nevertheless, a notorious characteristic of sliding 
mode control approach is the discontinuity around 
the switching hyperplane, that means some of the 
state variable are vibrant. One of the methods to cope 
with the problem is to utilize a feedforward 
compensator to offset unpredictable affect of system 
uncertainties.  

Researches also show that the FSMC has the 
following advantages: (1) It can well control most of 
complex systems without knowing their exact 
mathematical models. (2) The dynamic behavior of 
the controlled system can be approximately 

dominated by a fuzzified sliding surface. (3) FMSC 
can not only increase the robustness to system 
uncertainties but also decrease the chattering 
phenomenon in the conventional sliding mode 
controller. Moreover, another problem of designing 
fuzzy controllers is applied to higher order systems. 
The large majority of fuzzy controllers are limited to 
systems with dominantly second-order dynamics.      

The action of such fuzzy controllers are 
equivalent to that of full-state feedback controllers 
for second-order systems and, hence, these systems 
can always be stabilized. However, for a fourth-order 
system, such as the cart-pole system, the system may 
not be stabilized by using a PID controller and, 
therefore, using a conventional fuzzy controller will 
result in a large number of rules. For these systems, 
the instincts sense is that some rules may be not 
flexibility if a stabilizing rule base is determined.  
In most studies, the fuzzy controller of second-order 
systems is designed on a phase plane built by error e 

and change of error e  that are produced from the 

states x and 

i

x
i
. For example, in a cart-pole system 

only the pole subsystem is considered ignoring the 
cart subsystem and it is thus impossible to achieve a 
good control around the set point (distance=0).  

In this study, a decoupled fuzzy controller 
design is proposed. This controller guarantees some 
properties, such as the robust performance and 
stability properties. Further, a class of fourth-order 
nonlinear systems is investigated. Lo and Kuo [9] 
proposed a method called “decoupled fuzzy 
sliding-mode control” to cope with the above issue. 
However, The sliding factor of hybrid sliding surface 
is always given by try-and-error. Therefore, using 
heuristic sliding factors are implemented as 
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functions. It is easy to find sliding factors and the 
system can achieve asymptotic stability and it will 
converge faster. 

The rest of the paper is divided into five 
sections. In Section 2, the systems are described. In 
Section 3, the adaptability complexity hybrid fuzzy 
sliding-mode control is presented. In Section 4, the 
proposed controller is used to control a cart-pole 
system. Finally, we conclude with Section 5. 
 
2  System description 
Consider a second-order nonlinear system, which can 
be represented by the following state-space model in 
a canonical form: 
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where 1 2[  ]Tx x=x  is the state vector, ( )f x  and 
 are nonlinear functions, u is the control input, 

and  is external disturbance. The disturbance is 
assumed to be bounded as 

( )b x
( )d t

( ) ( )d t D t≤ . 
For this kind of the second order system, we can 

use many kinds of control methods, such as, fuzzy 
control, PID control, sliding mode control…etc. A 
control law u can be easily designed to make the 
second order system (1) arrive at our control goal. 
However, for such nonlinear models as a cart-pole 
system, the system dynamic representation is 
generally not in a canonical form exactly. Rather, it 
has a form shown below: 
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where 1 2 3 4[    ]Tx x x x=x  is the state vector, f1(x), 
f2(x) and b1(x), b2(x) are nonlinear functions, u1, u2 
are the control inputs, and d1(t), d2(t) are external 
disturbances. The disturbances are assumed to be 
bounded as 1 1( ) ( )d t D t≤ , 2 2( ) ( )d t D t≤ . From (2), 
one can design u1 and u2 respectively, however, this 
approach is only utilized to control a subsystem in 
(2). For example, if the model is a cart-pole system, 
we only control either the pole or the cart of a system 
such as (2). Hence, the idea of decoupling is 
employed to design a control u to govern the whole 
system. 
The switching line is defined by: 
                                                         (3) 1:  0s x c x+ =�

For the second order system (1), a switching line is 
chosen as 

1 1 2s c x x= +                                               (4) 
By taking the time derivative of both sides of (4), we 
can obtain  

                    
1 1 2 1 2 ( ) ( )s c x x c x f b u d= + = + + +x x� � �           (5) 

Then, multiplying both sides of the above equation 
by   gives 
                              

1 2 ( ) ( )ss sc x sf sb u sd= + + +x x�                  (6) 
Here, we assume that b(x)>0. In (5), it is seen that s�  
increases as u increases and vice versa. Equation (6) 
provides the information that if s>0, the decreasing u 
will make ss�  decrease and that if s<0, the increasing 
u will make ss�  decrease. 
 
3 Design decoupled fuzzy logic 

controller 
In this section, the idea of the signed distance of 
fuzzy logic control is used in section 3. For 
implementation, a triangular type membership 
function is chosen for the aforementioned fuzzy 
variables, as shown in Fig. 1. In Eqn. (2), we first 
define one switching line as 
   1 1 1( ) 2s c x z x= − +                                      (7) 
and another switching line as  
   2 2 3 4s c x x= +                                             (8) 

The control objective is to drive the system state 
to the original equilibrium point. The switching line 
variables s1 and s2 are reduced to zeros gradually at 
the same time by an intermediate variable z, as 
illustrated in Fig. 2. 

In equation (7), z is a value transferred from s2, it 
has a value proportional to s2 and has the range 
proper to x1. Equation (7) denotes that the control 
objective of u1 is changed from x1 = 0, x2 = 0 to x1 = z, 
x2 = 0. Because the controller u = u1 is used to govern 
the whole system, the bound of x1 can be guaranteed 
by letting  
               ,         0 1 uz Z Zu≤ < <                               (9) 
where uZ  is the upper bound of abs(z). Equation (9) 
implies that the maximum absolute value of x1 will be 
limited. 

Summarizing what we have mentioned above, z 
can be defined as  
    2( / ) ,   0 1z u uz sat s Z Z= Φ ⋅ < <                  (10) 
where zΦ  is the boundary layer of 2s  to smooth z,   

zΦ transfers 2s to the proper range of x1, and the 
definition of sat(．) function is  
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Notice that z is a decaying oscillation signal because 
Zu is a factor less than one. 

The sliding factors c1 and c2 are defined as 
functions of the output u of a fuzzy controller. It is 
straightforward to find that c1 and c2 can be 
characterized by the simple functions [10] 
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Remark1. Consider equation (7). If s1 = 0, then x1 = z, 
x2 = 0. Since z is a value transferred from s2, when  

From equation (8), if 
the condition s , the control objective can be 
achieved. 

2 0,  then 0 and 0.s z x→ →

1 0→
1 →

Remark2. The equation (12) and (13). 1α  and 2α are 
constant factors designed to satisfy the stability 
requirement, and 1β  and 2β  are arbitrary positive 
constant ( 1 21 , 0β β≥ > ) selected to avoid the 
situation of a zero value of |  in the denominator. |u
Remark3. The functional scaling factor is generated 
with heuristic analyses. It is found that the scaling 
factors can be defined as simple function of the 
output of the AFMSC, according to the heuristic 
analyses of system dynamics. Thus, the scaling factor 
can be adjusted to structure the AFMS without a 
priori knowledge about the system plant. Also the 
functional scaling factor proposed here will no 
trial-and-error. 
 
4.  Simulation and Experiment of the Seesaw 

System 
In this section, we shall demonstrate that the 
decoupled SFLC is applicable to the cart-pole system 
[9] to verify the theoretical development. 
The structure of an inverted pendulum is illustrated in 
Fig.5 and its dynamic is described below: 
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where 1x θ=  the angle of the pole with respect to the 
vertical axis; x2 θ= �  the angle velocity of the pole 
with respect to the vertical axis; 3x x=  the position 
of the cart; 4x x= �

p

  the velocity of the cart; 

t c mm m= +  . 
In what follows, we define the following variables: 
          1 1 1 1( ) ( ) 2s c z c x zθ θ x= − + = − +�                   (15) 
          2 2 2 3 4s c x x c x x= + = +�                                (16) 
and 

2( / ) ,    0 1z u uz sat s Z Z= Φ ⋅ < <                     (17) 
In the simulation, the following specifications are 
used: mp = 0.05kg, mc = 1kg, L = 0.5m, g = 9.8m/s2, 

15zΦ = , 1 20.9425,   0.0873,K 1, K 40uZ d= ≤ = =  
initial values are 

          60 ,  0,  0,  0x xθ θ= − = =
i

D � =  
and the parameters  and   are designed as  
          1 2 1 21/ 200,   1α α β β= = = =  
Fig. 4 through Fig. 6 shows the simulation result. It is 
found that the pole and the cart can be stabilized to 
the equilibrium point. 
 
 
5   Conclusion 
Adaptability of fuzzy SMC has been presented. The 
sliding factor is given without try-and-error in hybrid 
fuzzy sliding-mode controller. Using the method, 
heuristic sliding factors are implemented as 
functions. The response of system will converge 
faster than that of previous reports. Next, simulation 
results show that the pole and the cart can be 
stabilized to the equilibrium. The heuristic sliding 
factors were implemented as simple functions of the 
output of the fuzzy controller to avoid increasing the 
complexity of the systems. 
 
 
References: 
[1] D.P. Filev and R. R. Yager, On the analysis of 

fuzzy logic controllers, Fuzzy Sets Sys, Vol. 68 
1994, pp. 39-66. 

[2] C.C. Lee, Fuzzy logic in control systems: fuzzy 
logic controller – Part I, IEEE Trans. Systems 
Man Cybernet., Vol. 20, 1990, pp. 404-418. 

 3



[3] C.M. Lim and T. Hiyama, Application of fuzzy 
logic control to a manipulator, IEEE Trans. 
Robotics Automat., Vol. 7, 1991, pp. 688-691. 

[4]  Yu, X., Man, Z., and Wu, B., Design of Fuzzy 
Sliding-Mode Control Systems, Fuzzy Sets Sys, 
Vol. 95, No. 3, 1998, pp. 295-306. 

[5] Sung-Woo Kim, Ju-Jang Lee,  Design of a fuzzy 
controller with fuzzy sliding surface, Fuzzy Sets 
Sys, Vol.71, 1995, pp. 359-367. 

[6] Jacob S. Glower, Jeffrey Munighan, Design 
Fuzzy Controllers from a Variable Structures 
Standpoint, IEEE Trans. Fuzzy Syst., Vol. 5. No. 
1., 1997, pp. 138-144. 

[7] Palm, R., Robust Control by Fuzzy Sliding Mode, 
Automatic, Vol. 30, No.9, 1994, pp. 1429-1437. 

[8] G.C. Hwang and S. C. Lin,  A stability approach 
fuzzy control design for nonlinear systems, Fuzzy 
Sets Sys, Vol. 48, 1992, pp. 279-287. 

[9] Ji-Chang Lo, Ya-Hui Kuo, Decoupled Fuzzy 
Sliding-Mode Control, IEEE Trans. Fuzzy Syst, 
Vol. 6. No. 3., 1998, pp. 426-435. 

[10] C.W. Tao and J. S. Taur, Flexible Complexity 
Reduced PID-Like Fuzzy Controllers, IEEE 
Trans. Systems Man Cybernet., Vol. 30, No. 4, 
2000, pp. 510-516.  

 
 

0
0

NB NS ZE PS PB
1

-1 1
S

µ

 Fig 1.  Fuzzy variable of triangular type. 
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 Fig. 2.  The block of the hybrid adaptability  
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Fig. 3.  Structure of an inverted pendulum system. 
 

 
Fig. 4.  Angle evolution of the pole.  

(the FSMC method [9]  -------    , 
the AFSMC method              ) 
 

 
Fig. 5.  Position evolution of the cart.  

(the FSMC method [9]  -------    , 
the AFSMC method              ) 
 

 
Fig. 6. Control output of an inverted pendulum 

system. 
(the FSMC method [9]  -------    , 

the AFSMC method              ) 
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