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Abstract  The analysis and results of rectangular slot resonator with four layers are presented.   The full wave
Transversal Transmission Line (TTL) method, is used in the analysis to obtain the  complex resonant frequency. This
complex resonant frequency is calculated through double spectral variables using jointly the moment method.
Computational results are obtained for the with and length  as functions of  the complex frequency for different layer’s
thickness of the slot  resonator with four layers.

Index Terms — Transverse Transmission Line (TTL) method, Slot Resonator, complex resonant frequency.

I. INTRODUCTION

The rectangular slot  resonator with four layers
substrate without and with loss, with width w and
length l, is shown in the Fig. 1. For the analysis the full
wave TTL method, jointly with the Galerkin’s
procedure and adequate basis function are used to
obtain the concise and general equations of the
electromagnetic fields, allowing the calculation of the
complex resonant frequency . This complex resonant
frequency is calculated through double spectral
variables. Computational results are obtained for the
complex frequency as functions of  the resonator with
and length for different layer’s thickness of the slot
resonator with four layers.

Fig. 1 – Spatial view of the four layes slot  resonator
where the fourth layer is the air.

II. THEORY

At the slot resonator using the TTL method the field
equations are applied for double Fourier transformed
defined as:
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Where  αn is the spectral variable in the “x” direction
and β spectral variable in the “z” direction.

After using the Maxwell’s equations in the
spectral domain, the general equations of the electric
and magnetic fields in the method TTL, are obtained
as:
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where:

i = 1, 2, 3, 4  represent four dielectric regions of the
structure;

2222
ikni k−+= βαγ                    (2.5)

is the propagation constant in “y” direction; αn is the
spectral variable in “x” direction and βk is the spectral
variable in “z” direction.

∗== rii kk εµεω 2
0

22  is the wave number of ith

dielectric region;

0ωε
σ

εε i
riri j−=∗   is the relative dielectric constant of

 the material with losses;
ω = ωr + jωi  is the  complex angular frequency;

0εεε ⋅= ∗
rii  is the dielectric constant of the material;

The equations above are applied to the resonator
being the fields Ey and Hy calculated, through the
solution of the Helmoltz equations in the spectral
domain [2]-[4]:
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The solutions of those equations for the four regions of
the structure are given as:

For the region 1:

               yAE ey 111 cosh~
γ⋅=               (4.1)

               ysinhAH hy 111
~ γ⋅=               (4.2)

For the region 2:

        yByAE eey 22222 coshsenh~
γγ ⋅+⋅=  (4.3)

       yByAH hhy 22222 coshsenh~
γγ ⋅+⋅=  (4.4)

For the region 3:

        3 3 3 3 3senh coshy e eE A y B yγ γ= ⋅ + ⋅  (4.5)
       33 3 3senh cosh 3y h hH A y B yγ γ= ⋅ + ⋅ (4.6)

For the region 4:

            y
ey eAE 3

33
~ γ−⋅=                            (4.7)

           y
hy eAH 3

33
~ γ−⋅=                            (4.8)

Substituting these solutions in the field equations
(2.1) the (2.4), as function of the unknown constants
A21, A22, B21 and B22 are obtained, for example, for the
region 2:
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For the determination of the unknown constants,  the

boundary conditions are applied for the regions 1, 2
and 3, and 4 , as exemple:

For the regions 1 and 2:  y = h1

E~ x1 = E~ x2                                (5.1)
E~ z1 = E~ z2                         (5.2)
H~ x1 = H~ x2                         (5.3)
H~ z1 = H~ z2                          (5.4)

For the regions 2 and 3:  y =d ; (g=h1+h2)

E~ x2= E~ x3= xgE~                            (5.5)
E~ z2= E~ z3= zgE~                            (5.6)

After several calculations are obtained, for two region
:
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   The general equations of the electromagnetic fields
are then obtained.

The following equations (7.1) and (7.2) relate the
current densities in the sheets ( xtJ  and ztJ ) and the
magnetic fields in the interface y = h1+h2:

x2 x3 ztH H J− =
                               (7.1)

 z2 z3 xtH H J− = −                    (7.2)

    With the substitutions of the magnetic field
equations,  and after some calculations are obtained,

zgzgxg J~E~E~Y =+ xzxx Y                (8.1)

xgzgxg J~E~E~Y =+ zzzx Y                (8.2)

that in matricial form:
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The " Y " admittance functions are the dyadic Green
functions of the antenna slot resonator and they are
given as:
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The electric fields in the interface, are expanded in
terms of known base functions through as [3],[5]:
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where axi and azj are unknown constant and the n and m
terms are integer and positive numbers that can be
done equal to 1, as in the equations (11) and (12)
following:
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Were chosen base functions in the space domain as:

fx(x,z)= fx(x).fx(z)                       (12.1)
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whose transformed of Fourier are:
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where J0 is the function of Bessel of first species and
order zero.
The Gallerkin method is applied  to eq. (9), the
eliminated current densities and the new equation in
matrix’s form
are obtained [5], [7].
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where,
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  The solution of the characteristic equation of the
determinant of  (14)  supplies the complex resonant
frequency [8]-[10].

III. RESULTS

The Fig.2 shows the resonant frequency as
function of length slot for different substrate thickness
at layer 1.

The Fig. 3 shows the resonant frequency as
function of width slot for different substrate thickness
at layer 3.



Fig. 2 Resonant frequency as function of length slot for
a slot resonator with four layers.

Fig. 3 Resonant frequency as function of width slot for
a slot resonator with four layers.

IV. CONCLUSION

The full wave method of the Transverse Transmission
Line - TTL, was used for obtaining  the numeric results
of the planar slot resonator with  four  layer’s substrate.
According this concise and effective procedure the
complex resonant frequency was obtained. The
possibilities of the change different materials are the
greater advantage of multiple layers slot  resonator.
This work receive financial support from CNPQ.
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